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Abstract: Let n points be arbitrarily placed inB(D), a disk inR2 having diameterD.
Denote bylij the Euclidean distance between pointi andj. In this paper, we
show

n∑
i=1

(
min
j 6=i

l2ij

)
≤ D2

0.3972
.

We then extend the result toR3.
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1. Introduction

To estimate upper bounds on the maximum number of simultaneously successful
wireless transmissions and the maximum achievable per-node end-to-end through-
put under the general network scenario, Arpacioglu and Haas [1] introduced the
following interesting inequalities. For the sake of clarity in presentation, we use the
notationargminj∈J{Sj} to denote the index of the smallest point in the set{Sj}
(j ∈ J). If there are several smallest elements, we take the first one.

Theorem 1.1 ([1]). Let B(D) be a disk inR2 having diameterD. Let n points
be arbitrarily placed inB(D). Suppose each point is indexed by a distinct integer
between1 andn. Let lij be the Euclidean distance between pointsi and j. Define
themth closest point to pointi, aim, and the Euclidean distance between pointi and
themth closest point to pointi, uim, as follows:

ai1 := argmin
j∈{1,2,...,n},

j 6=i

{lij}, 1 ≤ i ≤ n,

aim := argmin
j∈{1,2,...,n},

j /∈{i}∪{aik}
m−1
k=1

{lij}, 1 ≤ i ≤ n, 2 ≤ m ≤ n− 1,

uim := liaim
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Then

(1.1)
n∑

i=1

u2
im ≤ mD2

c2

, 1 ≤ m ≤ n− 1,

where

c2 :=
2

3
−
√

3

2π
≈ 0.3910.
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We observed [2] that the interpoint distance sum inequality (1.1) can be simply
yet significantly strengthened.

Proposition 1.2. DefineB(D), D, n, lij, aim, uim, c2 as in Theorem1.1. Then

n∑
i=1

u2
im ≤ mD2

c2

, 1 ≤ m < c2n,(1.2)

n∑
i=1

u2
im ≤ nD2, c2n < m ≤ n− 1.(1.3)

The proof follows from (1.1) and the fact thatuim ≤ D.
As a direct application, we improved [2] the upper bounds on the maximum num-

ber of simultaneously successful wireless transmissions and the maximum achiev-
able per-node end-to-end throughput under the same general network scenario as in
Arpacioglu and Haas [1].
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2. Main Result

In this section, we show that the interpoint distance sum inequality (1.1) whenm = 1
can be further improved.

Theorem 2.1.DefineB(D), D, n, lij, aim, uim, c2 as in Theorem1.1. Then

n∑
i=1

u2
i1 ≤

D2

0.3972
.

Proof. The casen = 2 is trivial to verify sincem = 1 anduim ≤ D. So we assume
n ≥ 3. The proof is based on that of Theorem1.1[1]. Denote the disk of diameterx
and centeri by Bi(x). Define the following sets of disks

Rm := {Bi(uim) : 1 ≤ i ≤ n}, 1 ≤ m ≤ n− 1.

First consider the disks inR1. As shown in [1], all disks inR1 are non-overlapping,
i.e., the distance between the centers of any two disks is smaller than the sum of the
radii of the two disks.

Denote byA(X) the area of a regionX. We try to find a lower bound onfim :=
A(B(D)∩Bi(uim))/A(Bi(uim)) for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1. Pick any
pointS from the boundary ofB(D) and consider the overlap ratio

fS
im :=

A(B(D) ∩BS(uim))

A(BS(uim))
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Using Figure1, one can obtain the geometrical computation formula:fS
im =

f(y)|y=
uim
D

, where

(2.1) f(y) :=
1

π

(
1− 2

y2

)
arccos

(y

2

)
+

1

y2
− 1

π

√
1

y2
− 1

4
.
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Figure 1: Computation of the overlap ratio betweenB(D) andBs(uim).

Actually f(y) is a decreasing function ofy. We havefS
im ≥ f(1) due touim ≤ D.

Also fim ≥ fS
im. Settingc2 := f(1), we obtain the following lower bound onfim for

every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

fim ≥ c2, wherec2 =
2

3
−
√

3

2π
≈ 0.3910.

Therefore the area of the parts of the disks inRm that lie inB(D) is at leastc2A(B(D)).
Hence, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(2.2) A(Bi(uim) ∩B(D)) ≥ c2A(Bi(uim)).
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For a given valuem, adding then inequalities in (2.2), we obtain

(2.3)
n∑

i=1

A(Bi(uim) ∩B(D)) ≥ c2

n∑
i=1

A(Bi(uim)), ∀ 1 ≤ m ≤ n− 1.

Since all disks inR1 are non-overlapping, we have

(2.4)
n∑

i=1

A(Bi(uim) ∩B(D)) ≤ A(B(D)).

Inequalities (2.3) and (2.4) imply

A(B(D)) ≥ c2

n∑
i=1

A(Bi(uim)).

Notice thatA(B(D)) = πD2/4 andA(Bi(ui1)) = πu2
i1/4. Therefore,

(2.5)
n∑

i=1

u2
i1 ≤

D2

c2

.

Also, it is easy to see thatf(y), defined in (2.1), is a concave function. Thenf(y)
has a linear underestimation, denoted by

l(y) := c2 + k − ky,

where

k :=
f(0)− f(1)

1− 0
= lim

y→0
f(y)− f(1) = 0.5− c2 ≈ 0.1090.

Figure2 shows the variation off(y) andl(y), respectively. Figure3 shows the
variation off(y)− l(y) with respect toy.
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Figure 2: Variations off(y) andl(y).

Now we have

fim ≥ fS
im = f

(uim

D

)
≥ c2 + k − k

uim

D
.

Therefore, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(2.6) A(Bi(uim) ∩B(D)) ≥ (c2 + k)A(Bi(uim))− k
uim

D
A(Bi(uim)).

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Interpoint Distance Sum Inequality

Yong Xia and Hong-Ying Liu

vol. 10, iss. 3, art. 74, 2009

Title Page

Contents

JJ II

J I

Page 9 of 20

Go Back

Full Screen

Close

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

f(
y)

−
l(y

)

y

Figure 3: Variation off(y)− l(y).

Adding all then inequalities in (2.6) for a givenm, we obtain

n∑
i=1

A(Bi(uim) ∩B(D))

≥ (c2 + k)
n∑

i=1

A(Bi(uim))− k

D

n∑
i=1

uimA(Bi(uim)), ∀1 ≤ m ≤ n− 1.

Using (2.4) and the factsA(B(D)) = πD2/4 andA(Bi(ui1)) = πu2
i1/4, we obtain

(2.7) D2 ≥ (c2 + k)
n∑

i=1

u2
i1 −

k

D

n∑
i=1

u3
i1.
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Now consider the following optimization problem (n ≥ 3):

max
n∑

i=1

u3
i1(2.8)

s.t.
n∑

i=1

u2
i1 ≤

D2

c2

(2.9)

0 ≤ ui1 ≤ D, i = 1, . . . , n.(2.10)

The objective function (2.8) is strictly convex and the feasible region defined by (2.9)
– (2.10) is also convex. Sincen ≥ 3 and2 < 1

c2
< 3, the inequality (2.9) holds at

any of the optimal solutions. Therefore the optimal solutions of (2.8) – (2.10) must
occur at the vertices of the set{

(ui1) :
n∑

i=1

u2
i1 =

D2

c2

, 0 ≤ ui1 ≤ D, i = 1, . . . , n

}
.

Any (ui1) with two components lying strictly between0 andD cannot be a vertex.

Therefore every optimal solution of (2.8) – (2.10) has
⌊

1
c2

⌋
components with the

value D, one component with the value

√
1
c2
−
⌊

1
c2

⌋
D and the others are zeros,

wherebxc is the largest integer less than or equal tox. Then the optimal objective
value is ⌊

1

c2

⌋
D3 +

(
1

c2

−
⌊

1

c2

⌋) 3
2

D3.

In other words, we have proved for validui1 that
n∑

i=1

u3
i1 ≤

⌊
1

c2

⌋
D3 +

(
1

c2

−
⌊

1

c2

⌋) 3
2

D3.
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Now (2.7) becomes

(2.11) D2 ≥ c2

n∑
i=1

u2
i1 + k

(
n∑

i=1

u2
i1 −

(⌊
1

c2

⌋
+

(
1

c2

−
⌊

1

c2

⌋) 3
2

)
D2

)
.

Then we have

n∑
i=1

u2
i1 ≤

D2

(
1 + k

(⌊
1
c2

⌋
+
(

1
c2
−
⌊

1
c2

⌋) 3
2

))
c2

(
1 + k 1

c2

) .

Comparing with (2.5), we actually obtain a newc+
2 :

(2.12) c+
2 =

c2

(
1 + k 1

c2

)
1 + k

(⌊
1
c2

⌋
+
(

1
c2
−
⌊

1
c2

⌋) 3
2

) ≈ 0.3957

such that
n∑

i=1

u2
i1 ≤

D2

c+
2

.

Iteratively repeating the same approach, we obtain a sequence{c(i)} (i = 1, 2, . . . ),
wherec(0) = c2, c(1) = c+

2 and

(2.13) c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 3
2

) .

Clearly, we can conclude thatc(i) < 1
2

for all i since the denominator above is greater
than1. Secondly, we prove thatc(i) > 1

3
for all i by mathematical induction. We
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have shown thatc(0) > 1
3

andc(1) > 1
3
. Now assumec(i) > 1

3
. Since⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋) 3
2

≤
⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋)
=

1

c(i)
,

we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 3
2

) ≥ 0.5

1 + k
c(i)

>
0.5

1 + 3k
>

1

3
.

To sum up, we obtain1
3

< c(i) < 1
2
, which implies that

⌊
1

c(i)

⌋
= 2. Therefore, the

iterative formula ofc(i+1) (2.13) becomes

c(i+1) =
0.5

1 + k
(
2 +

(
1

c(i)
− 2
) 3

2

) .

It is easy to verify that the sequence{c(i)} is monotone increasing with a limit value
0.3972.
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3. Extension

Theorem 3.1. Let B(D) be a sphere inR3 having diameterD. Let n points be
arbitrarily placed in B(D). lij, aim, uim are similarly defined as in Theorem1.1.
Then

n∑
i=1

u3
i1 ≤

D3

0.3168
,(3.1)

n∑
i=1

u3
im ≤ mD3

c3

, 2 ≤ m < c3n,(3.2)

n∑
i=1

u3
im ≤ nD3, c3n < m ≤ n− 1,(3.3)

wherec3 = 0.3125.

Proof. To begin with, we prove the first inequality (3.1). The casen = 2 is trivial
sincem = 1 anduim ≤ D. So we assume thatn ≥ 3. The proof is based on that of
Theorem1.1[1]. Denote the sphere of diameterx and centeri by Bi(x). Define the
following sets of spheres

Rm := {Bi(uim) : 1 ≤ i ≤ n}, 1 ≤ m ≤ n− 1.

First consider the spheres inR1. As shown in [1], all spheres inR1 are non-
overlapping, i.e., the distance between the centers of any two spheres is smaller
than the sum of the radii of the two spheres.

Denote byA(X) the volume of a regionX. We try to find a lower bound on
fim := V (B(D) ∩ Bi(uim))/V (Bi(uim)) for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1.
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Pick any pointS from the boundary ofB(D) and consider the overlap ratio

(3.4) fS
im :=

V (B(D) ∩BS(uim))

V (BS(uim))
, 1 ≤ i ≤ n, 1 ≤ m ≤ n− 1.

Using a3-dimensional version of Figure1, one can obtain the geometrical com-
putation formula:fS

im = f(y)|y=
uim
D

, where

f(y) :=
1

2
− 3y

16
.

Actually f(y) is a decreasing function ofy. We havefS
im ≥ f(1) due touim ≤ D.

Also fim ≥ fS
im. Settingc3 := f(1), we obtain the following lower bound onfim for

every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

fim ≥ c3, where c3 =
5

16
= 0.3125.

Therefore the area of the parts of the disks inRm that lie inB(D) is at leastc3A(B(D)).
Hence, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(3.5) V (Bi(uim) ∩B(D)) ≥ c3V (Bi(uim)).

For a given valuem, adding then inequalities in (3.5), we obtain

(3.6)
n∑

i=1

V (Bi(uim) ∩B(D)) ≥ c3

n∑
i=1

V (Bi(uim)), ∀1 ≤ m ≤ n− 1.

Since all spheres inR1 are non-overlapping, we have

(3.7)
n∑

i=1

V (Bi(uim) ∩B(D)) ≤ V (B(D)).
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Inequalities (3.6) and (3.7) imply

V (B(D)) ≥ c3

n∑
i=1

V (Bi(uim)).

Notice thatV (B(D)) = πD3/6 andV (Bi(ui1)) = πu3
i1/6. Therefore,

(3.8)
n∑

i=1

u3
i1 ≤

D3

c3

.

Definingk = 3
16

= 0.1875, we have

fim ≥ fS
im = f

(uim

D

)
≥ c3 + k − k

uim

D
.

Therefore, for every1 ≤ i ≤ n and1 ≤ m ≤ n− 1,

(3.9) V (Bi(uim) ∩B(D)) ≥ (c3 + k)V (Bi(uim))− k
uim

D
V (Bi(uim)).

Adding then inequalities in (3.9) for a givenm, we obtain

(3.10)
n∑

i=1

V (Bi(uim) ∩B(D))

≥ (c3 + k)
n∑

i=1

V (Bi(uim))− k

D

n∑
i=1

uimV (Bi(uim)), ∀1 ≤ m ≤ n− 1.

Using (3.7) and the factsV (B(D)) = πD3/6 andV (Bi(ui1)) = πu3
i1/6, we have

(3.11) D3 ≥ (c3 + k)
n∑

i=1

u3
i1 −

k

D

n∑
i=1

u4
i1.
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Now consider the following optimization problems (n ≥ 3):

max
n∑

i=1

u4
i1(3.12)

s.t.
n∑

i=1

u3
i1 ≤

D3

c3

(3.13)

0 ≤ ui1 ≤ D, i = 1, . . . , n.(3.14)

The objective function (3.12) is strictly convex and the feasible region defined by
(3.13) – (3.14) is also convex. Sincen ≥ 3 and2 < 1

c3
< 3, the inequality (3.13)

holds at any of the optimal solutions. Therefore the optimal solutions of (3.12) –
(3.14) must occur at vertices of the set{

(ui1) :
n∑

i=1

u3
i1 =

D3

c3

, 0 ≤ ui1 ≤ D, i = 1, . . . , n

}
.

Any (ui1) with two components lying strictly between0 andD cannot be a vertex.

Therefore every optimal solution of (3.12) – (3.14) has
⌊

1
c3

⌋
components with the

value D, one component with the value

√
1
c3
−
⌊

1
c3

⌋
D and the others are zeros,

wherebxc is the largest integer less than or equal tox. Then the optimal objective
value is ⌊

1

c3

⌋
D4 +

(
1

c3

−
⌊

1

c3

⌋) 4
3

D4.
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In other words, we have proved for validui1 that
n∑

i=1

u4
i1 ≤

⌊
1

c3

⌋
D4 +

(
1

c3

−
⌊

1

c3

⌋) 4
3

D4.

Now (3.11) becomes

(3.15) D3 ≥ c3

n∑
i=1

u3
i1 + k

(
n∑

i=1

u3
i1 −

(⌊
1

c3

⌋
+

(
1

c3

−
⌊

1

c3

⌋) 4
3

)
D3

)
.

Then we have

n∑
i=1

u3
i1 ≤

D3

(
1 + k

(⌊
1
c3

⌋
+
(

1
c3
−
⌊

1
c3

⌋) 4
3

))
c3(1 + k 1

c3
)

.

Comparing with (3.8), we actually obtain a newc+
3 :

(3.16) c+
3 =

c3

(
1 + k 1

c3

)
1 + k

(⌊
1
c3

⌋
+
(

1
c3
−
⌊

1
c3

⌋) 4
3

) ≈ 0.3156

such that
n∑

i=1

u3
i1 ≤

D3

c+
3

.

Iteratively repeating the same approach, we obtain a sequence{c(i)} (i = 1, 2, . . . ),
wherec(0) = c3, c(1) = c+

3 and

(3.17) c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

) .
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First we conclude thatc(i) < 1
3

for all i. We prove this by mathematical induction.
We havec(0) = 0.3125 < 1

3
. Now assume thatc(i) < 1

3
, which also implies

⌊
1

c(i)

⌋
≥

3. Then based on (3.17), we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

)
≤ 0.5

1 + k
⌊

1
c(i)

⌋ ≤ 0.5

1 + 3k
<

1

3
.

Secondly, we prove

c(i) >
1

4

for all i by mathematical induction. We have shownc(0) > 1
4
. Now assumec(i) > 1

4
.

Since ⌊
1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋) 4
3

≤
⌊

1

c(i)

⌋
+

(
1

c(i)
−
⌊

1

c(i)

⌋)
=

1

c(i)
,

we have

c(i+1) =
0.5

1 + k
(⌊

1
c(i)

⌋
+
(

1
c(i)

−
⌊

1
c(i)

⌋) 4
3

) ≥ 0.5

1 + k
c(i)

>
0.5

1 + 4k
>

1

4
.

To sum up, we obtain1
4

< c(i) < 1
3
, which implies that

⌊
1

c(i)

⌋
= 3. Therefore, the

iterative formula (2.13) of c(i+1) becomes

c(i+1) =
0.5

1 + k
(
2 +

(
1

c(i)
− 3
) 4

3

) .
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It is easy to verify that the sequence{c(i)} is monotone increasing with a limit value
0.3168.

Next, consider the spheres inRm for every2 ≤ m ≤ n−1. In this case, there can
be overlaps between some pairs of spheres inRm. However, as shown in [1], any
arbitrarily chosen point withinB(D) can belong to at mostm overlapping spheres
from Rm. Then for every2 ≤ m ≤ n− 1, we have

n∑
i=1

V (Bi(uim) ∩B(D)) ≤ mV (B(D)).

It follows that

mD3 ≥ c3

n∑
i=1

u3
i1.

The last inequality (3.3) directly follows from the factuim ≤ D.
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