ON THE INTERPOINT DISTANCE SUM INEQUALITY

YONG XIA AND HONG-YING LIU
LMIB of the Ministry of Education
School of Mathematics and System Sciences
Beihang University, Beijing, 100191,
People's Republic of China.
EMail: dearyxia@gmail.com liuhongying@buaa.edu.cn

Received:	10 April, 2009.
Accepted:	28 September, 2009
Communicated by:	P.S. Bullen
2000 AMS Sub. Class.:	51D20, 51K05, 52C26.

Key words: Combinatorial geometry, Distance geometry, Interpoint distance sum inequality, Optimization.

Let n points be arbitrarily placed in $B(D)$, a disk in \mathbb{R}^{2} having diameter D. Denote by $l_{i j}$ the Euclidean distance between point i and j. In this paper, we show

$$
\sum_{i=1}^{n}\left(\min _{j \neq i} l_{i j}^{2}\right) \leq \frac{D^{2}}{0.3972} .
$$

We then extend the result to \mathbb{R}^{3}.

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Contents

Title Page

<4	
4	
Page 1 of 20	
Go Back	

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction 3
2 Main Result 5
3 Extension 13

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 2 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

To estimate upper bounds on the maximum number of simultaneously successful wireless transmissions and the maximum achievable per-node end-to-end throughput under the general network scenario, Arpacioglu and Haas [1] introduced the following interesting inequalities. For the sake of clarity in presentation, we use the notation $\operatorname{argmin}_{j \in J}\left\{S_{j}\right\}$ to denote the index of the smallest point in the set $\left\{S_{j}\right\}$ $(j \in J)$. If there are several smallest elements, we take the first one.

Theorem 1.1 ([1]). Let $B(D)$ be a disk in \mathbb{R}^{2} having diameter D. Let n points be arbitrarily placed in $B(D)$. Suppose each point is indexed by a distinct integer between 1 and n. Let $l_{i j}$ be the Euclidean distance between points i and j. Define the mth closest point to point $i, a_{i m}$, and the Euclidean distance between point i and the mth closest point to point $i, u_{i m}$, as follows:

$$
\begin{aligned}
& a_{i 1}:=\underset{\substack{j \in\{1,2, \ldots, n\}, j \neq i}}{\operatorname{argmin}}\left\{l_{i j}\right\}, \quad 1 \leq i \leq n, \\
& a_{i m}:=\underset{\substack{j \in\{1,2, \ldots, n\}, 1 \\
j \notin\{i\} \cup\left\{a_{i k}\right\}_{k=1}^{m-1}}}{\operatorname{argmin}}\left\{l_{i j}\right\}, \quad 1 \leq i \leq n, 2 \leq m \leq n-1 \text {, } \\
& u_{i m}:=l_{i a_{i m}}, \quad 1 \leq i \leq n, 1 \leq m \leq n-1 .
\end{aligned}
$$

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 3 of 20
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We observed [2] that the interpoint distance sum inequality (1.1) can be simply yet significantly strengthened.

Proposition 1.2. Define $B(D), D, n, l_{i j}, a_{i m}, u_{i m}, c_{2}$ as in Theorem 1.1. Then

$$
\begin{align*}
& \sum_{i=1}^{n} u_{i m}^{2} \leq \frac{m D^{2}}{c_{2}}, \quad 1 \leq m<c_{2} n, \tag{1.2}\\
& \sum_{i=1}^{n} u_{i m}^{2} \leq n D^{2}, \quad c_{2} n<m \leq n-1 . \tag{1.3}
\end{align*}
$$

The proof follows from (1.1) and the fact that $u_{i m} \leq D$.
As a direct application, we improved [2] the upper bounds on the maximum number of simultaneously successful wireless transmissions and the maximum achievable per-node end-to-end throughput under the same general network scenario as in Arpacioglu and Haas [1].

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 4 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: l443-575b

2. Main Result

In this section, we show that the interpoint distance sum inequality (1.1) when $m=1$ can be further improved.
Theorem 2.1. Define $B(D), D, n, l_{i j}, a_{i m}, u_{i m}, c_{2}$ as in Theorem 1.1. Then

$$
\sum_{i=1}^{n} u_{i 1}^{2} \leq \frac{D^{2}}{0.3972}
$$

Proof. The case $n=2$ is trivial to verify since $m=1$ and $u_{i m} \leq D$. So we assume $n \geq 3$. The proof is based on that of Theorem 1.1 [1]. Denote the disk of diameter x and center i by $B_{i}(x)$. Define the following sets of disks

$$
R_{m}:=\left\{B_{i}\left(u_{i m}\right): 1 \leq i \leq n\right\}, \quad 1 \leq m \leq n-1
$$

First consider the disks in R_{1}. As shown in [1], all disks in R_{1} are non-overlapping, i.e., the distance between the centers of any two disks is smaller than the sum of the radii of the two disks.

Denote by $A(X)$ the area of a region X. We try to find a lower bound on $f_{i m}:=$ $A\left(B(D) \cap B_{i}\left(u_{i m}\right)\right) / A\left(B_{i}\left(u_{i m}\right)\right)$ for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$. Pick any point S from the boundary of $B(D)$ and consider the overlap ratio

$$
f_{i m}^{S}:=\frac{A\left(B(D) \cap B_{S}\left(u_{i m}\right)\right)}{A\left(B_{S}\left(u_{i m}\right)\right)}, \quad 1 \leq i \leq n, 1 \leq m \leq n-1
$$

Using Figure 1, one can obtain the geometrical computation formula: $f_{i m}^{S}=$ $\left.f(y)\right|_{y=\frac{u_{i m}}{D}}$, where

$$
\begin{equation*}
f(y):=\frac{1}{\pi}\left(1-\frac{2}{y^{2}}\right) \arccos \left(\frac{y}{2}\right)+\frac{1}{y^{2}}-\frac{1}{\pi} \sqrt{\frac{1}{y^{2}}-\frac{1}{4}} \tag{2.1}
\end{equation*}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 5 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents
Figure 1: Computation of the overlap ratio between $B(D)$ and $B_{s}\left(u_{i m}\right)$.

Actually $f(y)$ is a decreasing function of y. We have $f_{i m}^{S} \geq f(1)$ due to $u_{i m} \leq D$. Also $f_{i m} \geq f_{i m}^{S}$. Setting $c_{2}:=f(1)$, we obtain the following lower bound on $f_{i m}$ for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
f_{i m} \geq c_{2}, \quad \text { where } c_{2}=\frac{2}{3}-\frac{\sqrt{3}}{2 \pi} \approx 0.3910 .
$$

Therefore the area of the parts of the disks in R_{m} that lie in $B(D)$ is at least $c_{2} A(B(D))$. Hence, for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
\begin{equation*}
A\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \geq c_{2} A\left(B_{i}\left(u_{i m}\right)\right) \tag{2.2}
\end{equation*}
$$

in pu and applied mathematics
issn: 1443-575b

For a given value m, adding the n inequalities in (2.2), we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \geq c_{2} \sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right)\right), \quad \forall 1 \leq m \leq n-1 \tag{2.3}
\end{equation*}
$$

Since all disks in R_{1} are non-overlapping, we have

$$
\begin{equation*}
\sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \leq A(B(D)) . \tag{2.4}
\end{equation*}
$$

Inequalities (2.3) and (2.4) imply

$$
A(B(D)) \geq c_{2} \sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right)\right) .
$$

Notice that $A(B(D))=\pi D^{2} / 4$ and $A\left(B_{i}\left(u_{i 1}\right)\right)=\pi u_{i 1}^{2} / 4$. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i 1}^{2} \leq \frac{D^{2}}{c_{2}} \tag{2.5}
\end{equation*}
$$

Also, it is easy to see that $f(y)$, defined in (2.1), is a concave function. Then $f(y)$ has a linear underestimation, denoted by

$$
l(y):=c_{2}+k-k y,
$$

where

$$
k:=\frac{f(0)-f(1)}{1-0}=\lim _{y \rightarrow 0} f(y)-f(1)=0.5-c_{2} \approx 0.1090
$$

Figure 2 shows the variation of $f(y)$ and $l(y)$, respectively. Figure 3 shows the variation of $f(y)-l(y)$ with respect to y.

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 7 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Figure 2: Variations of $f(y)$ and $l(y)$.

Now we have

$$
f_{i m} \geq f_{i m}^{S}=f\left(\frac{u_{i m}}{D}\right) \geq c_{2}+k-k \frac{u_{i m}}{D} .
$$

Therefore, for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
\begin{equation*}
A\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \geq\left(c_{2}+k\right) A\left(B_{i}\left(u_{i m}\right)\right)-k \frac{u_{i m}}{D} A\left(B_{i}\left(u_{i m}\right)\right) . \tag{2.6}
\end{equation*}
$$

nterpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 8 of 20
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Figure 3: Variation of $f(y)-l(y)$.

Adding all the n inequalities in (2.6) for a given m, we obtain
Page 9 of 20

$$
\begin{aligned}
& \sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \\
& \quad \geq\left(c_{2}+k\right) \sum_{i=1}^{n} A\left(B_{i}\left(u_{i m}\right)\right)-\frac{k}{D} \sum_{i=1}^{n} u_{i m} A\left(B_{i}\left(u_{i m}\right)\right), \quad \forall 1 \leq m \leq n-1
\end{aligned}
$$

Using (2.4) and the facts $A(B(D))=\pi D^{2} / 4$ and $A\left(B_{i}\left(u_{i 1}\right)\right)=\pi u_{i 1}^{2} / 4$, we obtain

$$
\begin{equation*}
D^{2} \geq\left(c_{2}+k\right) \sum_{i=1}^{n} u_{i 1}^{2}-\frac{k}{D} \sum_{i=1}^{n} u_{i 1}^{3} . \tag{2.7}
\end{equation*}
$$

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now consider the following optimization problem ($n \geq 3$):

$$
\begin{align*}
& \quad \max \sum_{i=1}^{n} u_{i 1}^{3} \tag{2.8}\\
& \text { s.t. } \quad \sum_{i=1}^{n} u_{i 1}^{2} \leq \frac{D^{2}}{c_{2}} \tag{2.9}
\end{align*}
$$

The objective function (2.8) is strictly convex and the feasible region defined by (2.9) - (2.10) is also convex. Since $n \geq 3$ and $2<\frac{1}{c_{2}}<3$, the inequality (2.9) holds at any of the optimal solutions. Therefore the optimal solutions of (2.8) - (2.10) must occur at the vertices of the set

$$
\left\{\left(u_{i 1}\right): \sum_{i=1}^{n} u_{i 1}^{2}=\frac{D^{2}}{c_{2}}, 0 \leq u_{i 1} \leq D, i=1, \ldots, n\right\} .
$$

Any $\left(u_{i 1}\right)$ with two components lying strictly between 0 and D cannot be a vertex. Therefore every optimal solution of $(2.8)-(2.10)$ has $\left[\frac{1}{c_{2}}\right]$ components with the value D, one component with the value $\sqrt{\frac{1}{c_{2}}-\left\lfloor\frac{1}{c_{2}}\right\rfloor} D$ and the others are zeros, where $\lfloor x\rfloor$ is the largest integer less than or equal to x. Then the optimal objective value is

$$
\left\lfloor\frac{1}{c_{2}}\right\rfloor D^{3}+\left(\frac{1}{c_{2}}-\left\lfloor\frac{1}{c_{2}}\right\rfloor\right)^{\frac{3}{2}} D^{3} .
$$

In other words, we have proved for valid $u_{i 1}$ that

$$
\sum_{i=1}^{n} u_{i 1}^{3} \leq\left\lfloor\frac{1}{c_{2}}\right\rfloor D^{3}+\left(\frac{1}{c_{2}}-\left\lfloor\frac{1}{c_{2}}\right\rfloor\right)^{\frac{3}{2}} D^{3}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 10 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now (2.7) becomes

$$
\begin{equation*}
D^{2} \geq c_{2} \sum_{i=1}^{n} u_{i 1}^{2}+k\left(\sum_{i=1}^{n} u_{i 1}^{2}-\left(\left\lfloor\frac{1}{c_{2}}\right\rfloor+\left(\frac{1}{c_{2}}-\left\lfloor\frac{1}{c_{2}}\right\rfloor\right)^{\frac{3}{2}}\right) D^{2}\right) . \tag{2.11}
\end{equation*}
$$

Then we have

$$
\sum_{i=1}^{n} u_{i 1}^{2} \leq \frac{D^{2}\left(1+k\left(\left\lfloor\frac{1}{c_{2}}\right\rfloor+\left(\frac{1}{c_{2}}-\left\lfloor\frac{1}{c_{2}}\right\rfloor\right)^{\frac{3}{2}}\right)\right)}{c_{2}\left(1+k \frac{1}{c_{2}}\right)}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 11 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
have shown that $c^{(0)}>\frac{1}{3}$ and $c^{(1)}>\frac{1}{3}$. Now assume $c^{(i)}>\frac{1}{3}$. Since

$$
\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{3}{2}} \leq\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)=\frac{1}{c^{(i)}},
$$

we have

$$
c^{(i+1)}=\frac{0.5}{1+k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{3}{2}}\right)} \geq \frac{0.5}{1+\frac{k}{c^{(i)}}}>\frac{0.5}{1+3 k}>\frac{1}{3} .
$$

To sum up, we obtain $\frac{1}{3}<c^{(i)}<\frac{1}{2}$, which implies that $\left\lfloor\frac{1}{c^{(i)}}\right\rfloor=2$. Therefore, the iterative formula of $c^{(i+1)}(2.13)$ becomes

$$
c^{(i+1)}=\frac{0.5}{1+k\left(2+\left(\frac{1}{c^{(i)}}-2\right)^{\frac{3}{2}}\right)} .
$$

It is easy to verify that the sequence $\left\{c^{(i)}\right\}$ is monotone increasing with a limit value 0.3972 .

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 12 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Extension

Theorem 3.1. Let $B(D)$ be a sphere in \mathbb{R}^{3} having diameter D. Let n points be arbitrarily placed in $B(D) . l_{i j}, a_{i m}, u_{i m}$ are similarly defined as in Theorem 1.1. Then

$$
\begin{align*}
& \sum_{i=1}^{n} u_{i 1}^{3} \leq \frac{D^{3}}{0.3168} \tag{3.1}\\
& \sum_{i=1}^{n} u_{i m}^{3} \leq \frac{m D^{3}}{c_{3}}, \quad 2 \leq m<c_{3} n \tag{3.2}\\
& \sum_{i=1}^{n} u_{i m}^{3} \leq n D^{3}, \quad c_{3} n<m \leq n-1, \tag{3.3}
\end{align*}
$$

Title Page
Contents

Page 13 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Pick any point S from the boundary of $B(D)$ and consider the overlap ratio

$$
\begin{equation*}
f_{i m}^{S}:=\frac{V\left(B(D) \cap B_{S}\left(u_{i m}\right)\right)}{V\left(B_{S}\left(u_{i m}\right)\right)}, \quad 1 \leq i \leq n, 1 \leq m \leq n-1 \tag{3.4}
\end{equation*}
$$

Using a 3 -dimensional version of Figure 1, one can obtain the geometrical computation formula: $f_{i m}^{S}=\left.f(y)\right|_{y=\frac{u_{i m}}{D}}$, where

$$
f(y):=\frac{1}{2}-\frac{3 y}{16}
$$

Actually $f(y)$ is a decreasing function of y. We have $f_{i m}^{S} \geq f(1)$ due to $u_{i m} \leq D$. Also $f_{i m} \geq f_{i m}^{S}$. Setting $c_{3}:=f(1)$, we obtain the following lower bound on $f_{i m}$ for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
f_{i m} \geq c_{3}, \quad \text { where } \quad c_{3}=\frac{5}{16}=0.3125
$$

Therefore the area of the parts of the disks in R_{m} that lie in $B(D)$ is at least $c_{3} A(B(D))$. Hence, for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
\begin{equation*}
V\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \geq c_{3} V\left(B_{i}\left(u_{i m}\right)\right) . \tag{3.5}
\end{equation*}
$$

For a given value m, adding the n inequalities in (3.5), we obtain

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 14 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Inequalities (3.6) and (3.7) imply

$$
V(B(D)) \geq c_{3} \sum_{i=1}^{n} V\left(B_{i}\left(u_{i m}\right)\right)
$$

Notice that $V(B(D))=\pi D^{3} / 6$ and $V\left(B_{i}\left(u_{i 1}\right)\right)=\pi u_{i 1}^{3} / 6$. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i 1}^{3} \leq \frac{D^{3}}{c_{3}} \tag{3.8}
\end{equation*}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009
Defining $k=\frac{3}{16}=0.1875$, we have

$$
f_{i m} \geq f_{i m}^{S}=f\left(\frac{u_{i m}}{D}\right) \geq c_{3}+k-k \frac{u_{i m}}{D} .
$$

Therefore, for every $1 \leq i \leq n$ and $1 \leq m \leq n-1$,

$$
\begin{equation*}
V\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \geq\left(c_{3}+k\right) V\left(B_{i}\left(u_{i m}\right)\right)-k \frac{u_{i m}}{D} V\left(B_{i}\left(u_{i m}\right)\right) . \tag{3.9}
\end{equation*}
$$

Adding the n inequalities in (3.9) for a given m, we obtain

Title Page
Contents

Page 15 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now consider the following optimization problems ($n \geq 3$):

$$
\begin{gather*}
\max \sum_{i=1}^{n} u_{i 1}^{4} \tag{3.12}\\
\text { s.t. } \quad \sum_{i=1}^{n} u_{i 1}^{3} \leq \frac{D^{3}}{c_{3}} \tag{3.13}\\
0 \leq u_{i 1} \leq \tag{3.14}\\
D, \quad i=1, \ldots, n .
\end{gather*}
$$

The objective function (3.12) is strictly convex and the feasible region defined by (3.13) - (3.14) is also convex. Since $n \geq 3$ and $2<\frac{1}{c_{3}}<3$, the inequality (3.13) holds at any of the optimal solutions. Therefore the optimal solutions of (3.12) (3.14) must occur at vertices of the set

$$
\left\{\left(u_{i 1}\right): \sum_{i=1}^{n} u_{i 1}^{3}=\frac{D^{3}}{c_{3}}, 0 \leq u_{i 1} \leq D, i=1, \ldots, n\right\}
$$

Any $\left(u_{i 1}\right)$ with two components lying strictly between 0 and D cannot be a vertex. Therefore every optimal solution of (3.12) - (3.14) has $\left\lfloor\frac{1}{c_{3}}\right\rfloor$ components with the value D, one component with the value $\sqrt{\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor} D$ and the others are zeros, where $\lfloor x\rfloor$ is the largest integer less than or equal to x. Then the optimal objective value is

$$
\left\lfloor\frac{1}{c_{3}}\right\rfloor D^{4}+\left(\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor\right)^{\frac{4}{3}} D^{4} .
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 16 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In other words, we have proved for valid $u_{i 1}$ that

$$
\sum_{i=1}^{n} u_{i 1}^{4} \leq\left\lfloor\frac{1}{c_{3}}\right\rfloor D^{4}+\left(\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor\right)^{\frac{4}{3}} D^{4}
$$

Now (3.11) becomes

$$
\begin{equation*}
D^{3} \geq c_{3} \sum_{i=1}^{n} u_{i 1}^{3}+k\left(\sum_{i=1}^{n} u_{i 1}^{3}-\left(\left\lfloor\frac{1}{c_{3}}\right\rfloor+\left(\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor\right)^{\frac{4}{3}}\right) D^{3}\right) . \tag{3.15}
\end{equation*}
$$

Then we have

$$
\sum_{i=1}^{n} u_{i 1}^{3} \leq \frac{D^{3}\left(1+k\left(\left\lfloor\frac{1}{c_{3}}\right\rfloor+\left(\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor\right)^{\frac{4}{3}}\right)\right)}{c_{3}\left(1+k \frac{1}{c_{3}}\right)}
$$

Comparing with (3.8), we actually obtain a new c_{3}^{+}:

$$
\begin{equation*}
c_{3}^{+}=\frac{c_{3}\left(1+k \frac{1}{c_{3}}\right)}{1+k\left(\left\lfloor\frac{1}{c_{3}}\right\rfloor+\left(\frac{1}{c_{3}}-\left\lfloor\frac{1}{c_{3}}\right\rfloor\right)^{\frac{4}{3}}\right)} \approx 0.3156 \tag{3.16}
\end{equation*}
$$

such that

$$
\sum_{i=1}^{n} u_{i 1}^{3} \leq \frac{D^{3}}{c_{3}^{+}}
$$

Iteratively repeating the same approach, we obtain a sequence $\left\{c^{(i)}\right\}(i=1,2, \ldots)$, where $c^{(0)}=c_{3}, c^{(1)}=c_{3}^{+}$and

$$
\begin{equation*}
c^{(i+1)}=\frac{0.5}{1+k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{4}{3}}\right)} . \tag{3.17}
\end{equation*}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 17 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

First we conclude that $c^{(i)}<\frac{1}{3}$ for all i. We prove this by mathematical induction. We have $c^{(0)}=0.3125<\frac{1}{3}$. Now assume that $c^{(i)}<\frac{1}{3}$, which also implies $\left\lfloor\frac{1}{c^{(i)}}\right\rfloor \geq$ 3. Then based on (3.17), we have

$$
\begin{aligned}
c^{(i+1)} & =\frac{0.5}{1+k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{4}{3}}\right)} \\
& \leq \frac{0.5}{1+k\left\lfloor\frac{1}{c^{(i)}}\right\rfloor} \leq \frac{0.5}{1+3 k}<\frac{1}{3} .
\end{aligned}
$$

Secondly, we prove

$$
c^{(i)}>\frac{1}{4}
$$

for all i by mathematical induction. We have shown $c^{(0)}>\frac{1}{4}$. Now assume $c^{(i)}>\frac{1}{4}$. Since

$$
\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{4}{3}} \leq\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)=\frac{1}{c^{(i)}},
$$

we have

$$
c^{(i+1)}=\frac{0.5}{1+k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor+\left(\frac{1}{c^{(i)}}-\left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{4}{3}}\right)} \geq \frac{0.5}{1+\frac{k}{c^{(i)}}}>\frac{0.5}{1+4 k}>\frac{1}{4}
$$

To sum up, we obtain $\frac{1}{4}<c^{(i)}<\frac{1}{3}$, which implies that $\left\lfloor\frac{1}{c^{(i)}}\right\rfloor=3$. Therefore, the iterative formula (2.13) of $c^{(i+1)}$ becomes

$$
c^{(i+1)}=\frac{0.5}{1+k\left(2+\left(\frac{1}{c^{(i)}}-3\right)^{\frac{4}{3}}\right)}
$$

Interpoint Distance Sum Inequality
Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

Page 18 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

It is easy to verify that the sequence $\left\{c^{(i)}\right\}$ is monotone increasing with a limit value 0.3168 .

Next, consider the spheres in R_{m} for every $2 \leq m \leq n-1$. In this case, there can be overlaps between some pairs of spheres in R_{m}. However, as shown in [1], any arbitrarily chosen point within $B(D)$ can belong to at most m overlapping spheres from R_{m}. Then for every $2 \leq m \leq n-1$, we have

$$
\sum_{i=1}^{n} V\left(B_{i}\left(u_{i m}\right) \cap B(D)\right) \leq m V(B(D))
$$

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

$$
m D^{3} \geq c_{3} \sum_{i=1}^{n} u_{i 1}^{3} .
$$

The last inequality (3.3) directly follows from the fact $u_{i m} \leq D$.
It follows that
Title Page
Contents

Page 19 of 20

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] O. ARPACIOGLU AND Z.J. HAAS, On the scalability and capacity of planar wireless networks with omnidirectional antennas, Wirel. Commun. Mob. Comput., 4 (2004), 263-279.
[2] Y. XIA AND H.Y. LIU, Improving upper bound on the capacity of planar wireless networks with omnidirectional antennas, in Baozong Yuan and Xiaofang Tang (Eds.) Proceedings of the IET 2nd International Conference on Wireless, Mobile \& Multimedia Networks, (2008), 191-194.

Interpoint Distance Sum Inequality Yong Xia and Hong-Ying Liu vol. 10, iss. 3, art. 74, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 20 of 20	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

