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1. I NTRODUCTION

In [4], Jain, Persson and Upreti studied the generalized Orlicz spaceXΦ which is a unification
of two generalizations of the LebesgueLp-spaces, namely, theXp-spaces and the usual Orlicz
spacesLΦ. There the authors formulated the spaceXΦ giving it two norms, the Orlicz type norm
and the Luxemburg type norm and proved the two norms to be equivalent as is the case in usual
Orlicz spaces. It was shown thatXΦ is a Banach function space ifX is so and a number of basic
inequalities such as Hölder’s, Minkowski’s and Young’s were also proved in the framework of
XΦ spaces.

In the present paper, we carry on this study and target some other concepts in the context of
XΦ spaces, namely, inclusion, convergence and separability.

The paper is organized as follows: In Section 2, we collect certain preliminaries which would
ease the reading of the paper. The inclusion property inXΦ spaces has been studied in Section
3. Also, an imbedding has been proved there. In Sections 4 and 5 respectively, the convergence
and separability properties have been discussed.
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2. PRELIMINARIES

Let (Ω,Σ, µ) be a completeσ-finite measure space withµ(Ω) > 0. We denote byL0(Ω), the
space of all equivalence classes of measurable real valued functions defined and finite a.e. onΩ.
A real normed linear spaceX = {u ∈ L0(Ω) : ‖u‖X < ∞} is called a Banach function space
(BFS for short) if in addition to the usual norm axioms,‖u‖X satisfies the following conditions:

P1. ‖u‖X is defined for every measurable functionu onΩ andu ∈ X if and only if ‖u‖X <
∞; ‖u‖X = 0 if and only if,u = 0 a.e.;

P2. 0 ≤ u ≤ v a.e.⇒ ‖u‖X ≤ ‖v‖X ;
P3. 0 < un ↑ u a.e.⇒ ‖u‖X ↑ ‖u‖X ;
P4. µ(E) <∞⇒ ‖χE‖X <∞;
P5. µ(E) <∞⇒

∫
E
u(x)dx ≤ CE‖u‖X ,

whereE ⊂ Ω, χE denotes the characteristic function ofE andCE is a constant depending only
onE. The concept of BFS was introduced by Luxemburg [9]. A good treatment of such spaces
can be found, e.g., in [1]

Examples of Banach function spaces are the classical Lebesgue spacesLp, 1 ≤ p ≤ ∞, the
Orlicz spacesLΦ, the classical Lorentz spacesLp,q, 1 ≤ p, p ≤ ∞, the generalized Lorentz
spacesΛφ and the Marcinkiewicz spacesMφ.

Let X be a BFS and−∞ < p < ∞, p 6= 0. We define the spaceXp to be the space of all
measurable functionsf for which

‖f‖Xp := ‖|f |p‖
1
p

X <∞ .

For 1 < p < ∞, Xp is a BFS. Note that forX = L1, the spaceXp coincides withLp spaces.
These spaces have been studied and used in [10], [11], [12]. Very recently in [2], [3], Hardy
inequalities (and also geometric mean inequalities in some cases) have been studied in the
context ofXp spaces. For an updated knowledge of various standard Hardy type inequalities,
one may refer to the monographs [6], [8] and the references therein.

A functionΦ : [0,∞) → [0,∞] is called a Young function if

Φ(s) =

∫ s

0

φ(t)dt ,

whereφ : [0,∞) → [0,∞], φ(0) = 0 is an increasing, left continuous function which is neither
identically zero nor identically infinite on(0,∞). A Young functionΦ is continuous, convex,
increasing and satisfies

Φ(0) = 0 , lim
s→∞

Φ(s) = ∞ .

Moreover, a Young functionΦ satisfies the following useful inequalities: fors ≥ 0, we have

(2.1)

{
Φ(αs) < αΦ(s), if 0 ≤ α < 1

Φ(αs) ≥ αΦ(s), if α ≥ 1 .

We call a Young function anN -function if it satisfies the limit conditions

lim
s→∞

Φ(s)

s
= ∞ and lim

s→0

Φ(s)

s
= 0 .

Let Φ be a Young function generated by the functionφ, i.e.,

Φ(s) =

∫ s

0

φ(t)dt .

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 37, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


GENERALIZED ORLICZ SPACES 3

Then the functionΨ generated by the functionψ, i.e.,

Ψ(s) =

∫ s

0

ψ(t)dt ,

where
ψ(s) = sup

φ(t)≤s

t

is called the complementary function toΦ. It is known thatΨ is a Young function and thatΦ
is complementary toΨ. The pair of complementary Young functionsΦ, Ψ satisfies Young’s
inequality

(2.2) u · v ≤ Φ(u) + Ψ(v), u, v ∈ [0,∞).

Equality in (2.2) holds if and only if

(2.3) v = Φ(u) or u = Ψ(v).

A Young functionΦ is said to satisfy the∆2-condition, writtenΦ ∈ ∆2, if there existk > 0
andT ≥ 0 such that

Φ(2t) ≤ kΦ(t) for all t ≥ T .

The above mentioned concepts of the Young function, complementary Young function and
∆2-condition are quite standard and can be found in any standard book on Orlicz spaces. Here
we mention the celebrated monographs [5], [7].

The remainder of the concepts are some of the contents of [4] which were developed and
studied there and we mention them here briefly.

Let X be a BFS andΦ denote a non-negative function on[0,∞). The generalized Orlicz
classX̃Φ consists of all functionsu ∈ L0(Ω) such that

ρX(u,Φ) = ‖Φ(|u|)‖X <∞ .

For the caseΦ(t) = tp, 0 < p < ∞, X̃Φ coincides algebraically with the spaceXp endowed
with the quasi-norm

‖u‖Xp = ‖|u|p‖
1
p

X .

Let X be a BFS andΦ, Ψ be a pair of complementary Young functions. The generalized
Orlicz space, denoted byXΦ, is the set of allu ∈ L0(Ω) such that

(2.4) ‖u‖Φ := sup
v
‖|u · v|‖X ,

where the supremum is taken over allv ∈ X̃Ψ for whichρX(v; Ψ) ≤ 1.
It was proved that for a Young functionΦ, X̃Φ ⊂ XΦ and thatXΦ is a BFS, with the norm

(2.4). Further, on the generalized Orlicz spaceXΦ, a Luxemburg type norm was defined in the
following way

(2.5) ‖u‖′Φ = inf

{
k > 0 : ρX

(
|u|
k
,Φ

)
≤ 1

}
.

It was shown that with the norm (2.5) too, the spaceXΦ is a BFS and that the two norms (2.4)
and (2.5) are equivalent, i.e., there exists constantsc1, c2 > 0 such that

(2.6) c1‖u‖′Φ ≤ ‖u‖Φ ≤ c2‖u‖′Φ .

In fact, it was proved thatc2 = 2.
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4 PANKAJ JAIN AND PRITI UPRETI

3. COMPARISON OF GENERALIZED ORLICZ SPACES

We begin with the following definition:

Definition 3.1. A BFS is said to satisfy theL-property if for all non-negative functionsf, g ∈
X, there exists a constant0 < a < 1 such that

‖f + g‖X ≥ a(‖f‖X + ‖g‖X) .

Remark 1. It was proved in [2] that the generalized Orlicz spaceXΦ contains the generalized
Orlicz classX̃Φ. Towards the converse, we prove the following:

Theorem 3.1. Let Φ be a Young function,X be a BFS satisfying theL-property andu ∈ XΦ

be such that‖u‖Φ 6= 0. Then u
‖u‖Φ

∈ X̃Φ.

Proof. Let u ∈ XΦ. Using the modified arguments used in [7, Lemma 3.7.2], it can be shown
that

(3.1) ‖u · v‖X ≤

{
‖u‖Φ ; for ρX(v; Ψ) ≤ 1,

‖u‖ΦρX(v; Ψ) ; for ρX(v; Ψ) > 1 .

LetE ⊂ Ω be such thatµ(E) <∞. First assume thatu ∈ XΦ(Ω) is bounded and thatu(x) = 0
for x ∈ Ω \ E. Put

v(x) = φ

(
1

‖u‖Φ

|u(x)|
)
.

The monotonicity ofΦ andΨ gives that the functionsΦ
(

1
‖u‖Φ

|u(x)|
)

andΨ(|v(x)|) are also

bounded. Consequently, property (P2) ofX yields that
∥∥∥Φ

(
1

‖u‖Φ
|u(x)|

)∥∥∥
X
<∞ and‖Ψ(|v(x)|)‖X <

∞ which by using (2.2) gives:∥∥∥∥ u · v‖u‖Φ

∥∥∥∥
X

≤
∥∥∥∥Φ

(
|u|
‖u‖Φ

)
+ Ψ(|v|)

∥∥∥∥
X

≤
∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

+ ‖Ψ(|v|)‖X

<∞ .

On the other hand, using theL-property ofX and (2.3), we get that for somea > 0∥∥∥∥ u · v‖u‖Φ

∥∥∥∥
X

=

∥∥∥∥Φ

(
|u|
‖u‖Φ

)
+ Ψ(|v|)

∥∥∥∥
X

≥ a

[∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

+ ‖Ψ(|v|)‖X

]
.(3.2)

Applying (3.1) for
u

‖u‖Φ

, v, we find that

max(ρX(v,Ψ), 1) ≥
∥∥∥∥ u · v‖u‖Φ

∥∥∥∥
X

and therefore, by (3.2), we get that

max(ρX(v,Ψ), 1) ≥ a

[∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

+ ‖Ψ(|v|)‖X

]
.
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GENERALIZED ORLICZ SPACES 5

Now, if ρX(v,Ψ) > 1, then the above estimate gives∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

≤ ρX(v,Ψ)

(
1

a
− 1

)
and ifρX(v,Ψ) ≤ 1, then ∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

+ ρX(v,Ψ) ≤ 1

a
.

In any case ∥∥∥∥Φ

(
|u|
‖u‖Φ

)∥∥∥∥
X

<∞

and the assertion is proved for boundedu. For generalu, we can follow the modified idea of
[10, Lemma 3.7.2]. �

Remark 2. In view of the above theorem, foru ∈ XΦ, there existsc > 0 such thatcu ∈ X̃Φ.
In other words, the spaceXΦ is the linear hull of the generalized Orlicz class̃XΦ with the
assumption onX that it satisfies theL-property.

We prove the following useful result:

Proposition 3.2. LetΦ be a Young function satisfying the∆2-condition(with T = 0 if µ(Ω) =

∞) andX be a BFS satisfying theL-property. ThenXΦ = X̃Φ.

Proof. Let u ∈ XΦ, ‖u‖Φ 6= 0. By Theorem 3.1, we have

w =
1

‖u‖Φ

· u ∈ X̃Φ.

SinceX̃Φ(Ω) is a linear set, we have

‖u‖Φ · w = u ∈ X̃Φ,

i.e.,
XΦ ⊂ X̃Φ.

The reverse inclusion is obtained in view of Remark 1 and the assertion follows. �

Let Φ1 andΦ2 be two Young functions. We writeΦ2 ≺ Φ1 if there exists constantsc > 0,
T ≥ 0 such that

Φ2(t) ≤ Φ1(ct), t ≥ T .

Now, we prove the following inclusion relation:

Theorem 3.3. LetX be a BFS satisfying theL-property andΦ1, Φ2 be two Young functions
such thatΦ2 ≺ Φ1 andµ(Ω) <∞. Then the inclusion

XΦ1 ⊂ XΦ2

holds.

Proof. SinceΦ2 ≺ Φ1, there exists constants,c > 0, T ≥ 0 such that

(3.3) Φ2(t) ≤ Φ1(ct), t ≥ T .

Let u ∈ XΦ1. Then in view of Theorem 3.1, there existsk > 0 such thatku ∈ X̃Φ1, i.e.,
ρX(ku; Φ1) <∞. Denote

Ω1 =

{
x ∈ Ω; |u(x)| < cT

k

}
.

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 37, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Then forx ∈ Ω \ Ω1, |u(x)| ≥ cT
k

, i.e.,

k

c
|u(x)| ≥ T

so that the inequalities (3.3) witht replaced byk
c
|u(x)| gives

Φ2

(
k

c
|u(x)|

)
≤ Φ1(k|u(x)|)

which implies that∥∥∥∥Φ2

(
k

c
|u(x)|

)∥∥∥∥
X

=

∥∥∥∥Φ2

(
k

c
|u(x)|

)
χΩ1 + Φ2

(
k

c
|u(x)|

)
χΩ\Ω1

∥∥∥∥
X

≤
∥∥∥∥Φ2

(
k

c
|u(x)|

)
χΩ1

∥∥∥∥
X

+

∥∥∥∥Φ2

(
k

c
|u(x)|

)
χΩ\Ω1

∥∥∥∥
X

≤ Φ2(T )‖χΩ1‖X + ‖Φ1(k|u(x)|)χΩ\Ω1‖X

= Φ2(T )‖χΩ1‖X + ρX(ku; Φ1)

<∞ .

Consequently,k
c
u ∈ X̃Φ2 ⊂ XΦ2, i.e., k

c
u ∈ XΦ2 . But sinceXΦ2 is in particular a vector space

we find thatu ∈ XΦ2 and we are done. �

The above theorem states thatΦ2 ≺ Φ1 is a sufficient condition for the algebraic inclusion
XΦ1 ⊂ XΦ2. The next theorem proves that the condition, in fact, is sufficient for the continuous
imbeddingXΦ1 ↪→ XΦ2.

Theorem 3.4. LetX be a BFS satisfying theL-property andΦ1, Φ2 be two Young functions
such thatΦ2 ≺ Φ1 andµ(Ω) <∞. Then the inequality

‖u‖Φ2 ≤ k‖u‖Φ1

holds for some constantk > 0 and for allu ∈ XΦ1 .

Proof. LetΨ1 andΨ2 be the complementary functions respectively toΦ1 andΦ2. ThenΦ2 ≺ Φ1

implies thatΨ1 ≺ Ψ2, i.e., there exists constantsc1, T1 > 0 such that

Ψ1(t) ≤ Ψ2(c1t) for t ≥ T1

or equivalently

Ψ1

(
t

c1

)
≤ Ψ2(t) for t ≥ c1T1 .

Further, ift ≤ c1T1, then the monotonicity ofΨ gives

Ψ1

(
t

c1

)
≤ Ψ1(T1).

The last two estimates give that for allt > 0

(3.4) Ψ1

(
t

c1

)
≤ Ψ1(T1) + Ψ2(t) .

By the property (P4) of BFS,‖χΩ‖X < ∞. Denoteα = (Ψ1(T1)‖χΩ‖X + 1)−1 andk = c1
α

.
Clearly0 < α < 1. We know that for a Young functionΦ and0 < β < 1,

(3.5) Φ(βt) ≤ βΦ(t), t > 0 .
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GENERALIZED ORLICZ SPACES 7

Now, letv ∈ X̃Ψ2 be such thatρX(v; Ψ2) ≤ 1. Then, using (3.5) forβ = α andt = |v(x)|
c1

and
(3.4), we obtain that

ρX

(v
k
; Ψ1

)
=

∥∥∥∥Ψ1

(
α|v(x)|
c1

)∥∥∥∥
X

≤ α

∥∥∥∥Ψ1

(
|v(x)|
c1

)∥∥∥∥
X

≤ α‖Ψ1(T1) + Ψ2(|v(x)|)‖X

≤ α(Ψ1(T1)‖χΩ‖X + ‖ψ2(|v(x)|)‖X)

= α(Ψ1(T1)‖χΩ‖X + ρX(v; Ψ2))

≤ αα−1 = 1 .

Thus we have shown thatρX(v; Ψ2) ≤ 1 impliesρX

(
v
k
; Ψ1

)
≤ 1 and consequently using the

definition of the generalized Orlicz norm, we obtain

‖u‖Φ2 = sup
ρ(v;Ψ2)≤1

‖(|u(x)v(x)|)‖X

= k sup
ρ(v;Ψ2)≤1

∥∥∥∥(∣∣∣∣u(x)v(x)k
∣∣∣∣)∥∥∥∥

X

≤ k sup
ρ( v

k
;Ψ1)≤1

∥∥∥∥(∣∣∣∣u(x)v(x)k
∣∣∣∣)∥∥∥∥

X

= k sup
ρ(w;Ψ1)≤1

‖|u(x)w(x)|‖X

= k · ‖u‖Φ1

and the assertion is proved. �

Remark 3. If Φ1 andΦ2 are equivalent Young functions (i.e.,Φ1 ≺ Φ2 andΦ2 ≺ Φ1) then the
norms‖·‖Φ1

and‖·‖Φ2
are equivalent.

4. CONVERGENCE

Following the concepts in the Orlicz spaceLΦ(Ω), we introduce the following definitions.

Definition 4.1. A sequence{un} of functions inXΦ is said to converge tou ∈ XΦ, written
un → u, if

lim
n→∞

‖un − u‖Φ = 0 .

Definition 4.2. A sequence{un} of functions inXΦ is said to converge inΦ-mean tou ∈ XΦ

if

lim
n→∞

ρX(un − u; Φ) = lim
n→∞

‖Φ(|un − u|)‖X = 0 .

We proceed to prove that the two convergences above are equivalent. In the sequel, the
following remark will be used.

Remark 4. Let Φ andΨ be a pair of complementary Young functions. Then in view of Young’s
inequality (2.2), we obtain foru ∈ X̃Φ, v ∈ X̃Ψ

‖|uv|‖X ≤ ‖Φ(|u|)‖X + ‖Ψ(|v|)‖X

= ρX(u; Φ) + ρX(v; Ψ)
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so that
‖u‖Φ ≤ ρX(u; Φ) + 1 .

Now, we prove the following:

Lemma 4.1. LetΦ be a Young function satisfying the∆2-condition(with T = 0 if µ(Ω) = ∞)
andr be the number given by

(4.1) r =

{
2 if µ(Ω) = ∞,

Φ(T )‖χΩ‖X + 2 if µ(Ω) <∞ .

If there exists anm ∈ N such that

(4.2) ρX(u; Φ) ≤ k−m ,

wherek is the constant in the∆2-condition, then

‖u‖Φ ≤ 2−mr .

Proof. Letm ∈ N be fixed. Consider first the case whenµ(Ω) <∞ and denote

Ω1 = {x ∈ Ω : 2m|u(x)| ≤ T} .

Then forx ∈ Ω1, we get

(4.3) Φ(2m|u(x)|) ≤ Φ(T )

and forx ∈ Ω \ Ω1, by repeated applications of the∆2-condition, we obtain

(4.4) Φ(2m|u(x)|) ≤ kmΦ(|u(x)|) .

Consequently, we have using (4.3) and (4.4)

‖Φ(2m|u(x)|)‖X = ‖Φ(2m(|u(x)|))χΩ1 + Φ(2m|u(x)|)χΩ\Ω1‖X

≤ ‖Φ(2m(|u(x)|))χΩ1‖X + ‖Φ(2m|u(x)|)χΩ\Ω1‖X

≤ Φ(T )‖χΩ1‖X + km‖Φ(|u(x)|)‖X

≤ Φ(T )‖χΩ‖X + kmρX(u; Φ)

≤ Φ(T )‖χΩ‖X + 1

= r − 1 .

In the caseµ(Ω) = ∞ we takeΩ1 = φ and then (4.4) directly gives

‖Φ(2m|u(x)|)‖X ≤ 1 ≤ r − 1

sincer = 2 for µ(Ω) = ∞. Thus in both cases we have

‖Φ(2m|u(x)|)‖X ≤ r − 1

which further, in view of Remark 4 gives

‖2mu(x)‖Φ ≤ r

or
‖u‖Φ ≤ 2−mr

and we are done. �

Let us recall the following result from [4]:
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GENERALIZED ORLICZ SPACES 9

Lemma 4.2. Letu ∈ XΦ. Then

ρX(u; Φ) ≤ ‖u‖′Φ if ‖u‖′Φ ≤ 1

and
ρX(u; Φ) ≥ ‖u‖′Φ if ‖u‖′Φ > 1,

where‖u‖′Φ denotes the Luxemburg type norm on the spaceXΦ given by (2.5).

Now, we are ready to prove the equivalence of the two convergence concepts defined earlier
in this section.

Theorem 4.3. Let Φ be a Young function satisfying the∆2-condition. Let{un} be a sequence
of functions inXΦ. Thenun converges tou in XΦ if and only ifun converges inΦ-mean tou in
XΦ.

Proof. First assume thatun converges inΦ-mean tou. We shall now prove thatun → u. Given
ε > 0, we can choosem ∈ N such thatε > 2−mr, wherer is as given by (4.1). Now, sinceun

converges inΦ-mean tou, for thism, we can find anM such that

ρX(un − u; Φ) ≤ k−m for n ≥M

which by Lemma 4.1 implies that

‖un − u‖Φ ≤ 2−mr < ε for n ≥M

and we get thatun → u.
Conversely, first note that the two norms‖·‖Φ and‖·‖′Φ on the spaceXΦ are equivalent and

assume, in particular, that the constants of equivalence arec1, c2, i.e., (2.6) holds.
Now, letun, u ∈ XΦ so that

‖un − u‖Φ ≤ c1 .

Then (2.6) gives
‖un − u‖′Φ ≤ 1

which, in view of Lemma 4.2 and again (2.6), gives that

ρX(un − u; Φ) ≤ ‖un − u‖′Φ

≤ 1

c1
‖un − u‖Φ .

TheΦ-mean convergence now, immediately follows from the convergence inXΦ. �

Remark 5. The fact that theΦ-mean convergence implies norm convergence does not require
the use of∆2-conditions. It is required only in the reverse implication.

5. SEPARABILITY

Remark 6. It is known, e.g., see [7, Theorem 3.13.1], that the Orlicz spaceLΦ(Ω) is separable
if Φ satisfies the∆2-condition (withT = 0 if µ(Ω) = 0). In order to obtain the separability
conditions for the generalized Orlicz spaceXΦ, we can depict the same proof with obvious
modifications except at a point where the Lebesgue dominated convergence theorem has been
used.

In the framework of general BFS, the following version of the Lebesgue dominated conver-
gence theorem is known, see e.g. [1, Proposition 3.6].

Definition 5.1. A functionf in a Banach function spaceX is said to have an absolutely contin-
uous norm inX if ‖fχEn‖X → 0 for every sequence{En}∞n=1 satisfyingEn → φ µ-a.e.
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Proposition A. A functionf in a Banach function spaceX has an absolutely continuous norm
iff the following condition holds; wheneverfn {n = 1, 2, . . .} andg areµ-measurable functions
satisfying|fn| ≤ |f | for all n andfn → g µ-a.e., then‖fn − g‖X → 0.

Now, in view of Remark 6 and Proposition A we have the following result.

Theorem 5.1.LetX be a BFS having an absolutely continuous norm andΦ be a Young function
satisfying the∆2-condition (withT = 0 if µ(Ω) = 0). Then the generalized Orlicz spaceXΦ is
separable.
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