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ABSTRACT. In the context of generalized Orlicz spacksg, the concepts of inclusion, conver-
gence and separability are studied.
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1. INTRODUCTION

In [4], Jain, Persson and Upreti studied the generalized Orlicz spaeéhich is a unification
of two generalizations of the Lebesgilie-spaces, namely, th&?-spaces and the usual Orlicz
spaced.¢. There the authors formulated the spaGegiving it two norms, the Orlicz type norm
and the Luxemburg type norm and proved the two norms to be equivalent as is the case in usual
Orlicz spaces. It was shown th&t; is a Banach function spaceXf is so and a number of basic
inequalities such as Hoélder’s, Minkowski's and Young'’s were also proved in the framework of
Xg Spaces.

In the present paper, we carry on this study and target some other concepts in the context of
X4 spaces, namely, inclusion, convergence and separability.

The paper is organized as follows: In Secfipn 2, we collect certain preliminaries which would
ease the reading of the paper. The inclusion properfyqdrspaces has been studied in Section
[3. Also, an imbedding has been proved there. In Sedfions Aand 5 respectively, the convergence
and separability properties have been discussed.
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2. PRELIMINARIES

Let (2, %3, 1) be a complete-finite measure space wih(Q2) > 0. We denote by.%(Q2), the
space of all equivalence classes of measurable real valued functions defined and finit€a.e. on
A real normed linear spack = {u € L°(Q2) : |lul|x < oo} is called a Banach function space
(BFS for short) if in addition to the usual norm axionfjg,| x satisfies the following conditions:

P1. ||u||x is defined for every measurable functieon 2 andu € X if and only if ||u|| x <
o0; ||u||lx = 0ifand only if,u = 0 a.e.;

P2.0 <u<wvae.=|ullx <|v|x;

P3.0 < u, Tua.e.= |lullx T ||ulx;

P4. u(F) < oo = ||xe|lx < oo

P5. u(E) < oo = [pu(z)de < Cpllul|x,

whereFE C (2, yg denotes the characteristic functionfofandC’; is a constant depending only
on E. The concept of BFS was introduced by Luxemburg [9]. A good treatment of such spaces
can be found, e.g., in[1]

Examples of Banach function spaces are the classical Lebesgue gpates p < o, the
Orlicz spaced.s, the classical Lorentz spacés,, 1 < p, p < oo, the generalized Lorentz
spaces\, and the Marcinkiewicz spaced,.

Let X be a BFS and-oco < p < o0, p # 0. We define the spac&? to be the space of all
measurable functions for which

1
[ f1lxe = [IIfPll% < oo

Forl < p < oo, X” is a BFS. Note that foX = L', the spaceX” coincides withL? spaces.
These spaces have been studied and used in [10], [11], [12]. Very recently in [2], [3], Hardy
inequalities (and also geometric mean inequalities in some cases) have been studied in the
context of X? spaces. For an updated knowledge of various standard Hardy type inequalities,
one may refer to the monographs [6], [8] and the references therein.

A function ® : [0,00) — [0, o0 is called a Young function if

B (s) = / oty

where¢ : [0, 00) — [0, 0], $(0) = 0 is an increasing, left continuous function which is neither
identically zero nor identically infinite of0, co). A Young function® is continuous, convex,
increasing and satisfies

¢(0) =0, lim &(s)=o00.

S§—00

Moreover, a Young functio® satisfies the following useful inequalities: for> 0, we have

(2.1) {‘D(OfS) <ad(s), f0<a<l

d(as) > ad(s), if a>1.
We call a Young function aiV-function if it satisfies the limit conditions

lim %:oo and lim%:().

s—o00 § s—0 S

Let ® be a Young function generated by the functign.e.,

O(s) = /0 S(t)dt .
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Then the function? generated by the functiop, i.e.,

W(s) = / ()t

where
(s) = sup t
(t)<s
is called the complementary functiondo It is known that¥ is a Young function and thab
is complementary tal. The pair of complementary Young functiods ¥ satisfies Young'’s
inequality

(2.2) u-v < P(u)+¥(v), wu,vel0,oc0).
Equality in (2.2) holds if and only if
(2.3) v==>(u) or u=Y(v).

A Young function® is said to satisfy thé\,-condition, written® € A, if there existk > 0
andT > 0 such that
O(2t) < kP(t) forall t >T.

The above mentioned concepts of the Young function, complementary Young function and
A,-condition are quite standard and can be found in any standard book on Orlicz spaces. Here
we mention the celebrated monographs [5], [7].

The remainder of the concepts are some of the contents of [4] which were developed and
studied there and we mention them here briefly.

Let X be a BFS andb denote a non-negative function @ oco). The generalized Orlicz

classX, consists of all functions € L°(9) such that
px(u, ®) = [[@(Jul)||lx < oo.
For the caseb(t) = t, 0 < p < o0, X, coincides algebraically with the spag& endowed
with the quasi-norm
lullxe = Nlulll% -

Let X be a BFS andpb, ¥ be a pair of complementary Young functions. The generalized
Orlicz space, denoted by, is the set of alk, € L°(2) such that

(2.4) [ulle := sup [[|u-vfl[x,

v

where the supremum is taken overak X for which px(v;¥) < 1.

It was proved that for a Young functioh, X C X4 and thatXe is a BFS, with the norm
(2.4). Further, on the generalized Orlicz spatg a Luxemburg type norm was defined in the
following way

(2.5) ||u||&,:inf{k>0:px (%,@) < 1}.

It was shown that with the norr (2.5) too, the spatgis a BFS and that the two nornjs (2.4)
and [2.5) are equivalent, i.e., there exists constants > 0 such that

(2.6) allully < llulle < collulls -

In fact, it was proved that, = 2.
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3. COMPARISON OF GENERALIZED ORLICZ SPACES
We begin with the following definition:

Definition 3.1. A BFS is said to satisfy thé-property if for all non-negative functiong g €
X, there exists a constatit< a < 1 such that

1f +gllx = allfllx + llgllx) -

Remark 1. It was proved inl[2] that the generalized Orlicz spatg contains the generalized
Orlicz classX¢. Towards the converse, we prove the following:

Theorem 3.1. Let ® be a Young functionX be a BFS satisfying thé-property andu € Xs
be such that|u||¢ # 0. Thenrti— € Xo.

Proof. Let u € X¢. Using the modified arguments used|in [7, Lemma 3.7.2], it can be shown
that

(3.1) u-vx < [ullo ; for px(v; ¥) <1,
=\ ullopx (v; W) 5 for px(v; W) > 1.

Let £ C Q be suchthat(F) < co. Firstassume that € X4((2) is bounded and that(x) = 0

forz € Q\ E. Put
mw=¢Gﬁmw@Q.

The monotonicity ofd and ¥ gives that the function®

lu (x)|> and ¥ (Jv(z)|) are also

Su@)])|, < coand (o)) x <

(I lle
bounded Consequently, property (P2)0¥ields thatH@ (

: H@ < . )
- lulle /1l x
< oo
On the other hand, using theproperty of X and [2.3), we get that for sonae> 0
|ul )
0 + U(|v])
() + 40
* (i)
lulle /|l x

Applying ) forL, v, we find that
ul|e

IUan X

+ W (vDllx

u-v

lulle | x

X

(3.2) >a F (oDl

u-v

lulle |l x

(o),
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Now, if px (v, V) > 1, then the above estimate gives

I (o), o0 G)

and if px (v, ¥) < 1, then
I (s
lulle /1l x
< o0

(),

and the assertion is proved for boundedFor generak:,, we can follow the modified idea of
[10, Lemma 3.7.2]. O

1

In any case

Remark 2. In view of the above theorem, far € X, there exists: > 0 such thatcu € )~(q>.
In other words, the spac&s is the linear hull of the generalized Orlicz clads with the
assumption orX that it satisfies thé.-property.

We prove the following useful result:

Proposition 3.2. Let ® be a Young function satisfying tlzit%-condition(with T=0if u(Q2) =
oo) and X be a BFS satisfying the-property. ThenXs = X5.

ul|e # 0. By Theorenj 31, we have

'UE)}:@.

Proof. Letu € X,

[ulle
SinceX (1) is a linear set, we have
|ulle - w =u € Xo,

i.e., N
Xo C Xo.
The reverse inclusion is obtained in view of Remadrk 1 and the assertion follows. O

Let &; and®, be two Young functions. We writé, < &, if there exists constants > 0,
T > 0 such that

CI)Q(t) §CI>1(ct), tZT
Now, we prove the following inclusion relation:

Theorem 3.3. Let X be a BFS satisfying thé-property and®,, ®, be two Young functions
such thatb, < ®; andu(£2) < co. Then the inclusion

Xo, C Xo,
holds.
Proof. Since®, < ®,, there exists constants;> 0, 7" > 0 such that
(3.3) Dy(t) < Py(ct), t>T.

Letu € Xg,. Then in view of Theore.l, there exigts> 0 such thatku € )~(¢1, i.e.,
px (ku; ®1) < co. Denote

T
m:{xemm@ﬂ<%}.
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Then forz € Q\ Qy, |u(z)| > <, ie.,
k
“lu(@)[ =T

so that the inequalitief (3.3) withreplaced byt|u(x)| gives

2, (gu@m) < @, (kfu(x)])

k
) o (—|u<x>|) Yo
c X
_'_

k
) va| + s (—ruu)\) o
X C

X llx + @1 (kfu(@) )xava [l x
Ixeullx + px (ku; @1)

which implies that

Jr (Gecn)], -

|w nlw

oG
< e (G
< Dy (T)
= qI>2<T>

X

ConsequentIy’Cu S X% C Xo,, I.€., u € Xs,. But sinceXg, is in particular a vector space
we find thatu € X4, and we are done O

The above theorem states that < @, is a sufficient condition for the algebraic inclusion
Xe, C Xg,. The next theorem proves that the condition, in fact, is sufficient for the continuous
imbeddingXe, — Xag,.

Theorem 3.4. Let X be a BFS satisfying thé-property and®,, ®, be two Young functions
such thatb, < ®; and i (2) < co. Then the inequality

||U||<I>2 < ]{7||UH<1>1
holds for some constait> 0 and for allu € Xg,.

Proof. Let I, and¥, be the complementary functions respectivelptand®,. Thend®, < &,
implies that¥; < W,, i.e., there exists constants 77 > 0 such that

\Ill<t) < \Ijg(Clt) for ¢ > T
or equivalently

t
Uy (—) < g’g(t) for ¢ > Ty,
C1

Further, ift < ¢;77, then the monotonicity ob gives

Uy i < WUy(T}).
(£) <win

The last two estimates give that for ali> 0

(3.4) @1Q§>§@mﬂ)+@ﬂﬂ.

By the property (P4) of BFS|xql|x < co. Denotea = (¥(T1)||xallx +1)~' andk = <.
Clearly0 < o < 1. We know that for a Young functiofr and0 < 5 < 1,

(3.5) O(ft) < fD(1), t>0.
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Now, letv € Xy, be such thapy (v; ¥,) < 1. Then, usmg.S) foB = o andt = ) and
(3.4), we obtain that

o) (2]
o (2]

< OéH‘I’ T1)+‘1’2(\U( IDIx
(V1 (Th)|Ixallx + l[2(Jv(@)])]x)
a(¥ (Tl)HXQHX + px(v; ¥2))
<aoa " =1.

Thus we have shown thaty (v; U5) < 1 impliespx (g; \Ifl) < 1 and consequently using the
definition of the generalized Orlicz norm, we obtain

lulle, = sup [[([u(z)v(z)])]lx
p(v;¥2)<1
=k sup ( u(x)v<m) )
plv05)<1 ko) llx
v(z)
<k sup u(z)
p(F:w1)<1 b X
=k sup |[|u(z)w(z)||x
p(w;¥1)<1
=k [lulle,
and the assertion is proved. O

Remark 3. If &; and®, are equivalent Young functions (i.&; < &, and®, < ®&,) then the
norms||-||, and|-||,, are equivalent.

4. CONVERGENCE
Following the concepts in the Orlicz spatg(f2), we introduce the following definitions.

Definition 4.1. A sequence€{u,,} of functions inX4 is said to converge to € X4, written
Uy, — U, if

lim |u, —ulle =0.
Definition 4.2. A sequencdgu,, } of functions inX¢ is said to converge i@-mean tou € Xg
if
lim py(u, —u; @) = lim [[(ju, —ul)|x =0.
We proceed to prove that the two convergences above are equivalent. In the sequel, the
following remark will be used.

Remark 4. Let ® and¥ be a pair of complementary Young functions. Then in view of Young'’s
inequality (2 .) we obtain for € X4, v € Xy

[uv]||lx < [ @(|ul)]lx + ¥ (|v])]x
= px(u; @) + px(v; V)
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so that
ulle < px(u; @) +1.

Now, we prove the following:

Lemma 4.1. Let ® be a Young function satisfying thg-condition(with 7" = 0 if x(£2) = o0)
andr be the number given by

(4.1) r:{2 () = oo,
O(T)|xallx +2 if u(Q) < oo.
If there exists amn € N such that
(4.2) px(u; @) < k7,
wherek is the constant in thé\,-condition, then
lulle < 27"
Proof. Letm € N be fixed. Consider first the case whefi?) < co and denote
O ={reQ:2Mu(x)| <T}.

Then forz € Q;, we get

(4.3) (2™ u(x)]) < B(T)
and forz € Q \ 1, by repeated applications of tie,-condition, we obtain
(4.4) (2" u(x)]) < K" ®(Ju(z)]) .

Consequently, we have usirjg (4.3) and|(4.4)
122" [u(z)Dllx = (122" ([ulx)])xa, + P2 [ulz))xa\ellx
< [[22" (Julx))xen l[x + 22" u(@)]) xara: | x
< O(T)|Ixqu llx + E™ (|2 (Ju(z)]) ] x
< O(T)lIxellx + £ px (u; @)
< O(T)Ixellx +1
=r—1.
In the caseq:(Q2) = oo we takeQ); = ¢ and then[(4]4) directly gives
2™ [u(z))]x <1<r—1
sincer = 2 for u(€2) = co. Thus in both cases we have
@™ [u(z))]x <7 -1
which further, in view of Remark|4 gives
[2"u(@)][e <7

or
ulle <27r

and we are done. O

Let us recall the following result from [4]:
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Lemma4.2. Letu € Xg. Then
px(u; @) < lully i [lufy <1
and
px(u;®) > Jlully i [lufly > 1,
where||u||;, denotes the Luxemburg type norm on the spsgaiven by|[(2.5).

Now, we are ready to prove the equivalence of the two convergence concepts defined earlier
in this section.

Theorem 4.3. Let ® be a Young function satisfying the,-condition. Let{, } be a sequence
of functions inXs. Thenu,, converges ta in X4 if and only ifu,, converges irb-mean tou in
Xo.

Proof. First assume that, converges inb-mean tou. We shall now prove that, — u. Given
e > 0, we can chooser € N such that > 2~™r, wherer is as given by[(4]1). Now, since,
converges inb-mean tou, for thism, we can find an\/ such that

px(tu, —u; ®) < k™™ for n > M
which by Lemma 4]1 implies that
ltn —ulle <27™r < for n> M

and we get that,, — .
Conversely, first note that the two norihg, and||-||;, on the spaceXy are equivalent and
assume, in particular, that the constants of equivalence atg i.e., (2.6) holds.
Now, letu,,,u € X4 SO that
[un — ulle < 1.
Then [2.6) gives
[un —ully <1
which, in view of Lemma& 4]2 and again (P.6), gives that

px (U —u; @) < luy, — ullg
1
< —lun — ulle.
(&1
The ®-mean convergence now, immediately follows from the convergendg in O

Remark 5. The fact that theb-mean convergence implies norm convergence does not require
the use ofA,-conditions. It is required only in the reverse implication.

5. SEPARABILITY

Remark 6. Itis known, e.g., se€[7, Theorem 3.13.1], that the Orlicz sgag€?) is separable

if ¢ satisfies theA,-condition (withT = 0 if x(€2) = 0). In order to obtain the separability
conditions for the generalized Orlicz spa&g, we can depict the same proof with obvious
modifications except at a point where the Lebesgue dominated convergence theorem has been
used.

In the framework of general BFS, the following version of the Lebesgue dominated conver-
gence theorem is known, see elg. [1, Proposition 3.6].

Definition 5.1. A function f in a Banach function spack€ is said to have an absolutely contin-
uous norm inX if || fxg, ||x — O for every sequencgE,, }>° , satisfyingF,, — ¢ u-a.e.
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Proposition A. A functionf in a Banach function spac& has an absolutely continuous norm
iff the following condition holds; whenevéy {n = 1,2, ...} andg are u-measurable functions
satisfying|f,| < |f| for all n and f,, — ¢ u-a.e., then|f, — gllx — 0.

Now, in view of Remark6 and Propositiprj A we have the following result.

Theorem 5.1.Let X be a BFS having an absolutely continuous norm @rize a Young function
satisfying theA,-condition (with7 = 0 if x(€2) = 0). Then the generalized Orlicz spa&g is
separable.
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