Journal of Inequalities in Pure and Applied Mathematics

A STUDY ON ALMOST INCREASING SEQUENCES

HÜSEYIN BOR
Department of Mathematics,
Erciyes University,
38039 Kayseri, Turkey.
EMail: bor@erciyes.edu.tr
URL: http://math.erciyes.edu.tr/hbor.htm
volume 4, issue 5, article 97, 2003.

Received 10 July, 2003;
accepted 18 August, 2003.
Communicated by: L. Leindler

Abstract
Contents
Gome Page
Go Back
Close

Abstract

In this paper by using an almost increasing sequence a general theorem on $\varphi-|C, \alpha|_{k}$ summability factors, which generalizes some known results, has been proved under weaker conditions.

2000 Mathematics Subject Classification: 40D15, 40F05, 40G05.
Key words: Absolute summability, Almost increasing sequences.

Contents

1 Introduction 3
2 Result 6
3 Proof of Theorem 2.1 8
4 Special Cases 12
References

A Study on Almost Increasing Sequences

Hüseyin Bor

Title Page
Contents
Close Back
Page 2 of 13

J. Ineq. Pure and Appl. Math. 4(5) Art. 97, 2003 http://jipam.vu.edu.au

1. Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by σ_{n}^{α} and t_{n}^{α} the n-th Cesáro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e.,

$$
\begin{equation*}
\sigma_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1.2}
\end{equation*}
$$

where
(1.3) $A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{0}^{\alpha}=1 \quad$ and $A_{-n}^{\alpha}=0$ for $n>0$.

The series $\sum a_{n}$ is said to be $|C, \alpha|_{k}$ summable for $k \geq 1$ and $\alpha>-1$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty . \tag{1.4}
\end{equation*}
$$

and it is said to be $|C, \alpha ; \beta|_{k}$ summable for $k \geq 1, \alpha>-1$ and $\beta \geq 0$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\beta k+k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} n^{\beta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be $\varphi-|C, \alpha|_{k}$ summable for $k \geq 1$ and $\alpha>-1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} t_{n}^{\alpha}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

In the special case when $\varphi_{n}=n^{1-\frac{1}{k}}$ (resp. $\left.\varphi_{n}=n^{\beta+1-\frac{1}{k}}\right) \varphi-|C, \alpha|_{k}$ summability is the same as $|C, \alpha|_{k}$ (resp. $|C, \alpha ; \beta|_{k}$) summability.

Bor [3] has proved the following theorem for $\varphi-|C, 1|_{k}$ summability factors of infinite series.

Theorem 1.1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let $\left(\lambda_{n}\right)$ be a sequence such that

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{v=1}^{n} v X_{v}\left|\Delta^{2} \lambda_{v}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-k}\left|\varphi_{v} t_{v}\right|^{k}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

A Study on Almost Increasing Sequences

Hüseyin Bor

Title Page
Contents
Go Back
Close
Quit

The aim of this paper is to generalize Theorem 1.1 under weaker conditions for $\varphi-|C, \alpha|_{k}$ summability. For this we need the concept of almost increasing sequences. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence c_{n} and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously every increasing sequence is an almost increasing sequence but the converse need not be true as can be seen from the example $b_{n}=n e^{(-1)^{n}}$. So we are weakening the hypotheses of the theorem by replacing the increasing sequence with an almost increasing sequence.

A Study on Almost Increasing Sequences

Hüseyin Bor
Title Page
J. Ineq. Pure and Appl. Math. 4(5) Art. 97, 2003
http://jipam.vu.edu.au

2. Result

Now, we shall prove the following:
Theorem 2.1. Let $\left(X_{n}\right)$ be an almost increasing sequence and the sequence $\left(\lambda_{n}\right)$ such that conditions (1.7) - (1.8) of Theorem 1.1 are satisfied. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence (w_{n}^{α}), defined by (see [9])

$$
w_{n}^{\alpha}= \begin{cases}\left|\left|t_{n}^{\alpha}\right|,\right. & \alpha=1 \tag{2.1}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1\end{cases}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-k}\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.2}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is $\varphi-|C, \alpha|_{k}$ summable for $k \geq 1,0<\alpha \leq 1$ and $k \alpha+\epsilon>1$.

We need the following lemmas for the proof of our theorem.
Lemma 2.2. ([4]). If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right| \tag{2.3}
\end{equation*}
$$

A Study on Almost Increasing Sequences

Hüseyin Bor
Title Page

Lemma 2.3. ([8]). If $\left(X_{n}\right)$ is an almost increasing sequence and the conditions (1.7) and (1.8) of Theorem 1.1 are satisfied, then

$$
\begin{equation*}
\sum_{n=1}^{m} X_{n}\left|\Delta \lambda_{n}\right|=O(1) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
m X_{m}\left|\Delta \lambda_{m}\right|=O(1), \quad m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

A Study on Almost Increasing
Sequences
Hüseyin Bor

3. Proof of Theorem $\mathbf{2 . 1}$

Let $\left(T_{n}^{\alpha}\right)$ be the $n-$ th (C, α), with $0<\alpha \leq 1$, mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1.2), we have

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v}
$$

Using Abel's transformation, we get

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}
$$

so that making use of Lemma 2.2, we have

$$
\begin{aligned}
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| w_{n}^{\alpha} \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}\right)
$$

to complete the proof of the theorem, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}<\infty \quad \text { for } \quad r=1,2, \quad \text { by } \quad \text { (1.6) }
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\sum_{n=2}^{m+1} n^{-k}\left|\varphi_{n} T_{n, 1}^{\alpha}\right|^{k}
$$

$$
\leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|\right\}^{k}
$$

$$
=O(1) \sum_{n=2}^{m+1} n^{-k} n^{-\alpha k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|\right\}\left\{\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\right\}^{k-1}
$$

A Study on Almost Increasing Sequences

$$
=O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1} \frac{n^{-k}\left|\varphi_{n}\right|^{k}}{n^{\alpha k}}
$$

Hüseyin Bor

$$
=O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{\alpha k+\epsilon}}
$$

Title Page
Contents

$$
=O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{\alpha k+\epsilon}}
$$

$$
=O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{\alpha k+\epsilon}}
$$

Go Back
Close

$$
=O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}
$$

Quit

Page 9 of 13
$=O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} r^{-k}\left(w_{r}^{\alpha}\left|\varphi_{r}\right|\right)^{k}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.
Again, since $\left|\lambda_{n}\right|=O\left(1 / X_{n}\right)=O(1)$, by (1.7), we have that

$$
\begin{aligned}
& \sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, 2}^{\alpha}\right|^{k} \\
& =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| n^{-k}\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{-k}\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} n^{-k}\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.

Therefore, we get that

$$
\sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2
$$

This completes the proof of the theorem.

J. Ineq. Pure and Appl. Math. 4(5) Art. 97, 2003 http://jipam.vu.edu.au

4. Special Cases

1. If we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, $\alpha=1$ and $\varphi_{n}=$ $n^{1-\frac{1}{k}}$ in Theorem 2.1, then we get Theorem 1.1.
2. If we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, $\alpha=1$ and $\varphi_{n}=$ $n^{1-\frac{1}{k}}$ in Theorem 2.1, then we get a result due to Mazhar [7] for $|C, 1|_{k}$ summability factors of infinite series.
3. If we take $\epsilon=1$ and $\varphi_{n}=n^{1-\frac{1}{k}}$ (resp. $\epsilon=1$ and $\varphi_{n}=n^{\beta+1-\frac{1}{k}}$), then we get a new result related to $|C, \alpha|_{k}$ (resp. $|C, \alpha ; \beta|_{k}$) summability factors.

References

[1] S. ALJANCIC AND D. ARANDELOVIC, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
[2] M. BALCI, Absolute φ-summability factors, Comm. Fac. Sci. Univ. Ankara, Ser. $A_{1}, 29$ (1980), 63-80.
[3] H. BOR, Absolute summability factors, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 419-422.
[4] L.S. BOSANQUET, A mean value theorem, J. London Math. Soc., 16 (1941), 146-148.
[5] T.M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[6] T.M. FLETT, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc., 8 (1958), 357-387.
[7] S.M. MAZHAR, On $|C, 1|_{k}$ summability factors, Indian J. Math., 14 (1972), 45-48.
[8] S.M. MAZHAR, Absolute summability factors of infinite series, Kyungpook Math. J., 39 (1999), 67-73.
[9] T. PATI, The summability factors of infinite series, Duke Math. J., 21 (1954), 271-284.

