COMPOSITION OPERATORS BETWEEN GENERALLY WEIGHTED BLOCH SPACES OF POLYDISK

HAIYING LI, PEIDE LIU, AND MAOFA WANG
School of Mathematics and Statistics
WUHAN University
Wuhan 430072, P.R. China
tslhy2001@yahoo.com.cn

Received 23 March, 2007; accepted 26 June, 2007
Communicated by S.S. Dragomir

Abstract. Let ϕ be a holomorphic self-map of the open unit polydisk U^{n} in \mathbb{C}^{n} and $p, q>0$. In this paper, the generally weighted Bloch spaces $B_{\log }^{p}\left(U^{n}\right)$ are introduced, and the boundedness and compactness of composition operator C_{ϕ} from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$ are investigated.

Key words and phrases: Holomorphic self-map; Composition operator; Bloch space; Generally weighted Bloch space.

2000 Mathematics Subject Classification Primary 47B38.

1. Introduction

Suppose that D is a domain in \mathbb{C}^{n} and ϕ a holomorphic self-map of D. We denote by $H(D)$ the space of all holomorphic functions on D and define the composition operator C_{ϕ} on $H(D)$ by $C_{\phi} f=f \circ \phi$.
The theory of composition operators on various classical spaces, such as Hardy and Bergman spaces on the unit disk U in the finite complex plane \mathbb{C} has been studied. However, the multivariable situation remains mysterious. It is well known in [3] and [5] that the restriction of C_{ϕ} to Hardy or standard weighted Bergman spaces on U is always bounded by the Littlewood subordination principle. At the same time, Cima, Stanton and Wogen confirmed in [1] that the multivariable situation is much different from the classical case (i.e., the composition operators on the Hardy space of holomorphic functions on the open unit ball of \mathbb{C}^{2} as well as on many other spaces of holomorphic functions over a domain of \mathbb{C}^{n} can be unbounded, even when $n=1$ in [6]). Therefore, it would be of interest to pursue the function-theoretical or geometrical characterizations of those maps ϕ which induce bounded or compact composition operators. In this paper, we will pursue the function-theoretic conditions of those holomorphic self-maps ϕ of U^{n} which induce bounded or compact composition operators from a generally weighted $p-$ Bloch space to a q-Bloch space with $p, q>0$.

[^0]For $n \in \mathbb{N}$, we denote by U^{n} the open unit polydisk in \mathbb{C}^{n} :

$$
U^{n}=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right):\left|z_{j}\right|<1, j=1,2, \ldots, n\right\}
$$

and

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}, \quad|z|=\sqrt{\langle z, z\rangle}
$$

for any $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in $\mathbb{C}^{n} . \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is said to be an n multi-index if $\alpha_{i} \in \mathbb{N}$, written by $\alpha \in \mathbb{N}^{n}$. For $\alpha \in \mathbb{N}^{n}$, we write $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}$ and $z_{i}^{0}=1,1 \leq i \leq n$ for convenience. For $z, w \in \mathbb{C}^{n}$, we denote $[z, w]_{j}=z$ when $j=0$, $[z, w]_{j}=w$ when $j=n$, and

$$
[z, w]_{j}=\left(z_{1}, z_{2}, \ldots, z_{n-j}, w_{n-j+1}, \ldots, w_{n}\right)
$$

when $j \in\{1,2, \ldots, n-1\}$. Then $[z, w]_{n-j}=w$ when $j=1$, and $[z, w]_{n-j+1}=w$ when $j=n+1$, for $j=2,3, \ldots, n$,

$$
[z, w]_{n-j+1}=\left(z_{1}, z_{2}, \ldots, z_{j-1}, w_{j}, \ldots, w_{n}\right)
$$

For any $a \in \mathbb{C}$ and $z_{j}^{\prime}=\left(z_{1}, z_{2}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)$, we write

$$
\left(a, z_{j}^{\prime}\right)=\left(z_{1}, z_{2}, \ldots, z_{j-1}, a, z_{j+1}, \ldots, z_{n}\right)
$$

Moreover, we adopt the notation $\left(z^{\left[j^{\prime}\right]}\right)_{j^{\prime} \in \mathbb{N}}$ for an arbitrary subsequence of $\left(z^{[j]}\right)_{j \in \mathbb{N}}$.
Recall that the Bloch space $B\left(U^{n}\right)$ is the vector space of all $f \in H\left(U^{n}\right)$ satisfying

$$
b_{1}(f)=\sup _{z \in U^{n}} Q_{f}(z)<\infty,
$$

where

$$
Q_{f}(z)=\sup _{u \in \mathbb{C}^{n} \backslash\{0\}} \frac{|\langle\nabla f(z), \bar{u}\rangle|}{\sqrt{H(z, u)}}, \quad \nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}(z), \ldots, \frac{\partial f}{\partial z_{n}}(z)\right)
$$

and the Bergman metric $H: U^{n} \times \mathbb{C}^{n} \rightarrow[0, \infty)$ on U^{n} is

$$
H(z, u)=\sum_{k=1}^{n} \frac{\left|u_{k}\right|^{2}}{1-\left|z_{k}\right|^{2}}
$$

(for example see [9], [15]). It is easy to verify that both $|f(0)|+b_{1}(f)$ and

$$
\|f\|_{B}=|f(0)|+\sup _{z \in U^{n}} \sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)
$$

are equivalent norms on $B\left(U^{n}\right)$. In [10], [12] and [8], some characterizations of the Bloch space $B\left(U^{n}\right)$ have been given.

In a recent paper [2], a generalized Bloch space has been introduced, the p-Bloch space: for $p>0$, a function $f \in H\left(U^{n}\right)$ belongs to the $p-$ Bloch space $B^{p}\left(U^{n}\right)$ if there is some $M \in[0, \infty)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \leq M, \quad \forall z \in U^{n}
$$

The references [13] to [7] studied these spaces and the operators in them.
Dana D. Clahane et al. in [2] proved the following two results:
Theorem A. Let ϕ be a holomorphic self-map of U^{n} and $p, q>0$. The following statements are equivalent:
(a) C_{ϕ} is a bounded operator from $B^{p}\left(U^{n}\right)$ to $B^{q}\left(U^{n}\right)$;
(b) There is $M \geq 0$ such that

$$
\begin{equation*}
\sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \leq M, \quad \forall z \in U^{n} \tag{1.1}
\end{equation*}
$$

Theorem B. Let ϕ be a holomorphic self-map of U^{n} and $p, q>0$. If condition (1.1) and

$$
\begin{equation*}
\lim _{\phi(z) \rightarrow \partial U^{n}} \sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}}=0 \tag{1.2}
\end{equation*}
$$

hold, then C_{ϕ} is a compact operator from $B^{p}\left(U^{n}\right)$ to $B^{q}\left(U^{n}\right)$.
Now we introduce the generally weighted Bloch space $B_{\mathrm{log}}^{p}\left(U^{n}\right)$.
For $p>0$, a function $f \in H(U)$ belongs to the generally weighted $p-$ Bloch space $B_{\mathrm{log}}^{p}\left(U^{n}\right)$ if there is some $M \in[0, \infty)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} \leq M, \quad \forall z \in U^{n}
$$

Its norm in $B_{\log }^{p}\left(U^{n}\right)$ is defined by

$$
\|f\|_{B_{\log }^{p}}=|f(0)|+\sup _{z \in U^{n}} \sum_{k=1}^{n}\left|\frac{\partial f}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} .
$$

In this paper, we mainly characterize the boundedness and compactness of the composition operators between $B_{\log }^{p}\left(U^{n}\right)$ and $B_{\log }^{q}\left(U^{n}\right)$, and extend some corresponding results in [2] and [11] in several ways.

2. Main Results and their Proofs

First, we have the following lemma:
Lemma 2.1. Let $f \in B_{\log }^{p}\left(U^{n}\right)$ and $z \in U^{n}$, then:
(a) $|f(z)| \leq\left(1+\frac{n}{(1-p) \log 2}\right)\|f\|_{B_{\log }^{p}}$, when $0<p<1$;
(b) $|f(z)| \leq\left(\frac{1}{2 \log 2}+\frac{1}{2 n \log 2}\right) \sum_{k=1}^{n} \log \frac{4}{1-\left|z_{k}\right|}| | f \|_{B_{\log }^{p}}$, when $p=1$;
(c) $|f(z)| \leq\left(\frac{1}{n}+\frac{2^{p-1}}{(p-1) \log 2}\right) \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}}$, when $p>1$.

Proof. Let $p>0, z \in U^{n}$, from the definition of $\|\cdot\|_{B_{\log }^{p}}$ we have $|f(0)| \leq\|f\|_{B_{\log }^{p}}$ and

$$
\begin{equation*}
\left|\frac{\partial f}{\partial z_{k}}(z)\right| \leq \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}}} \leq \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|z_{k}\right|^{2}\right)^{p} \log 2} \tag{2.1}
\end{equation*}
$$

for every $z \in U^{n}$ and $k \in\{1,2, \ldots, n\}$. Notice that

$$
\begin{aligned}
f(z)-f(0) & =\sum_{k=1}^{n} f\left([0, z]_{n-k+1}\right)-f\left([0, z]_{n-k}\right) \\
& =\sum_{k=1}^{n} z_{k} \int_{0}^{1} \frac{\partial f\left(\left[0,\left(t z_{k}, z_{k}^{\prime}\right)\right]_{n-k+1}\right)}{\partial z_{k}} d t
\end{aligned}
$$

and then from the inequality (2.1), it follows that

$$
\begin{align*}
|f(z)| & \leq|f(0)|+\sum_{k=1}^{n} \frac{\left|z_{k}\right|}{\log 2} \int_{0}^{1} \frac{\|f\|_{B_{\log }^{p}}}{\left(1-\left|t z_{k}\right|^{2}\right)^{p}} d t \\
& \leq\|f\|_{B_{\log }^{p}}+\frac{\|f\|_{B_{\log }^{p}}^{n}}{\log 2} \sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t . \tag{2.2}
\end{align*}
$$

For $p=1$, we have:

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t=\sum_{k=1}^{n} \frac{1}{2} \log \frac{1+\left|z_{k}\right|}{1-\left|z_{k}\right|} \leq \sum_{k=1}^{n} \frac{1}{2} \log \frac{4}{1-\left|z_{k}\right|^{2}} \tag{2.3}
\end{equation*}
$$

If $p>0$ and $p \neq 1$, then

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t \leq \sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{(1-t)^{p}} d t=\sum_{k=1}^{n} \frac{1-\left(1-\left|z_{k}\right|\right)^{1-p}}{1-p} \tag{2.4}
\end{equation*}
$$

Now for (a), from (2.4),

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t \leq \frac{1}{1-p} \tag{2.5}
\end{equation*}
$$

From (2.2) and (2.5), it follows that

$$
|f(z)| \leq\left(1+\frac{n}{(1-p) \log 2}\right)\|f\|_{B_{\log }^{p}}
$$

For (b), Since $\log \frac{4}{1-\left|z_{k}\right|^{2}}>\log 4=2 \log 2$ for each $k \in\{1,2, \ldots, n\}$, then

$$
\begin{equation*}
1<\frac{1}{2 n \log 2} \sum_{k=1}^{n} \log \frac{4}{1-\left|z_{k}\right|^{2}} \tag{2.6}
\end{equation*}
$$

Combining (2.2), (2.3) and (2.6) we get

$$
|f(z)| \leq\left(\frac{1}{2 \log 2}+\frac{1}{2 n \log 2}\right) \sum_{k=1}^{n} \log \frac{4}{1-\left|z_{k}\right|^{2}}\|f\|_{B_{\log }^{p}}
$$

For (c), from (2.4) we have

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{\left|z_{k}\right|} \frac{1}{\left(1-t^{2}\right)^{p}} d t \leq \sum_{k=1}^{n} \frac{1-\left(1-\left|z_{k}\right|\right)^{p-1}}{(p-1)\left(1-\left|z_{k}\right|\right)^{p-1}} \leq \sum_{k=1}^{n} \frac{2^{p-1}}{(p-1)\left(1-\left|z_{k}\right|^{2}\right)^{p-1}} \tag{2.7}
\end{equation*}
$$

By (2.2) and (2.7), we obtain

$$
\begin{aligned}
|f(z)| & \leq\|f\|_{B_{\log }^{p}}+\frac{2^{p-1}}{(p-1) \log 2} \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}} \\
& \leq\left(\frac{1}{n}+\frac{2^{p-1}}{(p-1) \log 2}\right) \sum_{k=1}^{n} \frac{1}{\left(1-\left|z_{k}\right|^{2}\right)^{p-1}}\|f\|_{B_{\log }^{p}} .
\end{aligned}
$$

Lemma 2.2. For $p>0, l \in\{1,2, \ldots, n\}$ and $w \in U$, the function $f_{w}^{l}: \overline{U^{n}} \rightarrow \mathbb{C}$,

$$
f_{w}^{l}(z)=\int_{0}^{z_{l}} \frac{1}{(1-\bar{w} t)^{p} \log \frac{2}{1-\bar{w} t}} d t
$$

belongs to $B_{\log }^{p}\left(U^{n}\right)$.

Proof. Let $k, l \in\{1,2, \ldots, n\}$ and $w \in U$, then

$$
\begin{equation*}
\frac{\partial f_{w}^{l}}{\partial z_{k}}=0, \quad \forall z \in U^{n}, k \neq l \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f_{w}^{l}}{\partial z_{l}}(z)=\frac{1}{\left(1-\bar{w} z_{l}\right)^{p} \log \frac{2}{1-\bar{w} z_{l}}}, \quad \forall z \in U^{n} \tag{2.9}
\end{equation*}
$$

An easy estimate shows that there is $0<M<+\infty$ such that

$$
\frac{(1-|\bar{w} z|)^{p} \log \frac{2}{1-|\bar{w} z|}}{|1-\bar{w} z|^{p} \log \frac{2}{|1-\bar{w} z|}} \leq M, \quad \forall z, w \in U .
$$

Therefore, by (2.8) and (2.9), we have

$$
\begin{aligned}
& \left|f_{w}^{l}(0)\right|+\sum_{k=1}^{n}\left|\frac{\partial f_{w}^{l}}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& =\frac{\left(1-\left|z_{l}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{l}\right|^{2}}}{\left|1-\bar{w} z_{l}\right|^{p}\left|\log \frac{2}{1-\bar{w} z_{l}}\right|} \\
& \leq \frac{\left(1-\left|z_{l}\right|^{2}\right)^{p} \log \frac{2}{1-\left|z_{l}\right|^{2}}}{\left(1-\left|\bar{w} z_{l}\right|\right)^{p} \log \frac{2}{1-\left|\bar{w} z_{l}\right|}} \cdot \frac{\left(1-\left|\bar{w} z_{l}\right|\right)^{p} \log \frac{2}{1-\left|\bar{w} z_{l}\right|}}{\left|1-\bar{w} z_{l}\right|^{p} \log \frac{\mid \bar{w}}{\left|1-\bar{w} z_{l}\right|}} \\
& \leq \frac{2^{p}}{p e \log 2} \cdot M<+\infty
\end{aligned}
$$

and thus $\left\{f_{w}^{l}: w \in U, l \in\{1,2, \ldots, n\}\right\} \subset B_{\log }^{p}\left(U^{n}\right)$.
Theorem 2.3. Let ϕ be a holomorphic self-map of the open unit polydisk U^{n} and $p, q>0$, then the following statements are equivalent:
(a) C_{ϕ} is a bounded operator from $B_{\log }^{p}\left(U^{n}\right)$ and $B_{\log }^{q}\left(U^{n}\right)$;
(b) There is an $M>0$ such that

$$
\begin{equation*}
\sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}} \leq M, \quad \forall z \in U^{n} \tag{2.10}
\end{equation*}
$$

Proof. Firstly, assume that (b) is true. By Lemma 2.1, there is a $C>0$ such that for all $f \in B_{\log }^{p}\left(U^{n}\right)$,

$$
\begin{equation*}
|f(\phi(0))| \leq C\|f\|_{B_{\log }^{p}} . \tag{2.11}
\end{equation*}
$$

Then for all $z \in U^{n}$,

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|\frac{\partial\left(C_{\phi} f\right)}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& \begin{aligned}
& \leq \sum_{l=1}^{n}\left|\frac{\partial f}{\partial \xi_{l}}(\phi(z))\right|\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p} \log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}} \\
& \quad \times \sum_{k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}}
\end{aligned} \\
& \leq M\|f\|_{B_{\log }^{p}},
\end{aligned}
$$

and (a) is obtained.

Conversely, let $l \in\{1,2, \ldots, n\}$, if (a) is true, i.e. there is a $C \geq 0$ such that

$$
\begin{equation*}
\left\|C_{\phi} f\right\| \leq C\|f\|_{B_{\log }^{p}}, \quad \forall f \in B_{\log }^{p}\left(U^{n}\right) \tag{2.12}
\end{equation*}
$$

then, by Lemma 2.2 and 2.12 , there is a $Q>0$ such that

$$
\sum_{k=1}^{n}\left|\sum_{l=1}^{n} \frac{\partial f_{w}^{l}}{\partial \xi_{l}}(\phi(z)) \cdot \frac{\partial \phi_{l}}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \leq C Q, \quad \forall w \in U, z \in U^{n}
$$

Letting $w=\phi(z)$, and using (2.8) and (2.9), we have

$$
\sum_{l, k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}} \leq C Q .
$$

Lemma 2.4. Let $\phi: U^{n} \rightarrow U^{n}$ be holomorphic and $p, q>0$, then C_{ϕ} is compact from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$ if and only iffor any bounded sequence $\left(f_{j}\right)_{j \in \mathbb{N}}$ in $B_{\log }^{p}\left(U^{n}\right)$, when $f_{j} \rightarrow 0$ uniformly on compacta in U^{n}, then $\left\|C_{\phi} f_{j}\right\|_{B_{\log }^{q}} \rightarrow 0$ as $j \rightarrow \infty$.
Proof. Assume that C_{ϕ} is compact and $\left(f_{j}\right)_{j \in \mathbb{N}}$ is a bounded sequence in $B_{\log }^{p}\left(U^{n}\right)$ with $f_{j} \rightarrow 0$ uniformly on compacta in U^{n}. If the contrary is true, then there is a subsequence $\left(f_{j m}\right)_{m \in \mathbb{N}}$ and a $\delta>0$ such that $\left\|C_{\phi} f_{j m}\right\|_{B_{\log }^{q}} \geq \delta$ for all $m \in \mathbb{N}$. Due to the compactness of C_{ϕ}, we choose a subsequence $\left(f_{j m l} \circ \phi\right)_{l \in \mathbb{N}}$ of $\left(C_{\phi} f_{j m}\right)_{m \in \mathbb{N}}=\left(f_{j m} \circ \phi\right)_{m \in \mathbb{N}}$ and some $g \in B_{\log }^{p}\left(U^{n}\right)$, such that

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left\|f_{j m l} \circ \phi-g\right\|_{B_{\log }^{q}}=0 \tag{2.13}
\end{equation*}
$$

Since Lemma 2.1 implies that for any compact subset $K \subset U^{n}$, there is a $C_{k} \geq 0$ such that

$$
\begin{equation*}
\left|f_{j m l}(\phi(z))-g(z)\right| \leq C_{k}\left\|f_{j m l} \circ \phi-g\right\|_{B_{\log }^{q}}, \quad \forall l \in \mathbb{N}, z \in K \tag{2.14}
\end{equation*}
$$

By (2.13), $f_{j m l} \circ \phi-g \rightarrow 0$ uniformly on compact subset in U^{n}. Since $f_{j m l} \phi(z) \rightarrow 0$ as $l \rightarrow \infty$ for each $z \in U^{n}$, and by (2.14), then $g=0$; (2.13) shows

$$
\lim _{l \rightarrow \infty}\left\|C_{\phi}\left(f_{j m l}\right)\right\|_{B_{\log }^{q}}=0
$$

it gives a contradiction.
Conversely, assume that $\left(g_{j}\right)_{j \in \mathbb{N}}$ is a sequence in $B_{\log }^{p}\left(U^{n}\right)$ such that $\left\|g_{j}\right\|_{B_{\log }^{p}} \leq M$ for all $j \in \mathbb{N}$. Lemma 2.1 implies that if $\left(g_{j}\right)_{j \in \mathbb{N}}$ is uniformly bounded on any compact subset in U^{n} and normal by Montel's theorem, then there is a subsequence $\left(g_{j m}\right)_{m \in \mathbb{N}}$ of $\left(g_{j}\right)_{j \in \mathbb{N}}$ which converges uniformly on compacta in U^{n} to some $g \in H\left(U^{n}\right)$. It follows that $\frac{\partial g_{j m}}{\partial z_{l}} \rightarrow \frac{\partial g}{\partial z_{l}}$ uniformly on compacta in U^{n} for each $l \in\{1,2, \ldots, n\}$. Thus $g \in B_{\log }^{p}\left(U^{n}\right)$ with $\| g_{j m}-$ $g\left\|_{B_{\log }^{p}} \leq M+\right\| g \|_{B_{\log }^{p}}<\infty$ and $g_{j m}-g$ converges to 0 on compacta in U^{n}, so by the hypotheses, $g_{j m} \circ \phi \rightarrow g \circ \phi$ in $B_{\log }^{q}\left(U^{n}\right)$. Therefore C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.
Lemma 2.5. Iffor every $f \in B_{\log }^{p}\left(U^{n}\right), C_{\phi} f$ belongs to $B_{\log }^{q}\left(U^{n}\right)$, then $\phi^{\alpha} \in B_{\log }^{q}\left(U^{n}\right)$ for each n-multi-index α.
Proof. As is well known, every polynomial $p_{\alpha}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $p_{\alpha}(z)=z^{\alpha}$ is in $B_{\log }^{p}\left(U^{n}\right)$. Thus, by the assumption $C_{\phi}\left(z^{\alpha}\right)=\phi^{\alpha} \in B_{\log }^{q}\left(U^{n}\right)$.
Theorem 2.6. Suppose that $p, q>0, \phi: U^{n} \rightarrow U^{n}$ is a holomorphic self-map such that $\phi_{k} \in B_{\log }^{q}\left(U^{n}\right)$ for each $k \in\{1,2, \ldots, n\}$ and

$$
\begin{equation*}
\lim _{\phi(z) \rightarrow \partial U^{n}} \sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}}=0, \tag{2.15}
\end{equation*}
$$

then C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.
Proof. Let $\left(f_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $B_{\log }^{p}\left(U^{n}\right)$ with $f_{j} \rightarrow 0$ uniformly on compacta in U^{n} and

$$
\begin{equation*}
\left\|f_{j}\right\|_{B_{\log }^{p}} \leq C, \quad \forall j \in \mathbb{N} \tag{2.16}
\end{equation*}
$$

By Lemma 2.4, it suffices to show that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|C_{\phi} f_{j}\right\|_{B_{\log }^{q}}=0 \tag{2.17}
\end{equation*}
$$

Notice that if $\left\|\phi_{m}\right\|_{B_{\log }^{q}}=0$ for all $m \in\{1,2, \ldots, n\}$, then $\phi=0$ and C_{ϕ} has finite rank. Therefore, we can assume $C>0$ and $\left\|\phi_{m}\right\|_{B_{\log }^{q}}>0$ for some $m \in\{1,2, \ldots, n\}$. Now let $\varepsilon>0$, from 2.15), there is an $r \in(0,1)$ such that

$$
\begin{equation*}
\sum_{k, l=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}}<\frac{\varepsilon}{2 C} \tag{2.18}
\end{equation*}
$$

for all $z \in U^{n}$ satisfying $d\left(\phi(z), \partial U^{n}\right)<r$. By using a subsequence and the chain rule for derivatives, (2.16) and (2.18) guarantee that for all such z and $j \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|\frac{\partial\left(C_{\phi} f\right)}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& \leq \sum_{l=1}^{n}\left|\frac{\partial f}{\partial \xi_{l}}(\phi(z))\right|\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p} \log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}} \\
& \quad \times \sum_{k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot \frac{\left(1-\left|z_{k}\right|^{2}\right)^{q}}{\left(1-\left|\phi_{l}(z)\right|^{2}\right)^{p}} \cdot \frac{\log \frac{2}{1-\left|z_{k}\right|^{2}}}{\log \frac{2}{1-\left|\phi_{l}(z)\right|^{2}}} \\
& \leq C \cdot \frac{\varepsilon}{2 C}=\frac{\varepsilon}{2} .
\end{aligned}
$$

To obtain the same estimate in the case $d\left(\phi(z), \partial U^{n}\right) \geq r$, let $E_{r}=\left\{w: d\left(w, \partial U^{n}\right) \geq\right.$ $r\}$. Since E_{r} is compact, by the hypothesis, $\left(f_{j}\right)_{j \in \mathbb{N}}$ and the sequences of partial derivatives $\left(\frac{\partial f_{j}}{\partial z_{l}}\right)_{j \in \mathbb{N}}$ converge to 0 uniformly on E_{r}, respectively. Then

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|\frac{\partial\left(C_{\phi} f_{j}\right)}{\partial z_{k}}(z)\right|\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& \leq \sum_{k=1}^{n}\left|\frac{\partial f_{j}}{\partial \xi_{l}}(\phi(z))\right| \cdot \sum_{k=1}^{n}\left|\frac{\partial \phi_{l}}{\partial z_{k}}(z)\right| \cdot\left(1-\left|z_{k}\right|^{2}\right)^{q} \log \frac{2}{1-\left|z_{k}\right|^{2}} \\
& \leq \sum_{l=1}^{n}\left|\frac{\partial f_{j}}{\partial \xi_{l}}(\phi(z))\right| \cdot\left\|\phi_{l}\right\|_{B_{\log }^{q}} \\
& \leq \sum_{l=1}^{n} \sup _{w \in E_{r}}\left|\frac{\partial f_{j}}{\partial \xi_{l}}(w)\right| \cdot\left\|\phi_{l}\right\|_{B_{\log }^{q}} \leq \frac{\varepsilon}{2} \quad(\text { as } j \rightarrow+\infty)
\end{aligned}
$$

Since $\{\phi(0)\}$ is compact, we have $f_{j}(\phi(0)) \rightarrow 0$ as $j \rightarrow \infty$, and $\left\|C_{\phi} f_{j}\right\|_{B_{\log }^{q}} \rightarrow 0$ as $j \rightarrow \infty$, thus C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.
Theorem 2.7. Let ϕ be a holomorphic self-map of U^{n} and $p, q>0$. If conditions (2.10) and (2.15) hold, then C_{ϕ} is a compact operator from $B_{\log }^{p}\left(U^{n}\right)$ to $B_{\log }^{q}\left(U^{n}\right)$.

Proof. If 2.10 is true, then C_{ϕ} is bounded from $B_{\mathrm{log}}^{p}\left(U^{n}\right)$ to $B_{\mathrm{log}}^{q}\left(U^{n}\right)$ by Theorem 2.3, and $\phi_{k} \in B_{\log }^{q}\left(U^{n}\right)$ for each $k \in\{1,2, \ldots, n\}$ by Lemma 2.5 . The proof follows on applying (2.15) and Theorem 2.6 .

References

[1] J.A. CIMA, C.S. STANTON, AND W.R. WOGEN, On boundedness of composition operators on $H\left(B_{2}\right)$, Proc. Amer. Math. Soc., 91 (1984), 217-222.
[2] D.D. CLAHANE, S. STEVIC AND ZEHUA ZHOU, Composition operators between generalized Bloch space of the ploydisk, to appear.
[3] C.C. COWEN AND B.D. MACCLUER, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Roton, 1995.
[4] Z.J. HU, Composition operators between Bloch-type spaces in the polydisk, Science in China, Ser. A, 48 (2005), 268-282.
[5] J.E. LITTLEWOOD, One inequalities in the theory of functions, Proc. Amer. Math. Soc., 23(2) (1925), 481-519.
[6] K. MADIGAN AND A. MATHESON, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679-2687.
[7] S. OHNO, K. STROETHOFF AND R.H. ZHAO, Weighted composition operators between Blochtype spaces, Rochy Mountain J. Math., 33(1) (2003), 191-215.
[8] J.H. SHI AND L. LUO, Composition operators on the Bloch space of several complex variables, Acta Math. Sinica, English series, 16 (2000), 85-98.
[9] R. TIMONEY, Bloch function in several complex variables, I, Bull. London Math. Soc., 37(12) (1980) 241-267.
[10] R. TIMONEY, Bloch function in several complex variables, II, J. Riene Angew. Math., 319 (1998), 1-22.
[11] R. YONEDA, the composition operator on weighted Bloch space, Arch. Math., 78 (2002), 310-317.
[12] Z.H. ZHOU AND J.H. SHI, Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 44 (2001), 286-291.
[13] Z.H. ZHOU and J.H. SHI, Composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 46 (2001), 73-88.
[14] Z.H. ZHOU, Composition operators on the Lipschitz space in polydiscs, Science in China, Ser. A, 46(1) (2003), 33-38.
[15] KEHE ZHU, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.

[^0]: Supported by the Natural Science Foundation of China (No. 10671147, 10401027).
 091-07

