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ABSTRACT. In this paper we present an integral inequality and show how it can be used to
study certain differential equations. Namely, we will see how to establish (global) existence
results and determine the decay rates of solutions to abstract semilinear problems, reaction diffu-
sion systems with time dependent coefficients and fractional differential problems. A nonlinear
singular version of the Gronwall inequality is also presented.
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1. I NTRODUCTION AND PRELIMINARIES

Our purpose here is to survey the recent works of the present author together with some of
his collaborators on the role of an integral inequality in developing certain results in the prior
literature.

In this section we present the integral inequality in question together with its proof from [21].
Then, we prepare some material which will be needed later. Since we will be dealing with
different results and applications published in different papers, it will also be our task here in
this section to unify the notation.

We denote byX := Lp (Ω) , p > 1 andWm,p (Ω) , p > 1, m ≥ 1, whereΩ is a bounded
domain inRn, the usual Lebesgue space and Sobolev space, respectively. The spaceCν

(
Ω̄
)
,

ν ≥ 0, is the Banach space of[ν]-times continuously differentiable functions in̄Ω whose[ν]-th
order derivatives are Hölder continuous with exponentν − [ν], so thatC0

(
Ω̄
)

= C
(
Ω̄
)

and
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2 NASSER-EDDINE TATAR

C1
(
Ω̄
)

are the Banach spaces of continuous and continuously differentiable functions inΩ̄,
respectively.

We designate by−A a sectorial operator (see [9]) withReσ (A) > b > 0 whereReσ (A)
denotes the real part of the spectrum ofA. We may define the fractional operatorsAα, 0 ≤ α ≤
1 in the usual way onD (Aα) = Xα. The spaceXα endowed with the norm‖x‖α = ‖Aαx‖ is
a Banach space. The operator−A generates an analytic semigroup{e−tA}t≥0 in X.

Our key inequality in this paper is the following (see [21]).

Lemma 1.1. If λ, ν, ω > 0, then for anyt > 0 we have

t1−ν

∫ t

0

(t− s)ν−1sλ−1e−ωsds ≤ C,

whereC is a positive constant independent oft. In fact,

C = max
{
1, 21−ν

}
Γ(λ)(1 + λ/ν)ω−λ.

Proof. Let I(t) denote the left-hand side of the relation in the lemma. By a change of variables
we find

I(t) = tλ
∫ 1

0

(1− ξ)ν−1ξλ−1e−ωtξdξ.

Notice that,

tλ(1− ξ)ν−1ξλ−1e−ωtξ ≤

 max(1, 21−ν)tλξλ−1e−ωtξ, 0 ≤ ξ ≤ 1
2

2(1− ξ)ν−1Γ(λ+ 1)ω−λ, 1
2
< ξ ≤ 1.

Therefore,
I(t) ≤ max(1, 21−ν)Γ(λ)(1 + λ/ν)ω−λ.

�

We will also need the lemmas below (see [9] for the proofs)

Lemma 1.2. If 0 ≤ α ≤ 1, thenD (Aα) ⊂ Cν
(
Ω̄
)

for 0 ≤ ν < 2α− n
p
.

Lemma 1.3. If 0 ≤ α ≤ 1, then
∥∥Aαe−tA

∥∥
p
≤ c1t

−αe−bt, t > 0

for some positive constantc1.

Lemma 1.4. Letα ∈ [0, 1) andβ ∈ R. There exists a positive constantC = C(α, β) such that

∫ t

0

s−αeβsds ≤


Ceβt, if β > 0

C(t+ 1), if β = 0

C, if β < 0.

Lemma 1.5. Let a(t), b(t), K(t), ψ(t) be nonnegative, continuous functions on the interval
I = (0, T ) (0 < T ≤ ∞), Φ : (0,∞) → R be a continuous, nonnegative and nondecreasing
function,Φ(0) = 0, Φ(u) > 0 for u > 0 and letA(t) = max0≤s≤t a(s), B(t) = max0≤s≤t b(s).
Assume that

ψ(t) ≤ a(t) + b(t)

∫ t

0

K(s)Φ(ψ(s))ds, t ∈ I.

Then

ψ(t) ≤ W−1

[
W (A(t)) +B(t)

∫ t

0

K(s)ds

]
, t ∈ (0, T1),

whereW (v) =
∫ v

v0

dσ
Φ(σ)

, v ≥ v0 > 0, W−1 is the inverse ofW and T1 > 0 is such that

W (A(t)) +B(t)
∫ t

0
K(s)ds ∈ D(W−1) for all t ∈ (0, T1).
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THE ROLE OF AN INTEGRAL INEQUALITY IN THE STUDY OF CERTAIN DIFFERENTIAL EQUATIONS 3

This result may be found in [1] for instance.
We caution the reader that due to space considerations we are unable to discuss all the prior

literature on the different problems presented in this paper. Our main objective is to emphasize
and highlight the role played by the integral inequality (Lemma 1.1) in improving and extending
previous results for a variety of problems.

2. ABSTRACT SEMILINEAR PROBLEMS

Let us consider the problem

(2.1)

{
ut + Au = f(t, u), u ∈ X

u(0) = u0 ∈ X,

whereA is a sectorial operator withReσ(A) > b > 0. The functionf(t, u) satisfies

(2.2) ‖f(t, u)‖ ≤ tκη(t) ‖Aαu‖m , m > 1, κ ≥ 0,

whereη(t) is a nonnegative continuous function. Solutions of the differential problem (2.1)
coincide with solutions of the integral equation

(2.3) u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(s, u(s))ds, 0 < t ≤ T

with continuousu : (0, T ) → Xα andf : t 7−→ f(t, u(t)).
In [19], Medved’ considered this problem and proved a global existence result. He also

proved thatlimt→∞ ‖u(t)‖α = 0 provided that

(2.4) t 7−→ trqα

∫ t

0

η(s)rqerq[(1−m)b+mε]sds

is bounded on(0,∞) for some positive real numbersε, q andr. This has been established for a
certain range of values forα. In fact, the decay rate there was found to be exponential. The idea
was to take theα-norm‖·‖α of both sides of the equation (2.3) and use the hypothesis (2.2) and
Lemma 1.3 to obtain

Ψ(t) ≤ d ‖u0‖+ dtα
∫ t

0

(t− s)−αeb(1−m)ssκ−mαη(s)Ψ(s)mds

for a certain functionΨ(t). Medved’ then appealed to a nonlinear singular version of the Gron-
wall inequality which he proved earlier in [18]. This latter result gives bounds for solutions of
inequalities of the type

(2.5) ψ(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1sγ−1F (s)ψm(s)ds, β > 0, γ > 0

wherem > 1 (the linear case (m = 1) can be found, for instance, in [9]). Medved’ used the
decomposition

(2.6)
∫ t

0

(t− s)β−1sγ−1F (s)Ψ(s)mds

≤
(∫ t

0

(t− s)2(β−1)e2εsds

) 1
2
(∫ t

0

s2(γ−1)F (s)2e−2εsΨ(s)2mds

) 1
2
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4 NASSER-EDDINE TATAR

and Lemma 1.5. In [13], Kirane and Tatar improved considerably the latter and the former
results by using the above inequality in Lemma 1.1 and the decomposition

(2.7)
∫ t

0

(t− s)β−1sγ−1F (s)Ψ(s)mds

≤
(∫ t

0

(t− s)2(β−1)s2(γ−1)e−2sds

) 1
2
(∫ t

0

F (s)2e2sΨ(s)2mds

) 1
2

instead of the decomposition (2.6). The assumption (2.4) has been relaxed and the range of
values ofα has been enlarged. In fact, the gap which was in [19] was filled. We established an
exponential decay and a power type decay for those values ofα which were not considered in
[19]. The estimates are proved in the spaceD (Aα), then using the Lemma 1.2 we pass to the
spaceCµ(Ω̄), 0 < µ < 2α− n

p
.

Then, in the same paper [13], these results were extended to the case of abstract semilinear
functionaldifferential problems of the form{

du
dt

+ Au = f(t, u(t+ θ)), u ∈ X, θ ∈ [−r, 0]

u(0) = u0 ∈ X
andintegro-differentialproblems of the form{

du
dt

=
∫ t

0
k(t− s)Au(s)ds+ f(t, u), u ∈ X

u(0) = u0 ∈ X.

3. SOME FURTHER EXTENSIONS

The results stated in the previous section were extended to other differential problems with
different nonlinearities. In [26], the present author considered the following abstract problem du

dt
+ Au = F

(
t, u(t),

∫ t

0
l(t, s)f(s, u(s)ds

)
, t ∈ I = [0, T ]

u(0) = u0 ∈ X,

wheref : I ×X → X andF : I ×X ×X → X satisfy

(H1) There exist continuous functionsϕ : I → [0,∞) andq : I → [0,∞) such that

‖f(t, u)‖ ≤ ϕ(t)θ(‖u‖), u ∈ X, t ∈ I
for some continuous nondecreasing functionθ : [0,∞) → [0,∞) satisfying

θ(σ(t))2 ≤ q(t)θ(σ(t)2).

(H2) There exists a continuous functionψ : I → [0,∞) such that

‖F (t, u, v)‖ ≤ ψ(t) (‖u‖+ ‖v‖) , u, v ∈ X, t ∈ I.
After proving quite a general well-posedness result, we established an exponential decay

result for singular kernels of the form

l(t, s) = l(t− s) = (t− s)−βe−γ(t−s), β ∈ (0, 1), γ > 0

and forθ of polynomial typeθ(r) := rm. Observe here that the nonlinearity we are dealing
with is somewhat different from the previous one. If we takeX = Lp (Ω) , p > 1, then it is the
Lp-norm we are considering here instead of theα−norm, that is,

‖f(t, u)‖p ≤ tµχ(t) ‖u‖m
p , µ ≥ 0.
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THE ROLE OF AN INTEGRAL INEQUALITY IN THE STUDY OF CERTAIN DIFFERENTIAL EQUATIONS 5

This improves several results in the prior literature form = 1 and time independent (or bounded
ϕ(t)) nonlinearities.

Then, we can cite the work in [17] dealing with the integro-differential problem
du
dt

+ Au = f(t, u(t)) +
∫ t

0
g
(
t, s, u(s),

∫ s

0
K(s, τ, u(τ)

)
dτ, t ∈ I = [0, T ]

u(0) = u0 ∈ X

and where again an exponential decay result was proved using the integral inequality in Lemma
1.1. The global existence is proved, in a more general setting in [16] for a problem with non-
local conditions of the form

u(0) + h(t1, ..., tp, u) = u0

and with delays in the arguments of the solutionu. Namely, the problem treated there was
du
dt

+ Au

= F
(
t, u (σ1(t)) ,

∫ t

0
g
(
t, s, u (σ2(s)) ,

∫ s

0
K (s, τ, u (σ3(τ))) dτ

)
ds
)

u(0) + h(t1, ..., tp, u(·)) = u0 ∈ X.

4. THE HEAT EQUATION

In this part of the paper we consider the following integral inequality

(4.1) ϕ(t, x) ≤ k(t, x) + l(t, x)

∫
Ω

∫ t

0

F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds, x ∈ Ω, t > 0

whereΩ is a domain inRn (n ≥ 1) (bounded or possibly equal toRn), the functionsk(t, x),
l(t, x) andF (t) are given positive continuous functions int. The constants0 < α < n, 0 <
β < 1 andm > 1 will be precised below.

The interest in this inequality which is singular in both time and space is motivated by the
semilinear parabolic problem (in caseΩ = Rn)

(4.2)

{
ut(t, x) = ∆u(t, x) + um(t, x), x ∈ Rn, t > 0, m > 1

u(0, x) = u0(x), x ∈ Rn.

This problem (and also on a bounded domain) has been extensively studied by many researchers,
see for instance the survey paper by Levine [15]. Several results on global existence, blow up
in finite time and asymptotic behavior have been found. These results depend in general on
the dimension of the spacen, the exponentm and the initial datau0(x). In particular, global
existence has been proved for sufficiently small initial data (together with an assumption onn
andm). Using the fundamental solutionG(t, x) of the heat equation we can write this problem
in the integral form

(4.3) u(t, x) =

∫
Rn

G(t, x− y)u0(y)dy +

∫ t

0

∫
Rn

G(t− s, x− y)um(s, y)dyds.

Recalling the Solonnikov estimates [25]

|G(t− s, x− y)| ≤ C(
|t− s|1/2 + |x− y|

)n ,

it is clear that we can end up with a particular form of the inequality (4.1).
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6 NASSER-EDDINE TATAR

Notice here that the integral inequality (4.1) is not merely an extension of the singular nonlin-
ear Gronwall inequality (2.5) discussed above to the case of two variables. This case has been
treated by Medved’ in [20]. Namely, the author considered an inequality of the form

u(x, y) ≤ a(x, y) +

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1F (s, t)ω(u(s, t))dsdt,

whereω : R+ → R satisfies

e−qt[ω(u)]q ≤ R(t)ω(e−qtuq)

for someq > 0 andR(t) a continuous nonnegative function. His results, in turn, may be
improved by applying a similar decomposition to (2.7) twice.

The inequality (4.1) is different and the technique previously mentioned is not applicable
in this situation. In [27], we have been forced to combine this technique with the Hardy-
Littlewood-Sobolev inequality.

Lemma 4.1 (see [11, p. 117]). Let u ∈ Lp(Rn) (p > 1), 0 < γ < n and γ
n
> 1 − 1

p
,

then(1/ |x|γ) ∗ u ∈ Lq(Rn) with 1
q

= γ
n

+ 1
p
− 1. Also the mapping fromu ∈ Lp(Rn) into

(1/ |x|γ) ∗ u ∈ Lq(Rn) is continuous.

We found sufficient conditions involving someLp-norms ofl andk with F yielding existence
and estimations of solutions on some intervals.

Theorem 4.2. Assume that the constantsα, β andm are such that0 < α < βn, 0 < β < 1
andm > 1.

(i) If Ω = Rn, then for anyr satisfyingmax
(

(m−1)n
α

, m
β

)
< r < mn

α
, we have

‖ϕ(t, x)‖r ≤ Up,r,ρ(t)

with

Up,r,ρ(t) = 2
m(p−1)

r K(t)
1
p

×
[
1− 2m(p−1)(m− 1)Cp−1

1 Cp
2K(t)m−1L(t)eεpt

∫ t

0

e−εpsF p(s)ds

] m
(1−m)r

,

whereK(t) = max0≤s≤t ‖k(s, ·)‖p
r , L(t) = max0≤s≤t ‖l(s, ·)‖p

ρ , p = r/m and ρ =
nr

αr−(m−1)n
for someε > 0. HereC1 andC2 are the best constants in Lemma 1.4 and

Lemma 4.1, respectively. The estimation is valid as long as

(4.4) K(t)m−1L(t)eεpt

∫ t

0

e−εpsF p(s)ds ≤ 1/2m(p−1)(m− 1)Cp−1
1 Cp

2 .

(ii) If Ω is bounded, then
‖ϕ(t, x)‖r̃ ≤ Up,r,ρ(t)

for any r̃ ≤ r wherep, r and ρ are as in (i). If moreover,r < n/(nβ − α) (but not

necessarilyr > (m − 1)n/α), that is, m
β
< r < min

(
mn
α
, n

nβ−α

)
, then this estimation

holds for any1
β
< p ≤ r

m
provided thatρ > nr

n−(nβ−α)r
.

From (4.4) it can be seen that the growth ofK(t) may be “controlled” byL(t) andF (t). That
is, if K(t) is large then we can assumeL(t) and/orF (t) small enough to get existence on an
arbitrarily large interval of time. In fact, for the case of the semilinear parabolic (heat) problem
(4.2), it is known that ∫

Rn

G(t, x− y)u0(y)dy ≤ uM
0 (x)
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THE ROLE OF AN INTEGRAL INEQUALITY IN THE STUDY OF CERTAIN DIFFERENTIAL EQUATIONS 7

whereuM
0 (x) is themaximalfunction defined by

uM
0 (x) = sup

1

|R|

∫
R

|u0(y)| dy.

Thesup is taken over all cubesR centered atx and having their edges parallel to the coordinate
axes. Moreover, theLp-norm ofuM

0 is less than a constant times theLp-norm ofu0. This means
that if u0 ∈ Lp(Rn), we will be left with a condition involvinguM

0 (x) only (see (4.3)).
Moreover, it is proved in [27] that

Corollary 4.3. Suppose that the hypotheses of Theorem 4.2 hold. Assume further thatk(t, x)

and l(t, x) decay exponentially in time, that isk(t, x) ≤ e−k̃tk̄(x) and l(t, x) ≤ e−l̃tl̄(x) for
some positive constants̃k and l̃. Thenϕ(t, x) is also exponentially decaying to zero i.e.,

‖ϕ(t, x)‖v ≤ C3e
−µt, t > 0

for some positive constantsC3 andµ provided that∥∥k̄(x)∥∥m−1

r

∥∥l̄(x)∥∥
ρ

∫ ∞

0

F p(s)ds ≤ 1

2m(p−1)
(m− 1)Cp−1

4 Cp
2 ,

whereC4 is the best constant in Lemma 1.4 and the other constants are as in (i) and (ii) of
Theorem 4.2.

Finally, for the nonlinear singular inequality

ϕ(t, x) ≤ k(t, x) + l(t, x)

∫
Ω

∫ t

0

sδF (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds, x ∈ Ω, t > 0

we can prove an interesting result yielding power type decay without imposing a power type
decay forl(t, x).

Corollary 4.4. Suppose that the hypotheses of Theorem 4.2 hold. Assume further thatk(t, x) ≤
t−k̂k̄(x) and1+ δp′−mp′min{k̂, 1−β} > 0. Then anyϕ(t, x) satisfying the above inequality
is also polynomially decaying to zero

‖ϕ(t, x)‖v ≤ C5t
−ω, C5, ω > 0

provided that ∥∥k̄(x)∥∥m−1

r
L(t)

∫ t

0

eεpsF p(s)ds ≤ 1

2m(p−1)
(m− 1)Cp−1

6 Cp
2

whereC6 is the best constant in Lemma 1.1.

5. REACTION DIFFUSION SYSTEMS

In this section we are interested in systems of reaction-diffusion equations of the form

ut = d1∆u− r1(t)f1(u)w
γ − r2(t)f2(u)z

η, x ∈ Ω, t > 0

wt = d2∆w + r1(t)f1(u)w
γ + r2(t)f2(u)z

η − aw, x ∈ Ω, t > 0

vt = d1∆v − r3(t)f3(v)w
σ − r4(t)f4(v)z

ρ, x ∈ Ω, t > 0

zt = d1∆z + r3(t)f3(v)w
σ + r4(t)f4(v)z

ρ − az, x ∈ Ω, t > 0

∂u
∂ν

= ∂w
∂ν

= ∂v
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0

(u,w, v, z)(x, 0) = (u0, w0, v0, z0)(x), x ∈ Ω
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8 NASSER-EDDINE TATAR

whereΩ is a bounded region inRn with smooth boundary∂Ω, the diffusion coefficientsdi,
i = 1, 2, 3, 4 anda are positive constants and the exponentsγ, η, σ, ρ are greater than one. It is
also assumed that

(i) ‖u0‖1 , ‖w0‖1 , ‖v0‖1 , ‖z0‖1 > 0;
(ii) fi, i = 1, 2, 3, 4 are nonnegativeC1−functions on[0,∞);

(iii) fi(0) = 0, andfi(y) > 0 if and only if y > 0, i = 1, 2, 3, 4;
(iv) 1 < η ≤ ρ and1 < σ ≤ γ.

There are very few papers dealing with systems involving time-dependent nonlinearities and
probably the only paper which treated the question of asymptotic behavior for reaction diffusion
systems is the one by Kahane [12]. The author considered the system{

−ut + Lu = f(x, t, u, v), in Ω× (0,∞)

−vt +Mv = g(x, t, u, v), in Ω× (0,∞)

with boundary conditions of Robin type and whereL andM are uniformly elliptic operators.
He proved that the solution converges to the stationary state provided that

f(x, t, u, v) → f̄(x, u, v)

and
g(x, t, u, v) → ḡ(x, u, v)

uniformly in Ω and (u, v) in any bounded subset of the first quadrant inR2 and the matrix
formed by the partial derivatives̄fu, f̄v, ḡu and ḡv satisfies a column diagonal dominance type
condition. This cannot be applied in our present case as we are going to consider unbounded
coefficients

ri(t) := tkigi(t), ki ≥ 0, i = 1, 2, 3, 4

wheregi(t) are continuous and square integrable on(0,∞).
By standard arguments it can be seen that the operators in the system are sectorial and that

they generate analytic semigroups inLp(Ω). Then, these semigroups are shown to beexponen-
tially stablein the sense of Lemma 1.3. Also, using the existing methods (fixed points theorems,
a priori boundedness, maximum principle, Lyapunov functionals), one can easily show that for
nonnegative continuous (on̄Ω) initial data there exists a unique nonnegative global solution
bounded pointwise by a certain positive constant (equal to‖u0‖∞ and‖v0‖∞ in case ofu and
v, respectively). Making use of this and the fact thatfi are bounded, it is shown in [14] that
solutions of the weak formulation

w(t) = e−tBpw0 +

∫ t

0

e−(t−τ)Bp {r1(τ)f1(u)w
γ + r2(τ)f2(u)z

η} dτ

and

z(t) = e−tGpz0 +

∫ t

0

e−(t−τ)Gp {r3(τ)f3(v)w
σ + r4(τ)f4(v)z

ρ} dτ

whereBp andGp defined by

D(Bp) = D(Gp) :=

{
y ∈ W 2,p(Ω) :

∂y

∂ν
|∂Ω = 0

}
Bpy := −(d2∆− a)y

Gpy := −(d4∆− a)y

are exponentially decaying to0. Then, we prove that the componentsu andv converge expo-
nentially tou∞ andv∞ (the equilibrium state), respectively. Here again, our integral inequality
in Lemma 1.1 plays an important role in the proof.
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THE ROLE OF AN INTEGRAL INEQUALITY IN THE STUDY OF CERTAIN DIFFERENTIAL EQUATIONS 9

6. A CONVECTION PROBLEM

Another problem where we can see the efficiency of the integral inequality of Lemma 1.1 is
the following initial value problem which appears in thermal convection flow{

∂tv + (v · ∇)v = ∆v − τg + h−∇π, x ∈ Ω, t > 0,

∇ · v = 0, x ∈ Ω, t > 0,
(6.1)

∂tτ + (v · ∇)τ = ∆τ, x ∈ Ω, t > 0,

v(x, t) = 0, τ(x, t) = ξ(x, t), x ∈ Γ, t > 0,

v(x, 0) = v0(x), τ(x, 0) = τ0(x), x ∈ Ω,

whereΩ is a bounded region inRN (N ≥ 2) with smooth boundaryΓ.
This problem has been studied by Hishida in [10]. A quite general well-posedness result has

been established there. However, the global existence result and the exponential decay were
proved only for sufficiently small initial data and forφ satisfying the condition

‖∇φ‖∞ = O(e−ωt) with ω > 0

where the functionφ = φ(x, t) is solution of
∂tφ = ∆φ, x ∈ Ω, t > 0,

φ(x, t) = ξ(x, t), x ∈ Γ, t > 0,

φ(x, 0) = φ0(x), x ∈ Ω

andφ0 = φ0(x) is defined by {
∆φ0 = 0, in Ω

φ0(x) = ξ(x, 0), on Γ.

In [5], the present author with Furati and Kirane improved these results in at least two directions.
First, the class of functionsφ is enlarged to functions satisfying

‖∇φ‖∞ = O(e−ωt) with ω ≥ 0

and further to functionsφ such that

‖∇φ‖∞ = O(t−ω) with ω ≥ 0.

Next, combining the Gronwall-Bihari inequality (Lemma 1.5) and the integral inequality (Lemma
1.1), we were able to considerlarge initial data. To this end one has to reduce problem (6.1) to
an abstract Cauchy problem of the form{

dv
dt

+ Apv = F (v, θ), t > 0, v(0) = v0

dθ
dt

+Bqθ = G(v, θ), t > 0, θ(0) = θ0

with {
F (v, θ) = −Pp(v · ∇)v −Ppθg,

G(v, θ) = −(v · ∇)v − (v · ∇)φ.

HerePp is the projection fromLp(Ω)N ontoLp
σ(Ω) = the completion ofC∞0,σ(Ω) = {ϕ ∈

C∞0 (Ω)N , ∇ · ϕ = 0} in Lp(Ω)N , 1 < p < ∞ via the Helmholz decompositionLp(Ω)N =
Lp

σ(Ω)⊕Gp(Ω) with Gp(Ω) = {∇π, π ∈ W 1,p(Ω)}. The operatorsBq andAp are defined by

Bq = −∆ with domainD(Bq) = W 2,q(Ω) ∩W 1,q
0 (Ω)
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and

Ap = −Pp∆ with domainD(Ap) = D(Bq)
N ∩ Lp

σ(Ω).

−Bq and−Ap generate then bounded analytic semigroups{exp(−tBq), t ≥ 0} onLq(Ω) and
{exp(−tAp), t ≥ 0} onLp

σ(Ω) respectively. These semigroups are exponentially stable, that is

Lemma 6.1. For eachλ1 ∈ (0,Λ1), α ≥ 0 andβ ≥ 0, we have∥∥Aαe−tAv
∥∥

p
≤ Cα,λ1t

−αe−λ1t ‖v‖p for v ∈ Lp
σ(Ω)

and ∥∥Bβe−tBθ
∥∥

p
≤ Ĉβ,λ1t

−βe−λ1t ‖θ‖q for θ ∈ Lq(Ω)

with some positive constantsCα,λ1 andĈβ,λ1 .

The problem can then be tackled via the formulation v(t) = e−tApv0 +
∫ t

0
e−(t−s)ApF (v, θ)(s)ds,

θ(t) = e−tBqθ0 +
∫ t

0
e−(t−s)BqG(v, θ)(s)ds.

The technique mentioned in Section 2 applies for these mild solutions and gives better results
than the argument used in [10].

It is worth mentioning here that our argument works even for functionsφ such that

‖∇φ(t)‖∞ = O(tτ ), τ ≥ 0

but with sufficiently smallτ . We refer the reader to [5] for the details.

7. FRACTIONAL DIFFERENTIAL PROBLEMS

In this section we would like to present another type of differential problem where our integral
inequality has proved to be very efficient. Let us consider the weighted Cauchy-type problem

(7.1)

{
Dαu(t) = f(t, u), t > 0

t1−αu(t) |t=0 = b,

whereDα is the fractional derivative (in the sense of Riemann-Liouville) of order0 < α < 1
andb ∈ R.

The functionf(t, u) satisfies the hypothesis:
(F) f(t, u) is a continuous function onR+ × R and is such that

|f(t, u)| ≤ tµϕ(t) |u|m , m > 1, µ ≥ 0,

whereϕ(t) is a differentiable function onR+ with ϕ(0) 6= 0.
For the reader’s convenience, we recall below the definition of the derivative of non-integer

order.

Definition 7.1. The Riemann-Liouville fractional integral of orderα > 0 of a Lebesgue-
measurable functionf : R+ → R is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the integral exists.
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Definition 7.2. The fractional derivative (in the sense of Riemann-Liouville) of order0 < α < 1
of a continuous functionf : R+ → R is defined as the left inverse of the fractional integral off

Dαf(t) =
d

dt
(I1−αf)(t).

That is

Dαf(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds,

provided that the right side exists.

The reader is referred to [24] for more on fractional integrals and fractional derivatives.
Forh > 0, we define the space

C0
r ([0, h]) :=

{
v ∈ C0((0, h]) : lim

t→0+
trv(t) exists and is finite

}
.

HereC0((0, h]) is the usual space of continuous functions on(0, h]. It turns out that the space
C0

r ([0, h]) endowed with the norm

‖v‖r := max
0≤t≤h

tr |v(t)|

is a Banach space.
The well-posedness has been discussed by Delbosco and Rodino in [3] and for a weighted

fractional differential problem with a nonlinearity involving a nonlocal term of the form

(7.2) f(t, u) +

∫ t

0

g(t, s, u(s))ds

in [6]. But, it seems that the appropriate space to work on (introduced in [8]) is

Cα
1−α([0, h]) :=

{
v ∈ C0

1−α([0, h]) : there existc ∈ R
andv∗ ∈ C0

1−α([0, h]) such thatv(t) = ctα−1 + Iαv∗(t)
}
.

Sufficient conditions guaranteeing the existence of a fractional derivativeDαf and the rep-
resentability of a function by a fractional integral of orderα can be found in [24]. In particular,
when ∫ t

0

(t− s)−αf(s)ds ∈ AC([0, h])

(the space of absolutely continuous functions), thenDαf exists almost everywhere. Moreover,
if f(t) ∈ L1(0, h) andf1−α := I1−αf ∈ AC([0, h]), then

f(t) =
f1−α(0)

Γ(α)
tα−1 + IαDαf(t).

See [24, Theorem 2.4, p. 44].

Proposition 7.1. If α > 1/2, then the spaceCα
1−α([0, h]) endowed with the norm

‖v‖1−α,α := ‖v‖1−α + ‖Dαv‖1−α

is a Banach space.

In the spaceCα
1−α([0, h]), it can be proved (see [8]) that the problem (7.1) is equivalent to the

integral equation

(7.3) u(t) = btα−1 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds.

J. Inequal. Pure and Appl. Math., 6(5) Art. 136, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 NASSER-EDDINE TATAR

Having this equation (7.3) we can use the argument in Section 2 to investigate the asymp-
totic behavior of solutions of (7.1). Some power type results have been established in [8]. In
particular, we state

Theorem 7.2. Suppose thatf(t, u) satisfies(F), µ − (m − 1)(1 − α) > 0 andα > 1/2. If
λ > 0 then |u(t)| ≤ Ctα−1, C > 0 on [0, T ] whereT is fixed such that, for some (fixed and
determined) constantsKi, i = 1, 2, 3

(1)
∫ T

0
ϕq(s) exp(εqs)ds ≤ K1 for someε > 0, or

(2) (a) T ≤ 1 and
∫ T

0
ϕq(s)ds ≤ K2, or

(b) T > 1 and ∫ T

0

sγ exp

(
m

∫ s

0

b(τ)dτ

)
ds ≤ K3,

with

γ := q

[
1

p
+ µ−m(1− α)

]
and b(t) :=

1

m

(∣∣ϕ′
(t)
∣∣

ϕ(t)
+

1

p
+ µ− (1− α)m

)
.

In this last case we assume thatϕ(t) ≥ d > 0 for all t > 0.

The constantC is estimated by21+ 1
q (

2−m
m−1) |b| in (1) and (2) (a) and by2d−1/m |b|ϕ1/m(0)×

exp
(∫ T

0
b(τ)dτ

)
in the case (2) (b).

Corollary 7.3. If instead of the assumption(F) we have:
(F)

′
f(t, u) is continuous onR+ × R and is such that

|f(t, u)| ≤ tµe−σtϕ(t) |u|m , µ ≥ 0, σ > 0, m > 1

then the solution of problem (7.1) exists globally and decays as a power function of non integer
order onR+ provided thatϕ ∈ Lq(R+) and‖ϕ‖q < K̃1.

For the same problem with the nonlinearity of the form (7.2), some other results have been
proved in a recently submitted paper [7].
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