COMPOSITION OPERATORS BETWEEN GENERALLY WEIGHTED BLOCH SPACES OF POLYDISK

HAIYING LI, PEIDE LIU AND MAOFA WANG

School of Mathematics and Statistics
Wuhan University
Wuhan 430072, P.R. China
EMail: tslhy2001@yahoo.com.cn

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

23 March, 2007
26 June, 2007
S.S. Dragomir

Primary 47B38.
Holomorphic self-map; Composition operator; Bloch space; Generally weighted Bloch space.

Let ϕ be a holomorphic self-map of the open unit polydisk U^{n} in \mathbb{C}^{n} and $p, q>0$. In this paper, the generally weighted Bloch spaces $B_{\mathrm{log}}^{p}\left(U^{n}\right)$ are introduced, and the boundedness and compactness of composition operator C_{ϕ} from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$ are investigated.

Supported by the Natural Science Foundation of China (No. 10671147, 10401027).

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

| Page 1 of 17 |
| :---: | :---: |
| Go Back |
| Full Screen |
| Close |

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results and their Proofs 7

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 2 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Suppose that D is a domain in \mathbb{C}^{n} and ϕ a holomorphic self-map of D. We denote by $H(D)$ the space of all holomorphic functions on D and define the composition operator C_{ϕ} on $H(D)$ by $C_{\phi} f=f \circ \phi$.

The theory of composition operators on various classical spaces, such as Hardy and Bergman spaces on the unit disk U in the finite complex plane \mathbb{C} has been studied. However, the multivariable situation remains mysterious. It is well known in [3] and [5] that the restriction of C_{ϕ} to Hardy or standard weighted Bergman spaces on U is always bounded by the Littlewood subordination principle. At the same time, Cima, Stanton and Wogen confirmed in [1] that the multivariable situation is much different from the classical case (i.e., the composition operators on the Hardy space of holomorphic functions on the open unit ball of \mathbb{C}^{2} as well as on many other spaces of holomorphic functions over a domain of \mathbb{C}^{n} can be unbounded, even when $n=1$ in [6]). Therefore, it would be of interest to pursue the function-theoretical or geometrical characterizations of those maps ϕ which induce bounded or compact composition operators. In this paper, we will pursue the function-theoretic conditions of those holomorphic self-maps ϕ of U^{n} which induce bounded or compact composition operators from a generally weighted $p-$ Bloch space to a q-Bloch space with $p, q>0$.

For $n \in \mathbb{N}$, we denote by U^{n} the open unit polydisk in \mathbb{C}^{n} :

$$
U^{n}=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right):\left|z_{j}\right|<1, j=1,2, \ldots, n\right\},
$$

and

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}, \quad|z|=\sqrt{\langle z, z\rangle}
$$

for any $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in $\mathbb{C}^{n} . \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 3 of 17
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
said to be an n multi-index if $\alpha_{i} \in \mathbb{N}$, written by $\alpha \in \mathbb{N}^{n}$. For $\alpha \in \mathbb{N}^{n}$, we write $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}$ and $z_{i}^{0}=1,1 \leq i \leq n$ for convenience. For $z, w \in \mathbb{C}^{n}$, we denote $[z, w]_{j}=z$ when $j=0,[z, w]_{j}=w$ when $j=n$, and

$$
[z, w]_{j}=\left(z_{1}, z_{2}, \ldots, z_{n-j}, w_{n-j+1}, \ldots, w_{n}\right)
$$

when $j \in\{1,2, \ldots, n-1\}$. Then $[z, w]_{n-j}=w$ when $j=1$, and $[z, w]_{n-j+1}=w$ when $j=n+1$, for $j=2,3, \ldots, n$,

$$
[z, w]_{n-j+1}=\left(z_{1}, z_{2}, \ldots, z_{j-1}, w_{j}, \ldots, w_{n}\right)
$$

For any $a \in \mathbb{C}$ and $z_{j}^{\prime}=\left(z_{1}, z_{2}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$, we write

$$
\left(a, z_{j}^{\prime}\right)=\left(z_{1}, z_{2}, \ldots, z_{j-1}, a, z_{j+1}, \ldots, z_{n}\right)
$$

Moreover, we adopt the notation $\left(z^{\left[j^{\prime}\right]}\right)_{j^{\prime} \in \mathbb{N}}$ for an arbitrary subsequence of $\left(z^{[j]}\right)_{j \in \mathbb{N}}$.
Recall that the Bloch space $B\left(U^{n}\right)$ is the vector space of all $f \in H\left(U^{n}\right)$ satisfying

$$
b_{1}(f)=\sup _{z \in U^{n}} Q_{f}(z)<\infty
$$

where

$$
Q_{f}(z)=\sup _{u \in \mathbb{C}^{n} \backslash\{0\}} \frac{|\langle\nabla f(z), \bar{u}\rangle|}{\sqrt{H(z, u)}}, \quad \nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}(z), \ldots, \frac{\partial f}{\partial z_{n}}(z)\right)
$$

and the Bergman metric $H: U^{n} \times \mathbb{C}^{n} \rightarrow[0, \infty)$ on U^{n} is

$$
H(z, u)=\sum_{k=1}^{n} \frac{\left|u_{k}\right|^{2}}{1-\left|z_{k}\right|^{2}}
$$

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 4 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(for example see [9], [15]). It is easy to verify that both $|f(0)|+b_{1}(f)$ and

$$
\|f\|_{B}=|f(0)|+\sup _{z \in U^{n}} \sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)
$$

are equivalent norms on $B\left(U^{n}\right)$. In [10], [12] and [8], some characterizations of the Bloch space $B\left(U^{n}\right)$ have been given.

In a recent paper [2], a generalized Bloch space has been introduced, the $p-$ Bloch space: for $p>0$, a function $f \in H\left(U^{n}\right)$ belongs to the $p-$ Bloch space $B^{p}\left(U^{n}\right)$ if there is some $M \in[0, \infty)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \leq M, \quad \forall z \in U^{n}
$$

The references [13] to [7] studied these spaces and the operators in them.
Dana D. Clahane et al. in [2] proved the following two results:
Theorem A. Let ϕ be a holomorphic self-map of U^{n} and $p, q>0$. The following statements are equivalent:
(a) C_{ϕ} is a bounded operator from $B^{p}\left(U^{n}\right)$ to $B^{q}\left(U^{n}\right)$;
(b) There is $M \geq 0$ such that

$$
\begin{equation*}
\sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \leq M, \quad \forall z \in U^{n} \tag{1.1}
\end{equation*}
$$

Theorem B. Let ϕ be a holomorphic self-map of U^{n} and $p, q>0$. If condition (1.1) and

$$
\begin{equation*}
\lim _{\phi(z) \rightarrow \partial U^{n}} \sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}}=0 \tag{1.2}
\end{equation*}
$$

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

$\boldsymbol{4}$	$>$
$\mathbf{~}$	$>$

Page 5 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
hold, then C_{ϕ} is a compact operator from $B^{p}\left(U^{n}\right)$ to $B^{q}\left(U^{n}\right)$.
Now we introduce the generally weighted Bloch space $B_{\log }^{p}\left(U^{n}\right)$.
For $p>0$, a function $f \in H(U)$ belongs to the generally weighted p-Bloch space $B_{\mathrm{log}}^{p}\left(U^{n}\right)$ if there is some $M \in[0, \infty)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} \leq M, \quad \forall z \in U^{n}
$$

Its norm in $B_{\log }^{p}\left(U^{n}\right)$ is defined by

$$
\|f\|_{B_{\log }^{p}}=|f(0)|+\sup _{z \in U^{n}} \sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} .
$$

In this paper, we mainly characterize the boundedness and compactness of the composition operators between $B_{\log }^{p}\left(U^{n}\right)$ and $B_{\log }^{q}\left(U^{n}\right)$, and extend some corresponding results in [2] and [11] in several ways.

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 6 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results and their Proofs

First, we have the following lemma:
Lemma 2.1. Let $f \in B_{\log }^{p}\left(U^{n}\right)$ and $z \in U^{n}$, then:
(a) $|f(z)| \leq\left(1+\frac{n}{(1-p) \log 2}\right)\|f\|_{B_{\log }^{p}}$, when $0<p<1$;
(b) $|f(z)| \leq\left(\frac{1}{2 \log 2}+\frac{1}{2 n \log 2}\right) \sum_{k=1}^{n} \log \frac{4}{1-\left|z_{k}\right|^{2}}\|f\|_{B_{\log }^{p}}$, when $p=1$;
(c) $|f(z)| \leq\left(\frac{1}{n}+\frac{2^{p-1}}{(p-1) \log 2}\right) \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}}$, when $p>1$.

Proof. Let $p>0, z \in U^{n}$, from the definition of $\|\cdot\|_{B_{\log }^{p}}$ we have $|f(0)| \leq\|f\|_{B_{\log }^{p}}$ and

$$
\begin{equation*}
\left|\frac{\partial f}{\partial z_{k}}(z)\right| \leq \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}}} \leq \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|z_{k}\right|^{2}\right)^{p} \log 2} \tag{2.1}
\end{equation*}
$$

for every $z \in U^{n}$ and $k \in\{1,2, \ldots, n\}$. Notice that

$$
\begin{aligned}
f(z)-f(0) & =\sum_{k=1}^{n} f\left([0, z]_{n-k+1}\right)-f\left([0, z]_{n-k}\right) \\
& =\sum_{k=1}^{n} z_{k} \int_{0}^{1} \frac{\partial f\left(\left[0,\left(t z_{k}, z_{k}^{\prime}\right)\right]_{n-k+1}\right)}{\partial z_{k}} d t
\end{aligned}
$$

and then from the inequality (2.1), it follows that

$$
|f(z)| \leq|f(0)|+\sum_{k=1}^{n} \frac{\left|z_{k}\right|}{\log 2} \int_{0}^{1} \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|t z_{k}\right|^{2}\right)^{p}} d t
$$

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 7 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
\leq\|f\|_{B_{\log }^{p}}+\frac{\|f\|_{B_{\log }^{p}}}{\log 2} \sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t . \tag{2.2}
\end{equation*}
$$

For $p=1$, we have:

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t=\sum_{k=1}^{n} \frac{1}{2} \log \frac{1+\left|z_{k}\right|}{1-\left|z_{k}\right|} \leq \sum_{k=1}^{n} \frac{1}{2} \log \frac{4}{1-\left|z_{k}\right|^{2}} \tag{2.3}
\end{equation*}
$$

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 8 of 17
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

For (c), from (2.4) we have

$$
\begin{align*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t & \leq \sum_{k=1}^{n} \frac{1-\left(1-\left|z_{k}\right|\right)^{p-1}}{(p-1)\left(1-\left|z_{k}\right|\right)^{p-1}} \tag{2.7}\\
& \leq \sum_{k=1}^{n} \frac{2^{p-1}}{(p-1)\left(1-\left|z_{k}\right|^{2}\right)^{p-1}} .
\end{align*}
$$

By (2.2) and (2.7), we obtain

$$
\begin{aligned}
|f(z)| & \leq\|f\|_{B_{\log }^{p}}+\frac{2^{p-1}}{(p-1) \log 2} \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}} \\
& \leq\left(\frac{1}{n}+\frac{2^{p-1}}{(p-1) \log 2}\right) \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}} .
\end{aligned}
$$

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Lemma 2.2. For $p>0, l \in\{1,2, \ldots, n\}$ and $w \in U$, the function $f_{w}^{l}: \overline{U^{n}} \rightarrow \mathbb{C}$,

$$
f_{w}^{l}(z)=\int_{0}^{z_{l}} \frac{1}{(1-\bar{w} t)^{p} \log \frac{2}{1-\bar{w} t}} d t
$$

Page 9 of 17
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

An easy estimate shows that there is $0<M<+\infty$ such that

$$
\frac{(1-|\bar{w} z|)^{p} \log \frac{2}{1-|\bar{w} z|}}{|1-\bar{w} z|^{p} \log \frac{2}{|1-\bar{w} z|}} \leq M, \quad \forall z, w \in U .
$$

Therefore, by (2.8) and (2.9), we have

$$
\begin{aligned}
\left|f_{w}^{l}(0)\right|+ & \sum_{k=1}^{n}\left|\frac{\partial f_{w}^{l}}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& =\frac{\left(1-\left|z_{l}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{l}\right|^{2}}}{\left|1-\bar{w} z_{l}\right|^{p}\left|\log \frac{2}{1-\bar{w} z_{l}}\right|} \\
& \leq \frac{\left(1-\left|z_{l}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{l}\right|^{2}}}{\left(1-\left|\bar{w} z_{l}\right|\right)^{p} \log \frac{2}{1-\left|\bar{w} z_{l}\right|}} \cdot \frac{\left(1-\left|\bar{w} z_{l}\right|\right)^{p} \log \frac{2}{1-\left|\bar{w} z_{l}\right|}}{\left|1-\bar{w} z_{l}\right|^{p} \log \frac{2}{\left|1-\bar{w} z_{l}\right|}} \\
& \leq \frac{2^{p}}{p e \log 2} \cdot M<+\infty
\end{aligned}
$$

and thus $\left\{f_{w}^{l}: w \in U, l \in\{1,2, \ldots, n\}\right\} \subset B_{\log }^{p}\left(U^{n}\right)$.
Theorem 2.3. Let ϕ be a holomorphic self-map of the open unit polydisk U^{n} and $p, q>0$, then the following statements are equivalent:

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 10 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Firstly, assume that (b) is true. By Lemma 2.1, there is a $C>0$ such that for all $f \in B_{\log }^{p}\left(U^{n}\right)$,

$$
\begin{equation*}
|f(\phi(0))| \leq C\|f\|_{B_{\log }^{p}} . \tag{2.11}
\end{equation*}
$$

Then for all $z \in U^{n}$,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\frac{\partial\left(C_{\phi} f\right)}{\partial z_{k}}(z)\right| & \left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
\leq & \sum_{l=1}^{n}\left|\frac{\partial f}{\partial \xi_{l}}(\phi(z))\right|\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p} \log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}} \\
& \quad \times \sum_{k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}} \\
& \leq M\|f\|_{B_{\text {log }}^{p}},
\end{aligned}
$$

and (a) is obtained.
Conversely, let $l \in\{1,2, \ldots, n\}$, if (a) is true, i.e. there is a $C \geq 0$ such that

$$
\begin{equation*}
\left\|C_{\phi} f\right\| \leq C\|f\|_{B_{\log }^{p}}, \quad \forall f \in B_{\log }^{p}\left(U^{n}\right) \tag{2.12}
\end{equation*}
$$

then, by Lemma 2.2 and (2.12), there is a $Q>0$ such that
$\sum_{k=1}^{n}\left|\sum_{l=1}^{n} \frac{\partial f_{w}^{l}}{\partial \xi_{l}}(\phi(z)) \cdot \frac{\partial \phi_{l}}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \leq C Q, \quad \forall w \in U, z \in U^{n}$.
Letting $w=\phi(z)$, and using (2.8) and (2.9), we have

$$
\sum_{l, k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}} \leq C Q
$$

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 11 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.4. Let $\phi: U^{n} \rightarrow U^{n}$ be holomorphic and $p, q>0$, then C_{ϕ} is compact from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$ if and only if for any bounded sequence $\left(f_{j}\right)_{j \in \mathbb{N}}$ in $B_{\log }^{p}\left(U^{n}\right)$, when $f_{j} \rightarrow 0$ uniformly on compacta in U^{n}, then $\left\|C_{\phi} f_{j}\right\|_{B_{\log }^{q}} \rightarrow 0$ as $j \rightarrow \infty$.

Proof. Assume that C_{ϕ} is compact and $\left(f_{j}\right)_{j \in \mathbb{N}}$ is a bounded sequence in $B_{\log }^{p}\left(U^{n}\right)$ with $f_{j} \rightarrow 0$ uniformly on compacta in U^{n}. If the contrary is true, then there is a subsequence $\left(f_{j m}\right)_{m \in \mathbb{N}}$ and a $\delta>0$ such that $\left\|C_{\phi} f_{j m}\right\|_{B_{\text {log }}^{q}} \geq \delta$ for all $m \in \mathbb{N}$. Due to the compactness of C_{ϕ}, we choose a subsequence $\left(f_{j m l} \circ \phi\right)_{l \in \mathbb{N}}$ of $\left(C_{\phi} f_{j m}\right)_{m \in \mathbb{N}}=$ $\left(f_{j m} \circ \phi\right)_{m \in \mathbb{N}}$ and some $g \in B_{\mathrm{log}}^{p}\left(U^{n}\right)$, such that

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left\|f_{j m l} \circ \phi-g\right\|_{B_{\log }^{q}}=0 \tag{2.13}
\end{equation*}
$$

Since Lemma 2.1 implies that for any compact subset $K \subset U^{n}$, there is a $C_{k} \geq 0$ such that

$$
\begin{equation*}
\left|f_{j m l}(\phi(z))-g(z)\right| \leq C_{k}\left\|f_{j m l} \circ \phi-g\right\|_{B_{\log }^{q}}, \quad \forall l \in \mathbb{N}, z \in K \tag{2.14}
\end{equation*}
$$

By (2.13), $f_{j m l} \circ \phi-g \rightarrow 0$ uniformly on compact subset in U^{n}. Since $f_{j m l} \phi(z) \rightarrow 0$ as $l \rightarrow \infty$ for each $z \in U^{n}$, and by (2.14), then $g=0$; (2.13) shows

$$
\lim _{l \rightarrow \infty}\left\|C_{\phi}\left(f_{j m l}\right)\right\|_{B_{\log }^{q}}=0
$$

it gives a contradiction.
Conversely, assume that $\left(g_{j}\right)_{j \in \mathbb{N}}$ is a sequence in $B_{\log }^{p}\left(U^{n}\right)$ such that $\left\|g_{j}\right\|_{B_{\log }^{p}} \leq$ M for all $j \in \mathbb{N}$. Lemma 2.1 implies that if $\left(g_{j}\right)_{j \in \mathbb{N}}$ is uniformly bounded on any compact subset in U^{n} and normal by Montel's theorem, then there is a subsequence $\left(g_{j m}\right)_{m \in \mathbb{N}}$ of $\left(g_{j}\right)_{j \in \mathbb{N}}$ which converges uniformly on compacta in U^{n} to some $g \in$ $H\left(U^{n}\right)$. It follows that $\frac{\partial g_{j m}}{\partial z_{l}} \rightarrow \frac{\partial g}{\partial z_{l}}$ uniformly on compacta in U^{n} for each $l \in$
J

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 12 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\{1,2, \ldots, n\}$. Thus $g \in B_{\log }^{p}\left(U^{n}\right)$ with $\left\|g_{j m}-g\right\|_{B_{\log }^{p}} \leq M+\|g\|_{B_{\log }^{p}}<\infty$ and $g_{j m}-g$ converges to 0 on compacta in U^{n}, so by the hypotheses, $g_{j m} \circ \phi \rightarrow g \circ \phi$ in $B_{\log }^{q}\left(U^{n}\right)$. Therefore C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.
Lemma 2.5. If for every $f \in B_{\log }^{p}\left(U^{n}\right), C_{\phi} f$ belongs to $B_{\log }^{q}\left(U^{n}\right)$, then $\phi^{\alpha} \in$ $B_{\log }^{q}\left(U^{n}\right)$ for each n-multi-index α.

Proof. As is well known, every polynomial $p_{\alpha}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $p_{\alpha}(z)=z^{\alpha}$ is in $B_{\log }^{p}\left(U^{n}\right)$. Thus, by the assumption $C_{\phi}\left(z^{\alpha}\right)=\phi^{\alpha} \in B_{\log }^{q}\left(U^{n}\right)$.
Theorem 2.6. Suppose that $p, q>0, \phi: U^{n} \rightarrow U^{n}$ is a holomorphic self-map such that $\phi_{k} \in B_{\log }^{q}\left(U^{n}\right)$ for each $k \in\{1,2, \ldots, n\}$ and

$$
\begin{equation*}
\lim _{\phi(z) \rightarrow \partial U^{n}} \sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}}=0, \tag{2.15}
\end{equation*}
$$

then C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.
Proof. Let $\left(f_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $B_{\log }^{p}\left(U^{n}\right)$ with $f_{j} \rightarrow 0$ uniformly on compacta in U^{n} and

$$
\begin{equation*}
\left\|f_{j}\right\|_{B_{\log }^{p}} \leq C, \quad \forall j \in \mathbb{N} \tag{2.16}
\end{equation*}
$$

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 13 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\{1,2, \ldots, n\}$. Now let $\varepsilon>0$, from (2.15), there is an $r \in(0,1)$ such that

$$
\begin{equation*}
\sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}}<\frac{\varepsilon}{2 C} \tag{2.18}
\end{equation*}
$$

for all $z \in U^{n}$ satisfying $d\left(\phi(z), \partial U^{n}\right)<r$. By using a subsequence and the chain rule for derivatives, (2.16) and (2.18) guarantee that for all such z and $j \in \mathbb{N}$,

Composition Operators

Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 14 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq \sum_{l=1}^{n}\left|\frac{\partial f_{j}}{\partial \xi_{l}}(\phi(z))\right| \cdot\left\|\phi_{l}\right\|_{B_{\log }^{q}} \\
& \leq \sum_{l=1}^{n} \sup _{w \in E_{r}}\left|\frac{\partial f_{j}}{\partial \xi_{l}}(w)\right| \cdot\left\|\phi_{l}\right\|_{B_{\log }^{q}} \leq \frac{\varepsilon}{2} \quad(\text { as } j \rightarrow+\infty)
\end{aligned}
$$

Since $\{\phi(0)\}$ is compact, we have $f_{j}(\phi(0)) \rightarrow 0$ as $j \rightarrow \infty$, and $\left\|C_{\phi} f_{j}\right\|_{B_{\log }^{q}} \rightarrow 0$ as

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 15 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] J.A. CIMA, C.S. STANTON, AND W.R. WOGEN, On boundedness of composition operators on $H\left(B_{2}\right)$, Proc. Amer. Math. Soc., 91 (1984), 217-222.
[2] D.D. CLAHANE, S. STEVIC AND ZEHUA ZHOU, Composition operators between generalized Bloch space of the ploydisk, to appear.
[3] C.C. COWEN and B.D. MACCLUER, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Roton, 1995.
[4] Z.J. HU, Composition operators between Bloch-type spaces in the polydisk, Science in China, Ser. A, 48 (2005), 268-282.
[5] J.E. LITTLEWOOD, One inequalities in the theory of functions, Proc. Amer. Math. Soc., 23(2) (1925), 481-519.
[6] K. MADIGAN AND A. MATHESON, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679-2687.
[7] S. OHNO, K. STROETHOFF and R.H. ZHAO, Weighted composition operators between Bloch-type spaces, Rochy Mountain J. Math., 33(1) (2003), 191-215.
[8] J.H. SHI AND L. LUO, Composition operators on the Bloch space of several complex variables, Acta Math. Sinica, English series, 16 (2000), 85-98.
[9] R. TIMONEY, Bloch function in several complex variables, I, Bull. London Math. Soc., 37(12) (1980) 241-267.
[10] R. TIMONEY, Bloch function in several complex variables, II, J. Riene Angew. Math., 319 (1998), 1-22.

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

Page 16 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] R. YONEDA, the composition operator on weighted Bloch space, Arch. Math., 78 (2002), 310-317.
[12] Z.H. ZHOU and J.H. SHI, Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 44 (2001), 286-291.
[13] Z.H. ZHOU and J.H. SHI, Composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 46 (2001), 73-88.
[14] Z.H. ZHOU, Composition operators on the Lipschitz space in polydiscs, Science in China, Ser. A, 46(1) (2003), 33-38.
[15] KEHE ZHU, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.

Composition Operators
Haiying Li, Peide Liu and Maofa Wang vol. 8, iss. 3, art. 85, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 17 of 17	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

