Journal of Inequalities in Pure and Applied Mathematics

A NEW UPPER BOUND OF THE LOGARITHMIC MEAN

GAO JIA AND JINDE CAO

Department of Applied Mathematics,
Hunan City University,
Yiyang 413000, China
Department of Mathematics,
Southeast University,
Nanjing 210096, China.
EMail: jdcao@seu.edu.cn
volume 4, issue 4, article 80, 2003.

Received 26 June, 2003; accepted 05 November, 2003
Communicated by: J. Sándor

Abstract
Contents
Home Page
Close
Quit

Abstract

Let a and b be positive numbers with $a \neq b$. The inequalities about the logarithmicmean

$$
L(a, b)<H_{p}(a, b)<M_{q}(a, b)
$$

are obtained, where $p \geq \frac{1}{2}$ and $q \geq \frac{2}{3} p$. We would point out that $p=\frac{1}{2}$ and $q=\frac{1}{3}$ are the best constants such that above inequalities hold.

2000 Mathematics Subject Classification: 26D15, 26D10
Key words: Logarithmic mean; Power mean; Heron mean; Best constant.
This work was supported by the Natural Science Foundation of China(60373067 and 19771048), the Natural Science Foundation of Jiangsu Province(BK2003053), QingLan Engineering Project of Jiangsu Province, the Foundation of Southeast University, Nanjing, China (XJO30714).

Contents

1 Introduction and Main Results 3
2 Proof of Theorem 1.1 5
References Refrences

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

J. Ineq. Pure and Appl. Math. 4(4) Art. 80, 2003 http://jipam.vu.edu.au

1. Introduction and Main Results

The aim of this paper is to establish a new upper bound for the logarithmic mean.

Let a and b be positive numbers with $a \neq b, p>0, q>0$. The logarithmic mean is defined as

$$
L(a, b)=\frac{b-a}{\log b-\log a}
$$

The power mean is defined by

$$
M_{q}(a, b)=\left(\frac{a^{q}+b^{q}}{2}\right)^{\frac{1}{q}}
$$

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Title Page
Contents
There are many important results concerning $L(a, b), M_{p}(a, b)$ and $H_{q}(a, b)$. The well known Lin Tong-Po inequality (see [1]) is stated as

$$
\begin{equation*}
L(a, b)<M_{\frac{1}{3}}(a, b) \tag{1.1}
\end{equation*}
$$

In [2], Yang Z.H. obtained the inequalities

$$
\begin{equation*}
L(a, b)<M_{\frac{1}{2}}(a, b)<H_{1}(a, b) \tag{1.2}
\end{equation*}
$$

In [1], Kuang J. C. summarized and stated the interpolation inequalities

Go Back
Close
Quit
Page 3 of 9

$$
\begin{equation*}
L(a, b)<M_{\frac{1}{3}}(a, b)<M_{\frac{1}{2}}(a, b)<H_{1}(a, b)<M_{\frac{2}{3}}(a, b) . \tag{1.3}
\end{equation*}
$$

In this paper, we further improve the upper bound of the logarithmic mean and obtain the following theorem:

Theorem 1.1. Let $p \geq \frac{1}{2}, q \geq \frac{2}{3} p$, and a, b be positive numbers with $a \neq b$. We then have

$$
\begin{equation*}
L(a, b)<H_{p}(a, b)<M_{q}(a, b) \tag{1.4}
\end{equation*}
$$

Furthermore, $p=\frac{1}{2}, q=\frac{2}{3}$ are the best constants for (1.4).

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Title Page
Contents
Go Back
Close
Quit
Page 4 of 9

2. Proof of Theorem $\mathbf{1 . 1}$

In this section, there are two goals: the first is to state and prove some fundamental lemmas. The second is to prove our main result by virtue of these lemmas.

Lemma 2.1. ([3], [4]). Suppose a and b are fixed positive numbers with $a \neq$ b. For $p>0$, then $H_{p}(a, b)$ and $M_{p}(a, b)$ are strictly monotone increasing functions with respect to p.

Lemma 2.2. Let $x>1$. Then

$$
\begin{equation*}
\frac{x-1}{\log x}<\left(\frac{x^{\frac{1}{2}}+x^{\frac{1}{4}}+1}{3}\right)^{2} \tag{2.1}
\end{equation*}
$$

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Proof. Taking $t=x^{\frac{1}{4}}$, where $x>1$, it is easy to see that inequality (2.1) is equivalent to

$$
\begin{equation*}
\frac{t^{4}-1}{4 \log t}<\frac{1}{9}\left(t^{2}+t+1\right)^{2} \tag{2.2}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
f(t)=\frac{4}{9} \log t-\frac{t^{4}-1}{\left(t^{2}+t+1\right)^{2}} \tag{2.3}
\end{equation*}
$$

Calculating the derivative for $f(t)$, we get

$$
\begin{aligned}
f^{\prime}(t) & =\frac{4}{9 t}-\frac{4 t^{3}\left(t^{2}+t+1\right)-2\left(t^{4}-1\right)(2 t+1)}{\left(t^{2}+t+1\right)^{3}} \\
& =\frac{2(t-1)^{4}\left(2 t^{2}+5 t+2\right)}{9 t\left(t^{2}+t+1\right)^{3}}
\end{aligned}
$$

Title Page
Contents

Go Back
Close
Quit
Page 5 of 9

Since $t=x^{\frac{1}{4}}>1$, we find that $f^{\prime}(t)>0$. Obviously, $f^{\prime}(1)=0$. So $f(t)>0$ for $t>1$. i.e. (2.1) holds.

Lemma 2.3. Let $x>1$, then the following inequality holds

$$
\begin{equation*}
\left(\frac{x^{\frac{1}{2}}+x^{\frac{1}{4}}+1}{3}\right)^{2}<\left(\frac{x^{\frac{1}{3}}+1}{2}\right)^{3} \tag{2.4}
\end{equation*}
$$

Proof. Taking $t=x^{\frac{1}{12}}$, where $x>1$, it is easy to see that inequality (2.4) is equivalent to

$$
\begin{equation*}
9\left(t^{4}+1\right)^{3}>8\left(t^{6}+t^{3}+1\right)^{2} \tag{2.5}
\end{equation*}
$$

Define a function $g(t)$ as

$$
g(t)=9\left(t^{4}+1\right)^{3}-8\left(t^{6}+t^{3}+1\right)^{2}
$$

Factorizing $g(t)$, we obtain

$$
\begin{aligned}
g(t) & =(t-1)^{4}\left(1+4 t+10 t^{2}+4 t^{3}-2 t^{4}+4 t^{5}+10 t^{6}+4 t^{7}+t^{8}\right) \\
& =(t-1)^{4}\left(\left(t^{4}-1\right)^{2}+4 t+10 t^{2}+4 t^{3}+4 t^{5}+10 t^{6}+4 t^{7}\right)
\end{aligned}
$$

The proof is completed.
Proof of Theorem 1.1. We first prove, for $p=\frac{1}{2}, q=\frac{1}{3}$, that (1.4) is true. In fact, since $a>0, b>0$ and $a \neq b$, there is no harm in supposing $b>a$. If we

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Title Page
Contents
Go Back
Close
Quit
Page 6 of 9

$$
\begin{equation*}
L(a, b)<H_{\frac{1}{2}}(a, b)<M_{\frac{1}{3}}(a, b) . \tag{2.6}
\end{equation*}
$$

For $q \geq \frac{2}{3} p$, there is the known result ([1])

$$
\begin{equation*}
H_{p}(a, b)<M_{q}(a, b), \quad(a \neq b) . \tag{2.7}
\end{equation*}
$$

Using Lemma 2.1, combining (2.6) and (2.7), we can conclude that

$$
L(a, b)<H_{\frac{1}{2}}(a, b)<H_{p}(a, b)<M_{q}(a, b), \quad\left(p \geq \frac{1}{2}, q \geq \frac{2}{3} p\right) .
$$

Next, we prove that $p=\frac{1}{2}$ and $q=\frac{1}{3}$ are the best constants for (1.4). Suppose we know that the following inequalities

$$
\begin{equation*}
L(x, 1)<H_{p}(x, 1)<M_{q}(x, 1), \tag{2.8}
\end{equation*}
$$

hold for any $x>1$. There is no harm in supposing $1<x \leq 2$. (In fact, if $n<x \leq n+1$, we can take $t=x-n$, where n is a positive integer.) Taking $t=x-1$, applying Taylor's Theorem to the functions $L(x, 1), H_{p}(x, 1)$ and $M_{q}(x, 1)$, we have

$$
\begin{equation*}
H_{p}(x, 1)=H_{p}(t+1,1)=1+\frac{1}{2} t+\frac{2 p-3}{24} t^{2}+\cdots \tag{2.10}
\end{equation*}
$$

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Title Page
Contents

Go Back
Close
Quit
Page 7 of 9

$$
\begin{equation*}
M_{q}(x, 1)=M_{q}(t+1,1)=1+\frac{1}{2} t+\frac{q-1}{8} t^{2}+\cdots \tag{2.11}
\end{equation*}
$$

With simple manipulations (2.9), (2.10) and (2.11), together with (2.8), yield

$$
\begin{equation*}
-\frac{1}{12} \leq \frac{2 p-3}{24} \leq \frac{q-1}{8} \tag{2.12}
\end{equation*}
$$

From (2.12), it immediately follows that

$$
p \geq \frac{1}{2}, \text { and } q \geq \frac{2}{3} p
$$

We then have, by virtue of Lemma 2.1, that $p=\frac{1}{2}$ and $q=\frac{1}{3}$ are the best constants for (1.4).

Remark 2.1. It is easy to see that the best lower bound of the logarithmic mean is $H_{0}(a, b)=\sqrt{a b}$, namely $H_{0}=G$, the geometric mean. In addition, using Lemma 2.1, combining (1.4), (2.7), (2.8) and the related results in [1], we derive the following graceful inequalities

$$
\sqrt{a b}<L(a, b)<H_{\frac{1}{2}}(a, b)<M_{\frac{1}{3}}(a, b)<M_{\alpha}(a, b)<H_{\beta}(a, b)<M_{\gamma}(a, b)
$$

where $\frac{1}{3}<\alpha<\frac{\log 2}{\log 3} \beta, \gamma \geq \frac{2}{3} \beta, \beta>\frac{\log 3}{3 \log 2}$.
Acknowledgment 1. The authors would like to thank the referees for their valuable suggestions.

A New Upper Bound of the Logarithmic Mean

Gao Jia and Jinde Cao

Title Page
Contents

Go Back
Close
Quit
Page 8 of 9

References

[1] J.C. KUANG, Applied Inequalities, Hunan Eduation Press, 2nd. Ed., 1993.
[2] Z.H. YANG, The exponent means and the logarithmic means, Mathematics in Practice and Theory, 4 (1987), 76-78.
[3] B.F. BECKENBACH AND R. BELLMAN, Inequalities, Spring-Verlag, 1961.
[4] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge, 2nd Ed., 1952.

