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ABSTRACT. By utilizing a reversed Hölder inequality and a reversed convolution inequality,
some new integral inequalities which originate from an open problem posed in [F. Qi,Several
integral inequalities, J. Inequal. Pure Appl. Math.1(2) (2000), Art. 19. Available online at
http://jipam.vu.edu.au/v1n2.html/001_00.html . RGMIA Res. Rep. Coll.2
(1999), no. 7, Art. 9, 1039–1042. Available online athttp://rgmia.vu.edu.au/v2n7.
html ] are established.
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1. I NTRODUCTION

In [6] F. Qi posed the following open problem:
Under what conditions does the inequality

(1.1)
∫ b

a

[
f(x)

]t
dx ≥

(∫ b

a

f(x)dx

)t−1

hold for t > 1?
In response, affirmative answers, generalizations, reversed forms, and interpretations of in-

equality (1.1) have been obtained by several mathematicians.
The paper [9] first gave an affirmative answer to this open problem using the integral version

of Jensen’s inequality and a lemma of convexity. The second affirmative answer to (1.1) was
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given by Towghi in [8]. Motivated by (1.1), Pogány [5] proved the following

(1.2)
∫ b

a

[
f(x)

]α
dx ≥

(∫ b

a

f(x)dx

)β

and its reversed form under assumptions of the bounds, depending onb − a, α andβ, and
convexity off , which contains an answer to the above open problem and some reversed forms
of (1.1).

In [3, 4], by employing a functional inequality which is an abstract generalization of the clas-
sical Jessen’s inequality, the following functional inequality (1.4) was established, from which
inequality (1.1), some integral inequalities, and an interesting discrete inequality involving sums
can be deduced:

LetL be a linear vector space of real-valued functions,p andq be two real numbers such that
p ≥ q ≥ 1. Assume thatf andg are two positive functions inL andG is a positive linear form
onL such thatG(g) > 0, fg ∈ L, andgfp ∈ L. If

(1.3) [G(gf)]p−q ≥ [G(g)]p−1,

then

(1.4) G(gfp) ≥ [G(gf)]q.

Very recently, Csiszár and Móri [1] interpreted inequality (1.2) in terms of moments as

(1.5) E(Xα) ≥ C(EX)β,

whereC = (b − a)β−1 andX = f is a random variable. To demonstrate the power of the
convexity method in probability theory, among other things, they found sharp conditions on the
range ofX, under which (1.5) or the converse inequality holds for fixed0 < β < α. Hence, the
results by Pogány [5] were improved slightly by a factor of at least

(
3
2

) α
α−β .

In this short note, by utilizing the reversed Hölder inequality in [2] and a reversed convolution
inequality in [7], we establish some new Qi type integral inequalities which extend related
results in references.

2. TWO L EMMAS

In order to prove our main results, the following two lemmas are necessary.

Lemma 2.1([2]). For two positive functionsf andg satisfying0 < m ≤ f
g
≤ M < ∞ on the

setX, and forp > 1 andq > 1 with 1
p

+ 1
q

= 1, we have

(2.1)

(∫
X

fdµ

) 1
p
(∫

X

gdµ

) 1
q

≤ Ap,q

(m

M

)∫
X

f
1
p g

1
q dµ,

where

(2.2) Ap,q(t) =
1

p
1
p q

1
q

· 1− t

t
1
pq

(
1− t

1
p

) 1
p
(
1− t

1
q

) 1
q

.

Inequality (2.1) is called the reverse Hölder inequality.

Lemma 2.2([7]). For two positive functionsf andg satisfying0 < m ≤ fp

gq ≤ M < ∞ on the

setX, and forp > 1 andq > 1 with 1
p

+ 1
q

= 1, we have

(2.3)

(∫
X

fpdµ

) 1
p
(∫

X

gqdµ

) 1
q

≤
(

M

m

) 1
pq
∫

X

fgdµ.
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3. M AIN RESULTS AND PROOFS

In this section, we will state our main results and give their proofs as follows.
Using Lemma 2.1 and an estimation due to Lars-Erik Persson, we obtain:

Theorem 3.1. If 0 < m ≤ f ≤ M < ∞ on [a, b], then

(3.1)
∫

[a,b]

f
1
p dµ ≥ B

(∫
[a,b]

fdµ

) 1
p
−1

,

whereB = m[µ(b)− µ(a)]1+ 1
q
(

m
M

) 1
pq andp > 1, q > 1 with 1

p
+ 1

q
= 1.

Proof. In Lemma 2.1, puttingg ≡ 1 yields

(3.2) [µ(b)− µ(a)]
1
q

(∫
[a,b]

fdµ

) 1
p

≤ Ap,q

(m

M

)∫
[a,b]

f
1
p dµ,

and so

(3.3)
∫

[a,b]

f
1
p dµ ≥ [µ(b)− µ(a)]

1
q

Ap,q

(
m
M

) (∫
[a,b]

fdµ

) 1
p
−1(∫

[a,b]

fdµ

)
.

Since0 < m ≤ f , we have

(3.4)
∫

[a,b]

f
1
p dµ ≥ m [µ(b)− µ(a)]1+

1
q

Ap,q

(
m
M

) (∫
[a,b]

fdµ

) 1
p
−1

.

Now, using the estimationAp,q(t) < t−
1
pq due to Lars-Erik Persson (see [7]), we obtain

inequality (3.1). �

Corollary 3.2. Letp > 1 andq > 1 with 1
p

+ 1
q

= 1. If

(3.5) m
(m

M

) 1
pq

=
1

[µ(b)− µ(a)]1+
1
q

and0 < m ≤ f ≤ M < ∞ on [a, b], then

(3.6)
∫

[a,b]

f
1
p dµ ≥

(∫
[a,b]

fdµ

) 1
p
−1

.

Using Lemma 2.1, Lemma 2.2 and the estimation due to Lars-Erik Persson, we have the
following:

Theorem 3.3.Letp > 1 andq > 1 with 1
p
+ 1

q
= 1. If 0 < m

1
p ≤ f ≤ M

1
p < ∞ on [a, b], then

(3.7)

(∫
[a,b]

f
1
p dµ

)p

≥ [µ(b)− µ(a)]
p+1

q

(m

M

) 2
pq

(∫
[a,b]

fpdµ

) 1
p

.

Proof. Puttingg ≡ 1 into Lemma 2.2, we obtain

(3.8)

(∫
[a,b]

fpdµ

) 1
p

[µ(b)− µ(a)]
1
q ≤

(m

M

)− 1
pq

∫
[a,b]

fdµ.

Therefore

(3.9)

(∫
[a,b]

fpdµ

) 1
p

≤
(m

M

)− 1
pq

[µ(b)− µ(a)]−
1
q

∫
[a,b]

fdµ.
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Again, substitutingg ≡ 1 in the reverse Hölder inequality in Lemma 2.1 leads to(∫
[a,b]

fdµ

) 1
p

≤ [µ(b)− µ(a)]−
1
q Ap,q

(
m

1
p

M
1
p

)∫
[a,b]

f
1
p dµ,

and so,

(3.10)
∫

[a,b]

fdµ ≤ [µ(b)− µ(a)]−
p
q Ap

p,q

(
m

1
p

M
1
p

)(∫
[a,b]

f
1
p dµ

)p

.

Combining (3.9) with (3.10), we obtain

(3.11)

(∫
[a,b]

f
1
p dµ

)p

≥ [µ(b)− µ(a)]
p+1

q

(m

M

) 1
pq

A−p
p,q

(
m

1
p

M
1
p

)(∫
[a,b]

fpdµ

) 1
p

.

Then, by using the estimationAp,q(t) < t−
1
pq due to Lars-Erik Persson (see [7]), we obtain

inequality (3.7). �

Corollary 3.4. If 0 < m
1
p ≤ f ≤ M

1
p < ∞ on [a, b] and m

M
= [µ(b)− µ(a)]

−p(p+1)
2 for p > 1,

then

(3.12)

(∫
[a,b]

f
1
p dµ

)p

≥
(∫

[a,b]

fpdµ

) 1
p

.
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