

ON THE INTERPOINT DISTANCE SUM INEQUALITY

YONG XIA AND HONG-YING LIU

LMIB of the Ministry of Education; School of Mathematics and System Sciences, Beihang University, Beijing, 100191, P.R. China dearyxia@gmail.com

liuhongying@buaa.edu.cn

Received 10 April, 2009; accepted 28 September, 2009 Communicated by P.S. Bullen

ABSTRACT. Let n points be arbitrarily placed in B(D), a disk in \mathbb{R}^2 having diameter D. Denote by l_{ij} the Euclidean distance between point i and j. In this paper, we show

$$\sum_{i=1}^{n} \left(\min_{j \neq i} l_{ij}^2 \right) \le \frac{D^2}{0.3972}.$$

We then extend the result to \mathbb{R}^3 .

Key words and phrases: Combinatorial geometry, Distance geometry, Interpoint distance sum inequality, Optimization.

2000 Mathematics Subject Classification. 51D20, 51K05, 52C26.

1. INTRODUCTION

To estimate upper bounds on the maximum number of simultaneously successful wireless transmissions and the maximum achievable per-node end-to-end throughput under the general network scenario, Arpacioglu and Haas [1] introduced the following interesting inequalities. For the sake of clarity in presentation, we use the notation $argmin_{j\in J}\{S_j\}$ to denote the index of the smallest point in the set $\{S_j\}$ $(j \in J)$. If there are several smallest elements, we take the first one.

Theorem 1.1 ([1]). Let B(D) be a disk in \mathbb{R}^2 having diameter D. Let n points be arbitrarily placed in B(D). Suppose each point is indexed by a distinct integer between 1 and n. Let l_{ij} be the Euclidean distance between points i and j. Define the mth closest point to point i, a_{im} , and the Euclidean distance between point i and the mth closest point to point i, u_{im} , as follows:

$$a_{i1} := \underset{\substack{j \in \{1,2,\dots,n\},\\j \neq i}}{\operatorname{argmin}} \{l_{ij}\}, \quad 1 \le i \le n,$$
$$a_{im} := \underset{\substack{j \in \{1,2,\dots,n\},\\j \notin \{i\} \cup \{a_{ik}\}_{k=1}^{m-1}}}{\operatorname{argmin}} \{l_{ij}\}, \quad 1 \le i \le n, \ 2 \le m \le n-1,$$

095-09

$$u_{im} := l_{ia_{im}}, \quad 1 \le i \le n, \ 1 \le m \le n-1.$$

Then

(1.1)
$$\sum_{i=1}^{n} u_{im}^2 \le \frac{mD^2}{c_2}, \quad 1 \le m \le n-1,$$

where

$$c_2 := \frac{2}{3} - \frac{\sqrt{3}}{2\pi} \approx 0.3910.$$

We observed [2] that the interpoint distance sum inequality (1.1) can be simply yet significantly strengthened.

Proposition 1.2. Define $B(D), D, n, l_{ij}, a_{im}, u_{im}, c_2$ as in Theorem 1.1. Then

(1.2)
$$\sum_{i=1}^{n} u_{im}^2 \le \frac{mD^2}{c_2}, \quad 1 \le m < c_2 n,$$

(1.3)
$$\sum_{i=1}^{n} u_{im}^2 \le nD^2, \quad c_2n < m \le n-1.$$

The proof follows from (1.1) and the fact that $u_{im} \leq D$.

As a direct application, we improved [2] the upper bounds on the maximum number of simultaneously successful wireless transmissions and the maximum achievable per-node end-to-end throughput under the same general network scenario as in Arpacioglu and Haas [1].

2. MAIN RESULT

In this section, we show that the interpoint distance sum inequality (1.1) when m = 1 can be further improved.

Theorem 2.1. Define $B(D), D, n, l_{ij}, a_{im}, u_{im}, c_2$ as in Theorem 1.1. Then

$$\sum_{i=1}^{n} u_{i1}^2 \le \frac{D^2}{0.3972}$$

Proof. The case n = 2 is trivial to verify since m = 1 and $u_{im} \le D$. So we assume $n \ge 3$. The proof is based on that of Theorem 1.1 [1]. Denote the disk of diameter x and center i by $B_i(x)$. Define the following sets of disks

$$R_m := \{ B_i(u_{im}) : 1 \le i \le n \}, \quad 1 \le m \le n - 1.$$

First consider the disks in R_1 . As shown in [1], all disks in R_1 are non-overlapping, i.e., the distance between the centers of any two disks is smaller than the sum of the radii of the two disks.

Denote by A(X) the area of a region X. We try to find a lower bound on $f_{im} := A(B(D) \cap B_i(u_{im}))/A(B_i(u_{im}))$ for every $1 \le i \le n$ and $1 \le m \le n-1$. Pick any point S from the boundary of B(D) and consider the overlap ratio

$$f_{im}^{S} := \frac{A(B(D) \cap B_{S}(u_{im}))}{A(B_{S}(u_{im}))}, \qquad 1 \le i \le n, \ 1 \le m \le n-1.$$

Using Figure 2.1, one can obtain the geometrical computation formula: $f_{im}^S = f(y)|_{y=\frac{u_{im}}{D}}$, where

(2.1)
$$f(y) := \frac{1}{\pi} \left(1 - \frac{2}{y^2} \right) \arccos\left(\frac{y}{2}\right) + \frac{1}{y^2} - \frac{1}{\pi} \sqrt{\frac{1}{y^2} - \frac{1}{4}}.$$

Figure 2.1: Computation of the overlap ratio between B(D) and $B_s(u_{im})$.

Actually f(y) is a decreasing function of y. We have $f_{im}^S \ge f(1)$ due to $u_{im} \le D$. Also $f_{im} \ge f_{im}^S$. Setting $c_2 := f(1)$, we obtain the following lower bound on f_{im} for every $1 \le i \le n$ and $1 \le m \le n-1$,

$$f_{im} \ge c_2$$
, where $c_2 = \frac{2}{3} - \frac{\sqrt{3}}{2\pi} \approx 0.3910$.

Therefore the area of the parts of the disks in R_m that lie in B(D) is at least $c_2A(B(D))$. Hence, for every $1 \le i \le n$ and $1 \le m \le n-1$,

(2.2)
$$A(B_i(u_{im}) \cap B(D)) \ge c_2 A(B_i(u_{im})).$$

For a given value m, adding the n inequalities in (2.2), we obtain

(2.3)
$$\sum_{i=1}^{n} A(B_i(u_{im}) \cap B(D)) \ge c_2 \sum_{i=1}^{n} A(B_i(u_{im})), \quad \forall \ 1 \le m \le n-1.$$

Since all disks in R_1 are non-overlapping, we have

(2.4)
$$\sum_{i=1}^{n} A(B_i(u_{im}) \cap B(D)) \le A(B(D))$$

Inequalities (2.3) and (2.4) imply

$$A(B(D)) \ge c_2 \sum_{i=1}^n A(B_i(u_{im})).$$

Notice that $A(B(D)) = \pi D^2/4$ and $A(B_i(u_{i1})) = \pi u_{i1}^2/4$. Therefore,

(2.5)
$$\sum_{i=1}^{n} u_{i1}^2 \le \frac{D^2}{c_2}.$$

Also, it is easy to see that f(y), defined in (2.1), is a concave function. Then f(y) has a linear underestimation, denoted by

$$l(y) := c_2 + k - ky,$$

Figure 2.2: Variations of f(y) *and* l(y)*.*

Figure 2.3: Variation of f(y) - l(y)*.*

where

$$k := \frac{f(0) - f(1)}{1 - 0} = \lim_{y \to 0} f(y) - f(1) = 0.5 - c_2 \approx 0.1090.$$

Figure 2.2 shows the variation of f(y) and l(y), respectively. Figure 2.3 shows the variation of f(y) - l(y) with respect to y.

Now we have

$$f_{im} \ge f_{im}^S = f\left(\frac{u_{im}}{D}\right) \ge c_2 + k - k\frac{u_{im}}{D}$$

Therefore, for every $1 \le i \le n$ and $1 \le m \le n-1$,

(2.6)
$$A(B_i(u_{im}) \cap B(D)) \ge (c_2 + k)A(B_i(u_{im})) - k\frac{u_{im}}{D}A(B_i(u_{im})).$$

Adding all the *n* inequalities in (2.6) for a given *m*, we obtain

$$\sum_{i=1}^{n} A(B_i(u_{im}) \cap B(D))$$

$$\geq (c_2 + k) \sum_{i=1}^{n} A(B_i(u_{im})) - \frac{k}{D} \sum_{i=1}^{n} u_{im} A(B_i(u_{im})), \quad \forall 1 \le m \le n-1.$$

Using (2.4) and the facts $A(B(D)) = \pi D^2/4$ and $A(B_i(u_{i1})) = \pi u_{i1}^2/4$, we obtain

(2.7)
$$D^2 \ge (c_2 + k) \sum_{i=1}^n u_{i1}^2 - \frac{k}{D} \sum_{i=1}^n u_{i1}^3.$$

Now consider the following optimization problem $(n \ge 3)$:

(2.8)
$$\max \sum_{i=1}^{n} u_{i1}^{3}$$

$$(2.10) 0 \le u_{i1} \le D, i = 1, \dots, n.$$

The objective function (2.8) is strictly convex and the feasible region defined by (2.9) - (2.10)is also convex. Since $n \ge 3$ and $2 < \frac{1}{c_2} < 3$, the inequality (2.9) holds at any of the optimal solutions. Therefore the optimal solutions of (2.8) – (2.10) must occur at the vertices of the set

$$\left\{ (u_{i1}) : \sum_{i=1}^{n} u_{i1}^{2} = \frac{D^{2}}{c_{2}}, \ 0 \le u_{i1} \le D, i = 1, \dots, n \right\}$$

Any (u_{i1}) with two components lying strictly between 0 and D cannot be a vertex. Therefore every optimal solution of (2.8) – (2.10) has $\left\lfloor \frac{1}{c_2} \right\rfloor$ components with the value *D*, one component with the value $\sqrt{\frac{1}{c_2} - \lfloor \frac{1}{c_2} \rfloor} D$ and the others are zeros, where $\lfloor x \rfloor$ is the largest integer less than or equal to x. Then the optimal objective value is

$$\left\lfloor \frac{1}{c_2} \right\rfloor D^3 + \left(\frac{1}{c_2} - \left\lfloor \frac{1}{c_2} \right\rfloor \right)^{\frac{3}{2}} D^3.$$

In other words, we have proved for valid u_{i1} that

$$\sum_{i=1}^{n} u_{i1}^3 \le \left\lfloor \frac{1}{c_2} \right\rfloor D^3 + \left(\frac{1}{c_2} - \left\lfloor \frac{1}{c_2} \right\rfloor \right)^{\frac{3}{2}} D^3.$$

Now (2.7) becomes

(2.11)
$$D^{2} \ge c_{2} \sum_{i=1}^{n} u_{i1}^{2} + k \left(\sum_{i=1}^{n} u_{i1}^{2} - \left(\left\lfloor \frac{1}{c_{2}} \right\rfloor + \left(\frac{1}{c_{2}} - \left\lfloor \frac{1}{c_{2}} \right\rfloor \right)^{\frac{3}{2}} \right) D^{2} \right).$$

,

Then we have

$$\sum_{i=1}^{n} u_{i1}^2 \leq \frac{D^2 \left(1 + k \left(\left\lfloor \frac{1}{c_2} \right\rfloor + \left(\frac{1}{c_2} - \left\lfloor \frac{1}{c_2} \right\rfloor \right)^{\frac{3}{2}} \right) \right)}{c_2 \left(1 + k \frac{1}{c_2} \right)}.$$

Comparing with (2.5), we actually obtain a new c_2^+ :

(2.12)
$$c_{2}^{+} = \frac{c_{2}\left(1 + k\frac{1}{c_{2}}\right)}{1 + k\left(\left\lfloor\frac{1}{c_{2}}\right\rfloor + \left(\frac{1}{c_{2}} - \left\lfloor\frac{1}{c_{2}}\right\rfloor\right)^{\frac{3}{2}}\right)} \approx 0.3957$$

such that

$$\sum_{i=1}^{n} u_{i1}^2 \le \frac{D^2}{c_2^+}$$

Iteratively repeating the same approach, we obtain a sequence $\{c^{(i)}\}$ (i = 1, 2, ...), where $c^{(0)} = c_2, c^{(1)} = c_2^+$ and

(2.13)
$$c^{(i+1)} = \frac{0.5}{1 + k \left(\left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right)^{\frac{3}{2}} \right)}.$$

Clearly, we can conclude that $c^{(i)} < \frac{1}{2}$ for all *i* since the denominator above is greater than 1. Secondly, we prove that $c^{(i)} > \frac{1}{3}$ for all *i* by mathematical induction. We have shown that $c^{(0)} > \frac{1}{3}$ and $c^{(1)} > \frac{1}{3}$. Now assume $c^{(i)} > \frac{1}{3}$. Since

$$\left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right)^{\frac{3}{2}} \le \left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right) = \frac{1}{c^{(i)}}$$

we have

$$c^{(i+1)} = \frac{0.5}{1 + k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{3}{2}}\right)} \ge \frac{0.5}{1 + \frac{k}{c^{(i)}}} > \frac{0.5}{1 + 3k} > \frac{1}{3}$$

To sum up, we obtain $\frac{1}{3} < c^{(i)} < \frac{1}{2}$, which implies that $\lfloor \frac{1}{c^{(i)}} \rfloor = 2$. Therefore, the iterative formula of $c^{(i+1)}$ (2.13) becomes

$$c^{(i+1)} = \frac{0.5}{1 + k \left(2 + \left(\frac{1}{c^{(i)}} - 2\right)^{\frac{3}{2}}\right)}$$

It is easy to verify that the sequence $\{c^{(i)}\}$ is monotone increasing with a limit value 0.3972. \Box

3. EXTENSION

Theorem 3.1. Let B(D) be a sphere in \mathbb{R}^3 having diameter D. Let n points be arbitrarily placed in B(D). l_{ij}, a_{im}, u_{im} are similarly defined as in Theorem 1.1. Then

(3.1)
$$\sum_{i=1}^{n} u_{i1}^{3} \le \frac{D^{3}}{0.3168},$$

(3.2)
$$\sum_{i=1}^{n} u_{im}^{3} \le \frac{mD^{3}}{c_{3}}, \quad 2 \le m < c_{3}n_{4}$$

(3.3)
$$\sum_{i=1}^{n} u_{im}^{3} \le nD^{3}, \quad c_{3}n < m \le n-1,$$

where $c_3 = 0.3125$.

Proof. To begin with, we prove the first inequality (3.1). The case n = 2 is trivial since m = 1 and $u_{im} \leq D$. So we assume that $n \geq 3$. The proof is based on that of Theorem 1.1 [1]. Denote the sphere of diameter x and center i by $B_i(x)$. Define the following sets of spheres

$$R_m := \{B_i(u_{im}) : 1 \le i \le n\}, \quad 1 \le m \le n - 1.$$

First consider the spheres in R_1 . As shown in [1], all spheres in R_1 are non-overlapping, i.e., the distance between the centers of any two spheres is smaller than the sum of the radii of the two spheres.

Denote by A(X) the volume of a region X. We try to find a lower bound on $f_{im} := V(B(D) \cap B_i(u_{im}))/V(B_i(u_{im}))$ for every $1 \le i \le n$ and $1 \le m \le n-1$. Pick any point S from the boundary of B(D) and consider the overlap ratio

(3.4)
$$f_{im}^{S} := \frac{V(B(D) \cap B_{S}(u_{im}))}{V(B_{S}(u_{im}))}, \quad 1 \le i \le n, \ 1 \le m \le n-1.$$

Using a 3-dimensional version of Figure 2.1, one can obtain the geometrical computation formula: $f_{im}^S = f(y)|_{y=\frac{u_{im}}{t_{im}}}$, where

$$f(y) := \frac{1}{2} - \frac{3y}{16}.$$

Actually f(y) is a decreasing function of y. We have $f_{im}^S \ge f(1)$ due to $u_{im} \le D$. Also $f_{im} \ge f_{im}^S$. Setting $c_3 := f(1)$, we obtain the following lower bound on f_{im} for every $1 \le i \le n$ and $1 \le m \le n-1$,

$$f_{im} \ge c_3$$
, where $c_3 = \frac{5}{16} = 0.3125$.

Therefore the area of the parts of the disks in R_m that lie in B(D) is at least $c_3A(B(D))$. Hence, for every $1 \le i \le n$ and $1 \le m \le n-1$,

(3.5)
$$V(B_i(u_{im}) \cap B(D)) \ge c_3 V(B_i(u_{im})).$$

For a given value m, adding the n inequalities in (3.5), we obtain

(3.6)
$$\sum_{i=1}^{n} V(B_i(u_{im}) \cap B(D)) \ge c_3 \sum_{i=1}^{n} V(B_i(u_{im})), \quad \forall 1 \le m \le n-1.$$

Since all spheres in R_1 are non-overlapping, we have

(3.7)
$$\sum_{i=1}^{n} V(B_i(u_{im}) \cap B(D)) \le V(B(D)).$$

Inequalities (3.6) and (3.7) imply

$$V(B(D)) \ge c_3 \sum_{i=1}^n V(B_i(u_{im})).$$

Notice that $V(B(D)) = \pi D^3/6$ and $V(B_i(u_{i1})) = \pi u_{i1}^3/6$. Therefore,

(3.8)
$$\sum_{i=1}^{n} u_{i1}^{3} \le \frac{D^{3}}{c_{3}}$$

Defining $k = \frac{3}{16} = 0.1875$, we have

$$f_{im} \ge f_{im}^S = f\left(\frac{u_{im}}{D}\right) \ge c_3 + k - k\frac{u_{im}}{D}.$$

Therefore, for every $1 \le i \le n$ and $1 \le m \le n - 1$,

(3.9)
$$V(B_i(u_{im}) \cap B(D)) \ge (c_3 + k)V(B_i(u_{im})) - k\frac{u_{im}}{D}V(B_i(u_{im})).$$

Adding the n inequalities in (3.9) for a given m, we obtain

(3.10)
$$\sum_{i=1}^{n} V(B_i(u_{im}) \cap B(D))$$
$$\geq (c_3 + k) \sum_{i=1}^{n} V(B_i(u_{im})) - \frac{k}{D} \sum_{i=1}^{n} u_{im} V(B_i(u_{im})), \quad \forall 1 \le m \le n-1.$$

Using (3.7) and the facts $V(B(D)) = \pi D^3/6$ and $V(B_i(u_{i1})) = \pi u_{i1}^3/6$, we have

(3.11)
$$D^3 \ge (c_3 + k) \sum_{i=1}^n u_{i1}^3 - \frac{k}{D} \sum_{i=1}^n u_{i1}^4$$

Now consider the following optimization problems ($n \ge 3$):

(3.12)
$$\max \sum_{i=1}^{n} u_{i1}^{4}$$

$$(3.14) 0 \le u_{i1} \le D, i = 1, \dots, n.$$

The objective function (3.12) is strictly convex and the feasible region defined by (3.13) - (3.14) is also convex. Since $n \ge 3$ and $2 < \frac{1}{c_3} < 3$, the inequality (3.13) holds at any of the optimal solutions. Therefore the optimal solutions of (3.12) - (3.14) must occur at vertices of the set

$$\left\{ (u_{i1}) : \sum_{i=1}^{n} u_{i1}^{3} = \frac{D^{3}}{c_{3}}, \ 0 \le u_{i1} \le D, i = 1, \dots, n \right\}.$$

Any (u_{i1}) with two components lying strictly between 0 and D cannot be a vertex. Therefore every optimal solution of (3.12) - (3.14) has $\left\lfloor \frac{1}{c_3} \right\rfloor$ components with the value D, one component with the value $\sqrt{\frac{1}{c_3} - \left\lfloor \frac{1}{c_3} \right\rfloor} D$ and the others are zeros, where $\lfloor x \rfloor$ is the largest integer less than or equal to x. Then the optimal objective value is

$$\left\lfloor \frac{1}{c_3} \right\rfloor D^4 + \left(\frac{1}{c_3} - \left\lfloor \frac{1}{c_3} \right\rfloor \right)^{\frac{4}{3}} D^4.$$

In other words, we have proved for valid u_{i1} that

$$\sum_{i=1}^{n} u_{i1}^4 \le \left\lfloor \frac{1}{c_3} \right\rfloor D^4 + \left(\frac{1}{c_3} - \left\lfloor \frac{1}{c_3} \right\rfloor \right)^{\frac{4}{3}} D^4.$$

Now (3.11) becomes

(3.15)
$$D^{3} \ge c_{3} \sum_{i=1}^{n} u_{i1}^{3} + k \left(\sum_{i=1}^{n} u_{i1}^{3} - \left(\left\lfloor \frac{1}{c_{3}} \right\rfloor + \left(\frac{1}{c_{3}} - \left\lfloor \frac{1}{c_{3}} \right\rfloor \right)^{\frac{4}{3}} \right) D^{3} \right).$$

Then we have

$$\sum_{i=1}^{n} u_{i1}^{3} \leq \frac{D^{3} \left(1 + k \left(\left\lfloor \frac{1}{c_{3}} \right\rfloor + \left(\frac{1}{c_{3}} - \left\lfloor \frac{1}{c_{3}} \right\rfloor \right)^{\frac{4}{3}} \right) \right)}{c_{3} (1 + k \frac{1}{c_{3}})}.$$

Comparing with (3.8), we actually obtain a new c_3^+ :

(3.16)
$$c_3^+ = \frac{c_3 \left(1 + k \frac{1}{c_3}\right)}{1 + k \left(\left\lfloor \frac{1}{c_3} \right\rfloor + \left(\frac{1}{c_3} - \left\lfloor \frac{1}{c_3} \right\rfloor\right)^{\frac{4}{3}}\right)} \approx 0.3156$$

such that

$$\sum_{i=1}^{n} u_{i1}^3 \le \frac{D^3}{c_3^+}.$$

Iteratively repeating the same approach, we obtain a sequence $\{c^{(i)}\}$ (i = 1, 2, ...), where $c^{(0)} = c_3, c^{(1)} = c_3^+$ and

(3.17)
$$c^{(i+1)} = \frac{0.5}{1 + k \left(\left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right)^{\frac{4}{3}} \right)}.$$

First we conclude that $c^{(i)} < \frac{1}{3}$ for all *i*. We prove this by mathematical induction. We have $c^{(0)} = 0.3125 < \frac{1}{3}$. Now assume that $c^{(i)} < \frac{1}{3}$, which also implies $\lfloor \frac{1}{c^{(i)}} \rfloor \ge 3$. Then based on (3.17), we have

$$c^{(i+1)} = \frac{0.5}{1 + k \left(\left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right)^{\frac{4}{3}} \right)} \\ \le \frac{0.5}{1 + k \left\lfloor \frac{1}{c^{(i)}} \right\rfloor} \le \frac{0.5}{1 + 3k} < \frac{1}{3}.$$

Secondly, we prove

$$c^{(i)} > \frac{1}{4}$$

for all i by mathematical induction. We have shown $c^{(0)} > \frac{1}{4}$. Now assume $c^{(i)} > \frac{1}{4}$. Since

$$\left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right)^{\frac{4}{3}} \le \left\lfloor \frac{1}{c^{(i)}} \right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor \frac{1}{c^{(i)}} \right\rfloor \right) = \frac{1}{c^{(i)}},$$

we have

$$c^{(i+1)} = \frac{0.5}{1 + k\left(\left\lfloor\frac{1}{c^{(i)}}\right\rfloor + \left(\frac{1}{c^{(i)}} - \left\lfloor\frac{1}{c^{(i)}}\right\rfloor\right)^{\frac{4}{3}}\right)} \ge \frac{0.5}{1 + \frac{k}{c^{(i)}}} > \frac{0.5}{1 + 4k} > \frac{1}{4}.$$

To sum up, we obtain $\frac{1}{4} < c^{(i)} < \frac{1}{3}$, which implies that $\lfloor \frac{1}{c^{(i)}} \rfloor = 3$. Therefore, the iterative formula (2.13) of $c^{(i+1)}$ becomes

$$c^{(i+1)} = \frac{0.5}{1 + k \left(2 + \left(\frac{1}{c^{(i)}} - 3\right)^{\frac{4}{3}}\right)}$$

It is easy to verify that the sequence $\{c^{(i)}\}\$ is monotone increasing with a limit value 0.3168.

Next, consider the spheres in R_m for every $2 \le m \le n-1$. In this case, there can be overlaps between some pairs of spheres in R_m . However, as shown in [1], any arbitrarily chosen

point within B(D) can belong to at most m overlapping spheres from R_m . Then for every $2 \le m \le n-1$, we have

$$\sum_{i=1}^{n} V(B_i(u_{im}) \cap B(D)) \le mV(B(D)).$$

It follows that

$$mD^3 \ge c_3 \sum_{i=1}^n u_{i1}^3.$$

The last inequality (3.3) directly follows from the fact $u_{im} \leq D$.

References

- [1] O. ARPACIOGLU AND Z.J. HAAS, On the scalability and capacity of planar wireless networks with omnidirectional antennas, *Wirel. Commun. Mob. Comput.*, **4** (2004), 263–279.
- [2] Y. XIA AND H.Y. LIU, Improving upper bound on the capacity of planar wireless networks with omnidirectional antennas, in Baozong Yuan and Xiaofang Tang (Eds.) *Proceedings of the IET 2nd International Conference on Wireless, Mobile & Multimedia Networks*, (2008), 191–194.