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ABSTRACT. In this paper by using an almost increasing sequence a general theorem onϕ −
| C,α |k summability factors, which generalizes some known results, has been proved under
weaker conditions.
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1. I NTRODUCTION

Let (ϕn) be a sequence of complex numbers and let
∑

an be a given infinite series with
partial sums(sn). We denote byσα

n andtαn then-th Cesáro means of orderα, with α > −1, of
the sequences(sn) and(nan), respectively, i.e.,

(1.1) σα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vsv

and

(1.2) tαn =
1

Aα
n

n∑
v=1

Aα−1
n−vvav,

where

(1.3) Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0.

The series
∑

an is said to be|C, α|k summable fork ≥ 1 andα > −1, if (see [5])

(1.4)
∞∑

n=1

nk−1
∣∣σα

n − σα
n−1

∣∣k =
∞∑

n=1

1

n
|tαn|

k < ∞.
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and it is said to be|C, α; β| k summable fork ≥ 1, α > −1 andβ ≥ 0, if (see [6])

(1.5)
∞∑

n=1

nβk+k−1
∣∣σα

n − σα
n−1

∣∣k =
∞∑

n=1

nβk−1 |tαn|
k < ∞.

The series
∑

an is said to beϕ−|C, α|k summable fork ≥ 1 andα > −1, if (see [2])

(1.6)
∞∑

n=1

n−k |ϕnt
α
n|

k < ∞.

In the special case whenϕn = n1− 1
k (resp.ϕn = nβ+1− 1

k ) ϕ−|C, α|k summability is the same
as|C, α|k (resp.|C, α; β|k) summability.

Bor [3] has proved the following theorem forϕ−|C, 1|k summability factors of infinite series.

Theorem 1.1.Let (Xn) be a positive non-decreasing sequence and let(λn) be a sequence such
that

(1.7) |λn|Xn = O(1) as n →∞
and

(1.8)
n∑

v=1

vXv

∣∣∆2λv

∣∣ = O(1) as n →∞.

If there exists anε > 0 such that the sequence(nε−k |ϕn|k) is non-increasing and

(1.9)
n∑

v=1

v−k |ϕvtv|k = O(Xn) as n →∞,

then the series
∑

anλn is ϕ−|C, 1|k summable fork ≥ 1.

The aim of this paper is to generalize Theorem 1.1 under weaker conditions forϕ−|C, α|k
summability. For this we need the concept of almost increasing sequences. A positive sequence
(bn) is said to be almost increasing if there exists a positive increasing sequencecn and two
positive constantsA andB such thatAcn ≤ bn ≤ Bcn (see [1]). Obviously every increasing
sequence is an almost increasing sequence but the converse need not be true as can be seen from
the examplebn = ne(−1)n

. So we are weakening the hypotheses of the theorem by replacing the
increasing sequence with an almost increasing sequence.

2. RESULT

Now, we shall prove the following:

Theorem 2.1. Let (Xn) be an almost increasing sequence and the sequence(λn) such that
conditions (1.7) – (1.8) of Theorem 1.1 are satisfied. If there exists anε > 0 such that the
sequence(nε−k |ϕn|k) is non-increasing and if the sequence(wα

n), defined by (see[9])

(2.1) wα
n =


| |tαn| , α = 1

max
1≤v≤n

|tαv | , 0 < α < 1

satisfies the condition

(2.2)
m∑

n=1

n−k(wα
n |ϕn|)k = O(Xm) as m →∞,

then the series
∑

anλn is ϕ−|C, α|k summable fork ≥ 1, 0 < α ≤ 1 andkα + ε > 1.
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We need the following lemmas for the proof of our theorem.

Lemma 2.2. ([4]). If 0 < α ≤ 1 and1 ≤ v ≤ n, then

(2.3)

∣∣∣∣∣
v∑

p=0

Aα−1
n−pap

∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣
m∑

p=0

Aα−1
m−pap

∣∣∣∣∣ .

Lemma 2.3. ([8]). If (Xn) is an almost increasing sequence and the conditions (1.7) and (1.8)
of Theorem 1.1 are satisfied, then

(2.4)
m∑

n=1

Xn |∆λn| = O(1)

and

(2.5) mXm |∆λm| = O(1), m →∞.

3. PROOF OF THEOREM 2.1

Let (Tα
n ) be then−th (C, α), with 0 < α ≤ 1, mean of the sequence(nanλn). Then, by

(1.2), we have

Tα
n =

1

Aα
n

n∑
v=1

Aα−1
n−vvavλv.

Using Abel’s transformation, we get

Tα
n =

1

Aα
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn

Aα
n

n∑
v=1

Aα−1
n−vvav,

so that making use of Lemma 2.2, we have

|Tα
n | ≤

1

Aα
n

n−1∑
v=1

|∆λv|

∣∣∣∣∣
v∑

p=1

Aα−1
n−ppap

∣∣∣∣∣ +
|λn|
Aα

n

∣∣∣∣∣
n∑

v=1

Aα−1
n−vvav

∣∣∣∣∣
≤ 1

Aα
n

n−1∑
v=1

Aα
v wα

v |∆λv|+ |λn|wα
n

= Tα
n,1 + Tα

n,2, say.

Since ∣∣Tα
n,1 + Tα

n,2

∣∣k ≤ 2k
(∣∣Tα

n,1

∣∣k +
∣∣Tα

n,2

∣∣k) ,

to complete the proof of the theorem, it is sufficient to show that
∞∑

n=1

n−k
∣∣ϕnT

α
n,r

∣∣k < ∞ for r = 1, 2, by (1.6).

Now, whenk > 1, applying Hölder’s inequality with indicesk andk′, where1
k

+ 1
k′ = 1, we

get that

m+1∑
n=2

n−k
∣∣ϕnT

α
n,1

∣∣k ≤ m+1∑
n=2

n−k(Aα
n)−k |ϕn|k

{
n−1∑
v=1

Aα
v wα

v |∆λv|

}k

= O(1)
m+1∑
n=2

n−kn−αk |ϕn|k
{

n−1∑
v=1

vαk(wα
v )k |∆λv|

}{
n−1∑
v=1

|∆λv|

}k−1
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= O(1)
m∑

v=1

vαk(wα
v )k |∆λv|

m+1∑
n=v+1

n−k |ϕn|k

nαk

= O(1)
m∑

v=1

vαk(wα
v )k |∆λv|

m+1∑
n=v+1

nε−k |ϕn|k

nαk+ε

= O(1)
m∑

v=1

vαk(wα
v )k |∆λv| vε−k |ϕv|k

m+1∑
n=v+1

1

nαk+ε

= O(1)
m∑

v=1

vαk(wα
v )k |∆λv| vε−k |ϕv|k

∫ ∞

v

dx

xαk+ε

= O(1)
m∑

v=1

v |∆λv| v−k(wα
v |ϕv|)k

= O(1)
m−1∑
v=1

∆(v |∆λv|)
v∑

r=1

r−k(wα
r |ϕr| )k

+ O(1)m |∆λm|
m∑

v=1

v−k(wα
v |ϕv|)k

= O(1)
m−1∑
v=1

|∆(v |∆λv|)|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v
∣∣∆2λv

∣∣ Xv + O(1)
m−1∑
v=1

|∆λv+1|Xv+1 + O(1)m |∆λm|Xm

= O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.
Again, since|λn| = O(1/Xn) = O(1), by (1.7), we have that

m∑
n=1

n−k
∣∣ϕnT

α
n,2

∣∣k =
m∑

n=1

|λn|k−1 |λn|n−k(wα
n |ϕn|)k

= O(1)
m∑

n=1

|λn|n−k(wα
n |ϕn|)k

= O(1)
m−1∑
n=1

∆ |λn|
n∑

v=1

v−k(wα
v |ϕv|)k + O(1) |λm|

m∑
n=1

n−k(wα
n |ϕn|)k

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1) |λm|Xm = O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.
Therefore, we get that

m∑
n=1

n−k
∣∣ϕnT

α
n,r

∣∣k = O(1) as m →∞, for r = 1, 2.

This completes the proof of the theorem.
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4. SPECIAL CASES

1. If we take (Xn) as a positive non-decreasing sequence,α = 1 and ϕn = n1− 1
k in

Theorem 2.1, then we get Theorem 1.1.
2. If we take (Xn) as a positive non-decreasing sequence,α = 1 and ϕn = n1− 1

k in
Theorem 2.1, then we get a result due to Mazhar [7] for|C, 1|k summability factors of
infinite series.

3. If we takeε = 1 andϕn = n1− 1
k (resp. ε = 1 andϕn = nβ+1− 1

k ), then we get a new
result related to|C, α|k (resp.|C, α; β|k) summability factors.
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