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Abstract

Let a and b be positive numbers with a 6= b. The inequalities about the logarithmic-
mean

L(a, b) < Hp(a, b) < Mq(a, b)

are obtained, where p ≥ 1
2 and q ≥ 2

3p. We would point out that p = 1
2 and

q = 1
3 are the best constants such that above inequalities hold.
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1. Introduction and Main Results
The aim of this paper is to establish a new upper bound for the logarithmic
mean.

Let a andb be positive numbers witha 6= b, p > 0, q > 0. The logarithmic
mean is defined as

L(a, b) =
b− a

log b− log a
,

The power mean is defined by

Mq(a, b) =

(
aq + bq

2

) 1
q

,

and the Heron mean is defined as

Hp(a, b) =

(
ap + (ab)p/2 + bp

3

) 1
p

.

There are many important results concerningL(a, b), Mp(a, b) andHq(a, b).
The well known Lin Tong-Po inequality (see [1]) is stated as

(1.1) L(a, b) < M 1
3
(a, b).

In [2], Yang Z.H. obtained the inequalities

(1.2) L(a, b) < M 1
2
(a, b) < H1(a, b).

In [1], Kuang J. C. summarized and stated the interpolation inequalities

(1.3) L(a, b) < M 1
3
(a, b) < M 1

2
(a, b) < H1(a, b) < M 2

3
(a, b).

http://jipam.vu.edu.au/
mailto:jdcao@seu.edu.cn
http://jipam.vu.edu.au/


A New Upper Bound of the
Logarithmic Mean

Gao Jia and Jinde Cao

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 9

J. Ineq. Pure and Appl. Math. 4(4) Art. 80, 2003

http://jipam.vu.edu.au

In this paper, we further improve the upper bound of the logarithmic mean
and obtain the following theorem:

Theorem 1.1. Let p ≥ 1
2
, q ≥ 2

3
p, anda, b be positive numbers witha 6= b. We

then have

(1.4) L(a, b) < Hp(a, b) < Mq(a, b).

Furthermore,p = 1
2
, q = 2

3
are the best constants for (1.4).
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2. Proof of Theorem1.1
In this section, there are two goals: the first is to state and prove some fun-
damental lemmas. The second is to prove our main result by virtue of these
lemmas.

Lemma 2.1. ([3], [ 4]). Supposea and b are fixed positive numbers witha 6=
b. For p > 0, thenHp(a, b) and Mp(a, b) are strictly monotone increasing
functions with respect top.

Lemma 2.2. Letx > 1. Then

(2.1)
x− 1

log x
<

(
x

1
2 + x

1
4 + 1

3

)2

.

Proof. Taking t = x
1
4 , wherex > 1, it is easy to see that inequality (2.1) is

equivalent to

(2.2)
t4 − 1

4 log t
<

1

9
(t2 + t + 1)2.

Define the function

(2.3) f(t) =
4

9
log t− t4 − 1

(t2 + t + 1)2
.

Calculating the derivative forf(t), we get

f ′(t) =
4

9t
− 4t3(t2 + t + 1)− 2(t4 − 1)(2t + 1)

(t2 + t + 1)3

=
2(t− 1)4(2t2 + 5t + 2)

9t(t2 + t + 1)3
.
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Sincet = x
1
4 > 1, we find thatf ′(t) > 0. Obviously,f ′(1) = 0. Sof(t) > 0

for t > 1. i.e. (2.1) holds.

Lemma 2.3. Letx > 1, then the following inequality holds

(2.4)

(
x

1
2 + x

1
4 + 1

3

)2

<

(
x

1
3 + 1

2

)3

.

Proof. Taking t = x
1
12 , wherex > 1, it is easy to see that inequality (2.4) is

equivalent to

(2.5) 9(t4 + 1)3 > 8(t6 + t3 + 1)2.

Define a functiong(t) as

g(t) = 9(t4 + 1)3 − 8(t6 + t3 + 1)2.

Factorizingg(t), we obtain

g(t) = (t− 1)4(1 + 4t + 10t2 + 4t3 − 2t4 + 4t5 + 10t6 + 4t7 + t8)

= (t− 1)4((t4 − 1)2 + 4t + 10t2 + 4t3 + 4t5 + 10t6 + 4t7).

The proof is completed.

Proof of Theorem1.1. We first prove, forp = 1
2
, q = 1

3
, that (1.4) is true. In

fact, sincea > 0, b > 0 anda 6= b, there is no harm in supposingb > a. If we
takex = b

a
, using Lemma2.2and Lemma2.3, we have

(2.6) L(a, b) < H 1
2
(a, b) < M 1

3
(a, b).
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For q ≥ 2
3
p, there is the known result ([1])

(2.7) Hp(a, b) < Mq(a, b), (a 6= b).

Using Lemma2.1, combining (2.6) and (2.7), we can conclude that

L(a, b) < H 1
2
(a, b) < Hp(a, b) < Mq(a, b),

(
p ≥ 1

2
, q ≥ 2

3
p

)
.

Next, we prove thatp = 1
2

andq = 1
3

are the best constants for (1.4). Suppose
we know that the following inequalities

(2.8) L(x, 1) < Hp(x, 1) < Mq(x, 1),

hold for anyx > 1. There is no harm in supposing1 < x ≤ 2. (In fact, if
n < x ≤ n + 1, we can taket = x − n, wheren is a positive integer.) Taking
t = x − 1, applying Taylor’s Theorem to the functionsL(x, 1), Hp(x, 1) and
Mq(x, 1), we have

(2.9) L(x, 1) = L(t + 1, 1) = 1 +
1

2
t− 1

12
t2 + · · · ,

(2.10) Hp(x, 1) = Hp(t + 1, 1) = 1 +
1

2
t +

2p− 3

24
t2 + · · · ,

(2.11) Mq(x, 1) = Mq(t + 1, 1) = 1 +
1

2
t +

q − 1

8
t2 + · · · ,
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With simple manipulations (2.9), (2.10) and (2.11), together with (2.8), yield

(2.12) − 1

12
≤ 2p− 3

24
≤ q − 1

8
.

From (2.12), it immediately follows that

p ≥ 1

2
, and q ≥ 2

3
p.

We then have, by virtue of Lemma2.1, that p = 1
2

and q = 1
3

are the best
constants for (1.4).

Remark 2.1. It is easy to see that the best lower bound of the logarithmic mean
is H0(a, b) =

√
ab, namelyH0 = G, the geometric mean. In addition, using

Lemma2.1, combining (1.4), (2.7), (2.8) and the related results in [1], we derive
the following graceful inequalities
√

ab < L(a, b) < H 1
2
(a, b) < M 1

3
(a, b) < Mα(a, b) < Hβ(a, b) < Mγ(a, b),

where1
3

< α < log 2
log 3

β, γ ≥ 2
3
β, β > log 3

3 log 2
.
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