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Abstract

The aim of this note is to establish a new integral inequality involving two func-
tions and their derivatives. Our result for particular cases yields the well known
Ostrowski inequality and its generalization given by Milovanović and Pečarić.
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1. Introduction
In 1938, Ostrowski [4] (see [3, p. 468]) proved the following integral inequality.

Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) ,
and whose derivativef ′ : (a, b) → R is bounded on(a, b) , i.e., ‖f ′‖∞ =
supt∈(a,b) |f ′ (t)| < ∞. Then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b] .

In 1976, Milovanovíc and Pěcaríc [2] (see [3, p. 469]) proved the following
generalization of Ostrowski’s inequality.

Let f : [a, b] → R be ann−times differentiable function,n ≥ 1 and such
that

∥∥f (n)
∥∥
∞ = supt∈(a,b)

∣∣f (n) (t)
∣∣ < ∞. Then

(1.2)

∣∣∣∣∣ 1n
(

f (x) +
n−1∑
k=1

n− k

k!

× f (k−1) (a) (x− a)k − f (k−1) (b) (x− b)k

b− a
− 1

b− a

∫ b

a

f (t) dt

)∣∣∣∣∣
≤
∥∥f (n)

∥∥
∞

n (n + 1)!
· (x− a)n+1 − (b− x)n+1

b− a
,

for all x ∈ [a, b] .
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The main purpose of this note is to establish a new generalization of Os-
trowski’s integral inequality involving two functions and their derivatives by
using fairly elementary analysis. Our result in special cases yield the inequal-
ities given in (1.1) and (1.2). For some other extensions, generalizations and
similar results, see [3] and the references cited therein.
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2. Main Result
In what follows,R andn denote the set of real numbers and a positive integer
respectively. Thenth derivative of a functionf : [a, b] → R is denoted by
f (n) (t) , t ∈ [a, b] . For n−times differentiable functionsf, g : [a, b] → R, we
use the following notation to simplify the details of presentation:

Fk (x) =
n− k

k!
· f (k−1) (a) (x− a)k − f (k−1) (b) (x− b)k

b− a
,

Gk (x) =
n− k

k!
· g(k−1) (a) (x− a)k − g(k−1) (b) (x− b)k

b− a
,

Ik =
1

k!

∫ b

a

f (k) (y) (x− y)k dy, I0 =

∫ b

a

f (y) dy,

Jk =
1

k!

∫ b

a

g(k) (y) (x− y)k dy, J0 =

∫ b

a

g (y) dy,

for 1 ≤ k ≤ n − 1. We use the usual convention that an empty sum is taken to
be zero.

Our main result is given in the following theorem.

Theorem 2.1. Let f, g : [a, b] → R be continuous functions on[a, b] and
n−times differentiable on(a, b) , and whose derivativesf (n), g(n) : (a, b) → R
are bounded on(a, b) , i.e.,∥∥f (n)

∥∥
∞ = sup

t∈(a,b)

∣∣f (n) (t)
∣∣ < ∞,

∥∥g(n)
∥∥
∞ = sup

t∈(a,b)

∣∣g(n) (t)
∣∣ < ∞.
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Then

(2.1)

∣∣∣∣f (x) g (x)− 1

2 (b− a)
[g (x) I0 + f (x) J0]

− 1

2 (b− a)

[
g (x)

n−1∑
k=1

Ik + f (x)
n−1∑
k=1

Jk

]∣∣∣∣∣
≤ 1

2 (n + 1)!

[
|g (x)|

∥∥f (n)
∥∥
∞ + |f (x)|

∥∥g(n)
∥∥
∞

] [(x− a)n+1 + (b− x)n+1

b− a

]
,

for all x ∈ [a, b] .

Proof. Let x ∈ [a, b] , y ∈ (a, b) . With the stipulation onf, g and using Taylor’s
formula with the Lagrange form of the remainder (see [2, p. 156]) we have

(2.2) f (x) = f (y) +
n−1∑
k=1

f (k) (y) (x− y)k +
1

n!
f (n) (ξ) (x− y)n ,

(2.3) g (x) = g (y) +
n−1∑
k=1

g(k) (y) (x− y)k +
1

n!
g(n) (σ) (x− y)n ,

whereξ = y + α (x− y) (0 < α < 1) andσ = y + β (x− y) (0 < β < 1).
From the definitions ofIk, Jk and integration by parts (see [2]) we have the
relations

(2.4) I0 +
n−1∑
k=1

Ik = nI0 − (b− a)
n−1∑
k=1

Fk (x) ,
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(2.5) J0 +
n−1∑
k=1

Jk = nJ0 − (b− a)
n−1∑
k=1

Gk (x) .

Multiplying (2.2) and (2.3) by g (x) andf (x) respectively, adding the resulting
identities and rewriting, we have

(2.6) f (x) g (x) =
1

2
g (x) f (y) +

1

2
f (x) g (y)

+
1

2
g (x)

n−1∑
k=1

1

k!
f (k) (y) (x− y)k +

1

2
f (x)

n−1∑
k=1

1

k!
g(k) (y) (x− y)k

+
1

2
· 1

n!
g (x) f (n) (ξ) (x− y)n +

1

2
· 1

n!
f (x) g(n) (σ) (x− y)n .

Integrating (2.6) with respect toy on (a, b) and rewriting, we obtain

(2.7) f (x) g (x) =
1

2 (b− a)
[g (x) I0 + f (x) J0]

+
1

2 (b− a)

[
g (x)

n−1∑
k=1

Ik + f (x)
n−1∑
k=1

Jk

]

+
1

2 (b− a)
· 1

n!

[
g (x)

∫ b

a

f (n) (ξ) (x− y)n dy

+ f (x)

∫ b

a

g(n) (σ) (x− y)n dy

]
.
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From (2.7) and using the properties of modulus, we have∣∣∣∣f (x) g (x)− 1

2 (b− a)
[g (x) I0 + f (x) J0]

− 1

2 (b− a)

[
g (x)

n−1∑
k=1

Ik + f (x)
n−1∑
k=1

Jk

]∣∣∣∣∣
≤ 1

2 (b− a)
· 1

n!

[
|g (x)|

∫ b

a

∣∣f (n) (ξ)
∣∣ |x− y|n dy

+ |f (x)|
∫ b

a

∣∣g(n) (σ)
∣∣ |x− y|n dy

]
≤ 1

2 (b− a)
· 1

n!

[
|g (x)|

∥∥f (n)
∥∥
∞ + |f (x)|

∥∥g(n)
∥∥
∞

] ∫ b

a

|x− y|n dy

=
1

2 (b− a)
· 1

(n + 1)!

[
|g (x)|

∥∥f (n)
∥∥
∞ + |f (x)|

∥∥g(n)
∥∥
∞

]
×

[
(x− a)n+1 + (b− x)n+1

b− a

]
,

which is the required inequality in (2.1). The proof is complete.

Corollary 2.2. Let f.g : [a, b] → R be continuous functions on[a, b] and dif-
ferentiable on(a, b) and whose derivativesf ′, g′ : (a, b) → R are bounded on
(a, b) , i.e., ‖f ′‖∞ = supt∈(a,b) |f ′ (t)| < ∞, ‖g′‖∞ = supt∈(a,b) |g′ (t)| < ∞.
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Then

(2.8)

∣∣∣∣f (x) g (x)− 1

2 (b− a)
[g (x) I0 + f (x) J0]

∣∣∣∣
≤ 1

2
[|g (x)| ‖f ′‖∞ + |f (x)| ‖g′‖∞]

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ,

for all x ∈ [a, b] .

We note that in the special cases, if we take

(i) g (x) = 1 and henceg(n) (x) = 0 in (2.1) and

(ii) g (x) = 1 and henceg′ (x) = 0 in (2.8),

we get the inequalities (1.2) and (1.1) respectively. Further, we note that, here
we have used Taylor’s formula with the Lagrange form of remainder to prove
our result. Instead of this, one can use as in [1] the Taylor formula with integral
remainder to establish a variant of Theorem A in [1] in the framework of our
main result given above. Here we omit the details.
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