

COMPOSITION OPERATORS BETWEEN GENERALLY WEIGHTED BLOCH SPACES OF POLYDISK

HAIYING LI, PEIDE LIU, AND MAOFA WANG

SCHOOL OF MATHEMATICS AND STATISTICS WUHAN UNIVERSITY WUHAN 430072, P.R. CHINA tslhy2001@yahoo.com.cn

Received 23 March, 2007; accepted 26 June, 2007 Communicated by S.S. Dragomir

ABSTRACT. Let ϕ be a holomorphic self-map of the open unit polydisk U^n in \mathbb{C}^n and p, q > 0. In this paper, the generally weighted Bloch spaces $B^p_{\log}(U^n)$ are introduced, and the boundedness and compactness of composition operator C_{ϕ} from $B^p_{\log}(U^n)$ to $B^q_{\log}(U^n)$ are investigated.

Key words and phrases: Holomorphic self-map; Composition operator; Bloch space; Generally weighted Bloch space.

2000 Mathematics Subject Classification. Primary 47B38.

1. INTRODUCTION

Suppose that D is a domain in \mathbb{C}^n and ϕ a holomorphic self-map of D. We denote by H(D) the space of all holomorphic functions on D and define the composition operator C_{ϕ} on H(D) by $C_{\phi}f = f \circ \phi$.

The theory of composition operators on various classical spaces, such as Hardy and Bergman spaces on the unit disk U in the finite complex plane \mathbb{C} has been studied. However, the multivariable situation remains mysterious. It is well known in [3] and [5] that the restriction of C_{ϕ} to Hardy or standard weighted Bergman spaces on U is always bounded by the Littlewood subordination principle. At the same time, Cima, Stanton and Wogen confirmed in [1] that the multivariable situation is much different from the classical case (i.e., the composition operators on the Hardy space of holomorphic functions on the open unit ball of \mathbb{C}^2 as well as on many other spaces of holomorphic functions over a domain of \mathbb{C}^n can be unbounded, even when n = 1 in [6]). Therefore, it would be of interest to pursue the function-theoretical or geometrical characterizations of those maps ϕ which induce bounded or compact composition operators. In this paper, we will pursue the function-theoretic conditions of those holomorphic self-maps ϕ of U^n which induce bounded or compact composition operators from a generally weighted p-Bloch space to a q-Bloch space with p, q > 0.

Supported by the Natural Science Foundation of China (No. 10671147, 10401027). 091-07

For $n \in \mathbb{N}$, we denote by U^n the open unit polydisk in \mathbb{C}^n :

$$U^{n} = \{ z = (z_{1}, z_{2}, \dots, z_{n}) : |z_{j}| < 1, j = 1, 2, \dots, n \},\$$

and

$$\langle z, w \rangle = \sum_{j=1}^{n} z_j \overline{w_j}, \quad |z| = \sqrt{\langle z, z \rangle}$$

for any $z = (z_1, z_2, ..., z_n)$, $w = (w_1, w_2, ..., w_n)$ in \mathbb{C}^n . $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is said to be an *n* multi-index if $\alpha_i \in \mathbb{N}$, written by $\alpha \in \mathbb{N}^n$. For $\alpha \in \mathbb{N}^n$, we write $z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$ and $z_i^0 = 1, 1 \le i \le n$ for convenience. For $z, w \in \mathbb{C}^n$, we denote $[z, w]_j = z$ when j = 0, $[z, w]_j = w$ when j = n, and

$$[z, w]_j = (z_1, z_2, \dots, z_{n-j}, w_{n-j+1}, \dots, w_n)$$

when $j \in \{1, 2, ..., n-1\}$. Then $[z, w]_{n-j} = w$ when j = 1, and $[z, w]_{n-j+1} = w$ when j = n+1, for j = 2, 3, ..., n,

$$[z, w]_{n-j+1} = (z_1, z_2, \dots, z_{j-1}, w_j, \dots, w_n).$$

For any $a \in \mathbb{C}$ and $z'_j = (z_1, z_2, \dots, z_{j-1}, z_{j+1}, \dots, z_n)$, we write

$$(a, z'_j) = (z_1, z_2, \dots, z_{j-1}, a, z_{j+1}, \dots, z_n).$$

Moreover, we adopt the notation $(z^{[j']})_{j' \in \mathbb{N}}$ for an arbitrary subsequence of $(z^{[j]})_{j \in \mathbb{N}}$. Recall that the Bloch space $B(U^n)$ is the vector space of all $f \in H(U^n)$ satisfying

$$b_1(f) = \sup_{z \in U^n} Q_f(z) < \infty,$$

where

$$Q_f(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{|\langle \nabla f(z), \bar{u} \rangle|}{\sqrt{H(z, u)}}, \qquad \nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \dots, \frac{\partial f}{\partial z_n}(z)\right)$$

and the Bergman metric $H: U^n \times \mathbb{C}^n \to [0, \infty)$ on U^n is

$$H(z, u) = \sum_{k=1}^{n} \frac{|u_k|^2}{1 - |z_k|^2}$$

(for example see [9], [15]). It is easy to verify that both $|f(0)| + b_1(f)$ and

$$||f||_{B} = |f(0)| + \sup_{z \in U^{n}} \sum_{k=1}^{n} \left| \frac{\partial f}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})$$

are equivalent norms on $B(U^n)$. In [10], [12] and [8], some characterizations of the Bloch space $B(U^n)$ have been given.

In a recent paper [2], a generalized Bloch space has been introduced, the p-Bloch space: for p > 0, a function $f \in H(U^n)$ belongs to the p-Bloch space $B^p(U^n)$ if there is some $M \in [0, \infty)$ such that

$$\sum_{k=1}^{n} \left| \frac{\partial f}{\partial z_k}(z) \right| (1 - |z_k|^2)^p \le M, \qquad \forall z \in U^n.$$

The references [13] to [7] studied these spaces and the operators in them.

Dana D. Clahane et al. in [2] proved the following two results:

Theorem A. Let ϕ be a holomorphic self-map of U^n and p, q > 0. The following statements are equivalent:

(a) C_{ϕ} is a bounded operator from $B^p(U^n)$ to $B^q(U^n)$;

(b) There is $M \ge 0$ such that

(1.1)
$$\sum_{k, l=1}^{n} \left| \frac{\partial \phi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} \le M, \qquad \forall z \in U^n.$$

Theorem B. Let ϕ be a holomorphic self-map of U^n and p, q > 0. If condition (1.1) and

(1.2)
$$\lim_{\phi(z)\to\partial U^n} \sum_{k,\ l=1}^n \left| \frac{\partial \phi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} = 0$$

hold, then C_{ϕ} is a compact operator from $B^p(U^n)$ to $B^q(U^n)$.

Now we introduce the generally weighted Bloch space $B_{log}^p(U^n)$.

For p > 0, a function $f \in H(U)$ belongs to the generally weighted p-Bloch space $B_{log}^p(U^n)$ if there is some $M \in [0, \infty)$ such that

$$\sum_{k=1}^{n} \left| \frac{\partial f}{\partial z_k}(z) \right| (1 - |z_k|^2)^p \log \frac{2}{1 - |z_k|^2} \le M, \qquad \forall z \in U^n.$$

Its norm in $B^p_{log}(U^n)$ is defined by

$$||f||_{B^p_{\log}} = |f(0)| + \sup_{z \in U^n} \sum_{k=1}^n \left| \frac{\partial f}{\partial z_k}(z) \right| (1 - |z_k|^2)^p \log \frac{2}{1 - |z_k|^2}.$$

In this paper, we mainly characterize the boundedness and compactness of the composition operators between $B_{log}^p(U^n)$ and $B_{log}^q(U^n)$, and extend some corresponding results in [2] and [11] in several ways.

2. MAIN RESULTS AND THEIR PROOFS

First, we have the following lemma:

Lemma 2.1. Let $f \in B^p_{\log}(U^n)$ and $z \in U^n$, then:

(a)
$$|f(z)| \le \left(1 + \frac{n}{(1-p)\log 2}\right) ||f||_{B_{\log}^p}$$
, when $0 ;
(b) $|f(z)| \le \left(\frac{1}{2\log 2} + \frac{1}{2n\log 2}\right) \sum_{k=1}^n \log \frac{4}{1-|z_k|^2} ||f||_{B_{\log}^p}$, when $p = 1$;
(c) $|f(z)| \le \left(\frac{1}{n} + \frac{2^{p-1}}{(p-1)\log 2}\right) \sum_{k=1}^n \frac{1}{(1-|z_k|^2)^{p-1}} ||f||_{B_{\log}^p}$, when $p > 1$.$

Proof. Let $p > 0, \ z \in U^n$, from the definition of $\|\cdot\|_{B^p_{\log}}$ we have $|f(0)| \le \|f\|_{B^p_{\log}}$ and

(2.1)
$$\left|\frac{\partial f}{\partial z_k}(z)\right| \le \frac{\|f\|_{B^p_{\log}}}{(1-|z_k|^2)^p \log \frac{2}{1-|z_k|^2}} \le \frac{\|f\|_{B^p_{\log}}}{(1-|z_k|^2)^p \log 2}$$

for every $z \in U^n$ and $k \in \{1, 2, ..., n\}$. Notice that

$$f(z) - f(0) = \sum_{k=1}^{n} f([0, z]_{n-k+1}) - f([0, z]_{n-k})$$
$$= \sum_{k=1}^{n} z_k \int_0^1 \frac{\partial f([0, (tz_k, z'_k)]_{n-k+1})}{\partial z_k} dt$$

and then from the inequality (2.1), it follows that

(2.2)
$$|f(z)| \le |f(0)| + \sum_{k=1}^{n} \frac{|z_k|}{\log 2} \int_0^1 \frac{\|f\|_{B_{\log}^p}}{(1 - |tz_k|^2)^p} dt$$
$$\le \|f\|_{B_{\log}^p} + \frac{\|f\|_{B_{\log}^p}}{\log 2} \sum_{k=1}^{n} \int_0^{|z_k|} \frac{1}{(1 - t^2)^p} dt.$$

For p = 1, we have:

(2.3)
$$\sum_{k=1}^{n} \int_{0}^{|z_{k}|} \frac{1}{(1-t^{2})^{p}} dt = \sum_{k=1}^{n} \frac{1}{2} \log \frac{1+|z_{k}|}{1-|z_{k}|} \le \sum_{k=1}^{n} \frac{1}{2} \log \frac{4}{1-|z_{k}|^{2}}.$$

If p > 0 and $p \neq 1$, then

(2.4)
$$\sum_{k=1}^{n} \int_{0}^{|z_{k}|} \frac{1}{(1-t^{2})^{p}} dt \leq \sum_{k=1}^{n} \int_{0}^{|z_{k}|} \frac{1}{(1-t)^{p}} dt = \sum_{k=1}^{n} \frac{1-(1-|z_{k}|)^{1-p}}{1-p}.$$
Now for (a) from (2.4)

Now for (a), from (2.4),

(2.5)
$$\sum_{k=1}^{n} \int_{0}^{|z_{k}|} \frac{1}{(1-t^{2})^{p}} dt \leq \frac{1}{1-p}.$$

From (2.2) and (2.5), it follows that

$$|f(z)| \le \left(1 + \frac{n}{(1-p)\log 2}\right) ||f||_{B^p_{\log}}.$$

For (b), Since $\log \frac{4}{1-|z_k|^2} > \log 4 = 2 \log 2$ for each $k \in \{1, 2, ..., n\}$, then

(2.6)
$$1 < \frac{1}{2n\log 2} \sum_{k=1}^{n} \log \frac{4}{1 - |z_k|^2}$$

Combining (2.2), (2.3) and (2.6) we get

$$|f(z)| \le \left(\frac{1}{2\log 2} + \frac{1}{2n\log 2}\right) \sum_{k=1}^{n} \log \frac{4}{1 - |z_k|^2} ||f||_{B^p_{\log 2}}$$

For (c), from (2.4) we have

$$(2.7) \qquad \sum_{k=1}^{n} \int_{0}^{|z_{k}|} \frac{1}{(1-t^{2})^{p}} dt \leq \sum_{k=1}^{n} \frac{1-(1-|z_{k}|)^{p-1}}{(p-1)(1-|z_{k}|)^{p-1}} \leq \sum_{k=1}^{n} \frac{2^{p-1}}{(p-1)(1-|z_{k}|^{2})^{p-1}}.$$
By (2.2) and (2.7), we obtain

By (2.2) and (2.7), we obtain

$$|f(z)| \le ||f||_{B^p_{\log}} + \frac{2^{p-1}}{(p-1)\log 2} \sum_{k=1}^n \frac{1}{(1-|z_k|^2)^{p-1}} ||f||_{B^p_{\log}}$$
$$\le \left(\frac{1}{n} + \frac{2^{p-1}}{(p-1)\log 2}\right) \sum_{k=1}^n \frac{1}{(1-|z_k|^2)^{p-1}} ||f||_{B^p_{\log}}.$$

Lemma 2.2. For p > 0, $l \in \{1, 2, ..., n\}$ and $w \in U$, the function $f_w^l : \overline{U^n} \to \mathbb{C}$, $f_w^l(z) = \int_0^{z_l} \frac{1}{(1 - \overline{w}t)^p \log \frac{2}{1 - \overline{w}t}} dt$

belongs to $B^p_{\log}(U^n)$.

Proof. Let $k, l \in \{1, 2, ..., n\}$ and $w \in U$, then

(2.8)
$$\frac{\partial f_w^l}{\partial z_k} = 0, \qquad \forall z \in U^n, k \neq l$$

and

(2.9)
$$\frac{\partial f_w^l}{\partial z_l}(z) = \frac{1}{(1 - \overline{w}z_l)^p \log \frac{2}{1 - \overline{w}z_l}}, \qquad \forall z \in U^n.$$

An easy estimate shows that there is $0 < M < +\infty$ such that

$$\frac{(1-|\overline{w}z|)^p \log \frac{2}{1-|\overline{w}z|}}{|1-\overline{w}z|^p \log \frac{2}{|1-\overline{w}z|}} \le M, \qquad \forall z, w \in U.$$

Therefore, by (2.8) and (2.9), we have

$$\begin{split} |f_{w}^{l}(0)| &+ \sum_{k=1}^{n} \left| \frac{\partial f_{w}^{l}}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{p} \log \frac{2}{1 - |z_{k}|^{2}} \\ &= \frac{(1 - |z_{l}|^{2})^{p} \log \frac{2}{1 - |z_{l}|^{2}}}{|1 - \overline{w} z_{l}|^{p} |\log \frac{2}{1 - |\overline{w} z_{l}|}} \\ &\leq \frac{(1 - |z_{l}|^{2})^{p} \log \frac{2}{1 - |\overline{w} z_{l}|^{2}}}{(1 - |\overline{w} z_{l}|)^{p} \log \frac{2}{1 - |\overline{w} z_{l}|}} \cdot \frac{(1 - |\overline{w} z_{l}|)^{p} \log \frac{2}{1 - |\overline{w} z_{l}|}}{|1 - \overline{w} z_{l}|^{p} \log \frac{2}{|1 - \overline{w} z_{l}|}} \\ &\leq \frac{2^{p}}{pe \log 2} \cdot M < +\infty \\ U, \ l \in \{1, 2, \dots, n\}\} \subset B_{\log}^{p}(U^{n}). \end{split}$$

and thus $\{f_w^l: w \in U, \ l \in \{1, 2, \dots, n\}\} \subset B^p_{\log}(U^n).$

Theorem 2.3. Let ϕ be a holomorphic self-map of the open unit polydisk U^n and p, q > 0, then the following statements are equivalent:

- (a) C_{ϕ} is a bounded operator from $B^p_{\log}(U^n)$ and $B^q_{\log}(U^n)$;
- (b) There is an M > 0 such that

(2.10)
$$\sum_{k,l=1}^{n} \left| \frac{\partial \phi_l}{\partial z_k}(z) \right| \cdot \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} \cdot \frac{\log \frac{2}{1-|z_k|^2}}{\log \frac{2}{1-|\phi_l(z)|^2}} \le M, \qquad \forall z \in U^n$$

Proof. Firstly, assume that (b) is true. By Lemma 2.1, there is a C > 0 such that for all $f \in B^p_{\log}(U^n)$,

(2.11)
$$|f(\phi(0))| \le C ||f||_{B^p_{\log}}.$$

Then for all $z \in U^n$,

$$\begin{split} \sum_{k=1}^{n} \left| \frac{\partial (C_{\phi} f)}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{q} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\leq \sum_{l=1}^{n} \left| \frac{\partial f}{\partial \xi_{l}}(\phi(z)) \right| (1 - |\phi_{l}(z)|^{2})^{p} \log \frac{2}{1 - |\phi_{l}(z)|^{2}} \\ &\qquad \times \sum_{k=1}^{n} \left| \frac{\partial \phi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{q}}{(1 - |\phi_{l}(z)|^{2})^{p}} \cdot \frac{\log \frac{2}{1 - |z_{k}|^{2}}}{\log \frac{2}{1 - |\phi_{l}(z)|^{2}}} \\ &\leq M \|f\|_{B^{p}_{\log}}, \end{split}$$

and (a) is obtained.

Conversely, let $l \in \{1, 2, ..., n\}$, if (a) is true, i.e. there is a $C \ge 0$ such that

(2.12)
$$||C_{\phi}f|| \leq C||f||_{B^p_{\log}}, \qquad \forall f \in B^p_{\log}(U^n),$$

then, by Lemma 2.2 and (2.12), there is a Q > 0 such that

$$\sum_{k=1}^{n} \left| \sum_{l=1}^{n} \frac{\partial f_w^l}{\partial \xi_l}(\phi(z)) \cdot \frac{\partial \phi_l}{\partial z_k}(z) \right| (1 - |z_k|^2)^q \log \frac{2}{1 - |z_k|^2} \le CQ, \qquad \forall w \in U, z \in U^n.$$

Letting $w = \phi(z)$, and using (2.8) and (2.9), we have

$$\sum_{l,k=1}^{n} \left| \frac{\partial \phi_l}{\partial z_k}(z) \right| \cdot \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} \cdot \frac{\log \frac{2}{1-|z_k|^2}}{\log \frac{2}{1-|\phi_l(z)|^2}} \le CQ.$$

Lemma 2.4. Let $\phi : U^n \to U^n$ be holomorphic and p, q > 0, then C_{ϕ} is compact from $B^p_{\log}(U^n)$ to $B^q_{\log}(U^n)$ if and only if for any bounded sequence $(f_j)_{j\in\mathbb{N}}$ in $B^p_{\log}(U^n)$, when $f_j \to 0$ uniformly on compact in U^n , then $\|C_{\phi}f_j\|_{B^q_{\log}} \to 0$ as $j \to \infty$.

Proof. Assume that C_{ϕ} is compact and $(f_j)_{j\in\mathbb{N}}$ is a bounded sequence in $B_{\log}^p(U^n)$ with $f_j \to 0$ uniformly on compacta in U^n . If the contrary is true, then there is a subsequence $(f_{jm})_{m\in\mathbb{N}}$ and a $\delta > 0$ such that $\|C_{\phi}f_{jm}\|_{B_{\log}^q} \ge \delta$ for all $m \in \mathbb{N}$. Due to the compactness of C_{ϕ} , we choose a subsequence $(f_{jml} \circ \phi)_{l\in\mathbb{N}}$ of $(C_{\phi}f_{jm})_{m\in\mathbb{N}} = (f_{jm} \circ \phi)_{m\in\mathbb{N}}$ and some $g \in B_{\log}^p(U^n)$, such that

(2.13)
$$\lim_{l \to \infty} \|f_{jml} \circ \phi - g\|_{B^q_{\log}} = 0$$

Since Lemma 2.1 implies that for any compact subset $K \subset U^n$, there is a $C_k \ge 0$ such that

$$(2.14) |f_{jml}(\phi(z)) - g(z)| \le C_k ||f_{jml} \circ \phi - g||_{B^q_{\log}}, \forall l \in \mathbb{N}, \ z \in K$$

By (2.13), $f_{jml} \circ \phi - g \to 0$ uniformly on compact subset in U^n . Since $f_{jml}\phi(z) \to 0$ as $l \to \infty$ for each $z \in U^n$, and by (2.14), then g = 0; (2.13) shows

$$\lim_{l \to \infty} \|C_{\phi}(f_{jml})\|_{B^q_{\log}} = 0,$$

it gives a contradiction.

Conversely, assume that $(g_j)_{j\in\mathbb{N}}$ is a sequence in $B_{\log}^p(U^n)$ such that $\|g_j\|_{B_{\log}^p} \leq M$ for all $j \in \mathbb{N}$. Lemma 2.1 implies that if $(g_j)_{j\in\mathbb{N}}$ is uniformly bounded on any compact subset in U^n and normal by Montel's theorem, then there is a subsequence $(g_{jm})_{m\in\mathbb{N}}$ of $(g_j)_{j\in\mathbb{N}}$ which converges uniformly on compacta in U^n to some $g \in H(U^n)$. It follows that $\frac{\partial g_{jm}}{\partial z_l} \to \frac{\partial g}{\partial z_l}$ uniformly on compacta in U^n for each $l \in \{1, 2, \ldots, n\}$. Thus $g \in B_{\log}^p(U^n)$ with $\|g_{jm} - g\|_{B_{\log}^p} \leq M + \|g\|_{B_{\log}^p} < \infty$ and $g_{jm} - g$ converges to 0 on compacta in U^n , so by the hypotheses, $g_{jm} \circ \phi \to g \circ \phi$ in $B_{\log}^q(U^n)$. Therefore C_{ϕ} is a compact operator from $B_{\log}^p(U^n)$ to $B_{\log}^q(U^n)$.

Lemma 2.5. If for every $f \in B^p_{\log}(U^n)$, $C_{\phi}f$ belongs to $B^q_{\log}(U^n)$, then $\phi^{\alpha} \in B^q_{\log}(U^n)$ for each *n*-multi-index α .

Proof. As is well known, every polynomial $p_{\alpha} : \mathbb{C}^n \to \mathbb{C}$ defined by $p_{\alpha}(z) = z^{\alpha}$ is in $B^p_{\log}(U^n)$. Thus, by the assumption $C_{\phi}(z^{\alpha}) = \phi^{\alpha} \in B^q_{\log}(U^n)$.

Theorem 2.6. Suppose that $p, q > 0, \phi : U^n \to U^n$ is a holomorphic self-map such that $\phi_k \in B^q_{\log}(U^n)$ for each $k \in \{1, 2, ..., n\}$ and

(2.15)
$$\lim_{\phi(z)\to\partial U^n} \sum_{k,l=1}^n \left| \frac{\partial \phi_l}{\partial z_k}(z) \right| \cdot \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} \cdot \frac{\log \frac{2}{1-|z_k|^2}}{\log \frac{2}{1-|\phi_l(z)|^2}} = 0,$$

then C_{ϕ} is a compact operator from $B^p_{\log}(U^n)$ to $B^q_{\log}(U^n)$.

Proof. Let $(f_j)_{j \in \mathbb{N}}$ be a sequence in $B^p_{\log}(U^n)$ with $f_j \to 0$ uniformly on compact in U^n and (2.16) $\|f_j\|_{B^p_{\log}} \leq C, \quad \forall j \in \mathbb{N}.$

By Lemma 2.4, it suffices to show that

(2.17)
$$\lim_{j \to \infty} \|C_{\phi} f_j\|_{B^q_{\log}} = 0.$$

Notice that if $\|\phi_m\|_{B^q_{\log}} = 0$ for all $m \in \{1, 2, ..., n\}$, then $\phi = 0$ and C_{ϕ} has finite rank. Therefore, we can assume C > 0 and $\|\phi_m\|_{B^q_{\log}} > 0$ for some $m \in \{1, 2, ..., n\}$. Now let $\varepsilon > 0$, from (2.15), there is an $r \in (0, 1)$ such that

(2.18)
$$\sum_{k,l=1}^{n} \left| \frac{\partial \phi_l}{\partial z_k} (z) \right| \cdot \frac{(1-|z_k|^2)^q}{(1-|\phi_l(z)|^2)^p} \cdot \frac{\log \frac{2}{1-|z_k|^2}}{\log \frac{2}{1-|\phi_l(z)|^2}} < \frac{\varepsilon}{2C}$$

for all $z \in U^n$ satisfying $d(\phi(z), \partial U^n) < r$. By using a subsequence and the chain rule for derivatives, (2.16) and (2.18) guarantee that for all such z and $j \in \mathbb{N}$,

$$\sum_{k=1}^{n} \left| \frac{\partial (C_{\phi}f)}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{q} \log \frac{2}{1 - |z_{k}|^{2}}$$

$$\leq \sum_{l=1}^{n} \left| \frac{\partial f}{\partial \xi_{l}}(\phi(z)) \right| (1 - |\phi_{l}(z)|^{2})^{p} \log \frac{2}{1 - |\phi_{l}(z)|^{2}}$$

$$\times \sum_{k=1}^{n} \left| \frac{\partial \phi_{l}}{\partial z_{k}}(z) \right| \cdot \frac{(1 - |z_{k}|^{2})^{q}}{(1 - |\phi_{l}(z)|^{2})^{p}} \cdot \frac{\log \frac{2}{1 - |z_{k}|^{2}}}{\log \frac{2}{1 - |\phi_{l}(z)|^{2}}}$$

$$\leq C \cdot \frac{\varepsilon}{2C} = \frac{\varepsilon}{2}.$$

To obtain the same estimate in the case $d(\phi(z), \partial U^n) \ge r$, let $E_r = \{w : d(w, \partial U^n) \ge r\}$. Since E_r is compact, by the hypothesis, $(f_j)_{j \in \mathbb{N}}$ and the sequences of partial derivatives $\left(\frac{\partial f_j}{\partial z_l}\right)_{j \in \mathbb{N}}$ converge to 0 uniformly on E_r , respectively. Then

$$\begin{split} &\sum_{k=1}^{n} \left| \frac{\partial (C_{\phi} f_{j})}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{q} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\leq \sum_{k=1}^{n} \left| \frac{\partial f_{j}}{\partial \xi_{l}}(\phi(z)) \right| \cdot \sum_{k=1}^{n} \left| \frac{\partial \phi_{l}}{\partial z_{k}}(z) \right| \cdot (1 - |z_{k}|^{2})^{q} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\leq \sum_{l=1}^{n} \left| \frac{\partial f_{j}}{\partial \xi_{l}}(\phi(z)) \right| \cdot \|\phi_{l}\|_{B^{q}_{\log}} \\ &\leq \sum_{l=1}^{n} \sup_{w \in E_{r}} \left| \frac{\partial f_{j}}{\partial \xi_{l}}(w) \right| \cdot \|\phi_{l}\|_{B^{q}_{\log}} \leq \frac{\varepsilon}{2} \quad (\text{as } j \to +\infty). \end{split}$$

Since $\{\phi(0)\}$ is compact, we have $f_j(\phi(0)) \to 0$ as $j \to \infty$, and $\|C_{\phi}f_j\|_{B^q_{\log}} \to 0$ as $j \to \infty$, thus C_{ϕ} is a compact operator from $B^p_{\log}(U^n)$ to $B^q_{\log}(U^n)$.

Theorem 2.7. Let ϕ be a holomorphic self-map of U^n and p, q > 0. If conditions (2.10) and (2.15) hold, then C_{ϕ} is a compact operator from $B^p_{\log}(U^n)$ to $B^q_{\log}(U^n)$.

Proof. If (2.10) is true, then C_{ϕ} is bounded from $B_{\log}^p(U^n)$ to $B_{\log}^q(U^n)$ by Theorem 2.3, and $\phi_k \in B_{\log}^q(U^n)$ for each $k \in \{1, 2, ..., n\}$ by Lemma 2.5. The proof follows on applying (2.15) and Theorem 2.6.

REFERENCES

- [1] J.A. CIMA, C.S. STANTON, AND W.R. WOGEN, On boundedness of composition operators on $H(B_2)$, *Proc. Amer. Math. Soc.*, **91** (1984), 217–222.
- [2] D.D. CLAHANE, S. STEVIC AND ZEHUA ZHOU, Composition operators between generalized Bloch space of the ploydisk, to appear.
- [3] C.C. COWEN AND B.D. MACCLUER, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Roton, 1995.
- [4] Z.J. HU, Composition operators between Bloch-type spaces in the polydisk, *Science in China, Ser. A*, **48** (2005), 268–282.
- [5] J.E. LITTLEWOOD, One inequalities in the theory of functions, *Proc. Amer. Math. Soc.*, **23**(2) (1925), 481–519.
- [6] K. MADIGAN AND A. MATHESON, Compact composition operators on the Bloch space, *Trans. Amer. Math. Soc.*, 347 (1995), 2679–2687.
- [7] S. OHNO, K. STROETHOFF AND R.H. ZHAO, Weighted composition operators between Blochtype spaces, *Rochy Mountain J. Math.*, **33**(1) (2003), 191–215.
- [8] J.H. SHI AND L. LUO, Composition operators on the Bloch space of several complex variables, *Acta Math. Sinica*, English series, **16** (2000), 85–98.
- [9] R. TIMONEY, Bloch function in several complex variables, I, Bull. London Math. Soc., 37(12) (1980) 241–267.
- [10] R. TIMONEY, Bloch function in several complex variables, II, J. Riene Angew. Math., 319 (1998), 1–22.
- [11] R. YONEDA, the composition operator on weighted Bloch space, Arch. Math., 78 (2002), 310–317.
- [12] Z.H. ZHOU AND J.H. SHI, Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 44 (2001), 286–291.
- [13] Z.H. ZHOU AND J.H. SHI, Composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 46 (2001), 73–88.
- [14] Z.H. ZHOU, Composition operators on the Lipschitz space in polydiscs, *Science in China, Ser. A*, 46(1) (2003), 33–38.
- [15] KEHE ZHU, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.