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1. Introduction

The purpose of this paper is to prove the existence of positive solutions for the fol-
lowing non localp-Laplacian dynamic equation on a time scéte

(1.1) — (¢ (2 (1)) = TV(“@) . Yte (0,T)r =T,
OO = T ey v O

subject to the boundary conditions

(1.2) qbp(uﬁ(())) - Wp(UA(??)) =0, 0<n<T,

u(T) — Bu(n) =0,

whereg,(-) is thep-Laplacian operator defined by, (s) = |s|[P~2s,p > 1, (¢,) ' =
¢4 With ¢ the HoOlder conjugate af, i.e. i + % = 1. The function

(H1) f:(0,7)r — R™ is assumed to be continuous

(R*™* denotes the positive real numbers)js a dimensionless parameter that can
be identified with the square of the applied potential difference at the ends of a
conductor; f(u) is the temperature dependent resistivity of the condugias a
transfer coefficient supposed to verifly< 3 < 1. Different values forp and &

are connected with a variety of applications for b@ith= R andT = Z. When

k > 1, equation {.1) represents the thermo-electric flow in a conducf.[ In

the particular case = k£ = 2, (1.1) has been used to describe the operation of
thermistors, fuse wires, electric arcs and fluorescent lights 12, 18, 19]. For
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k = 1, equation {.1) models the phenomena associated with the occurrence of
shear bands (i) in metals being deformed under high strain ré&té&3, [(ii) in the
theory of gravitational equilibrium of polytropic star¥7], (iii) in the investigation
of the fully turbulent behavior of real flows, using invariant measures for the Euler
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equation 1LQ], (iv) in modelling aggregation of cells via interaction with a chemical
substance (chemotaxi®)J)].

The theory of dynamic equations on time scales (or, more generally, measure
chains) was introduced in 1988 by Stefan Hilger in his PhD thesis (ggel}]).
The theory presents a structure where, once a result is established for a general time
scale, then special cases include a result for differential equations (obtained by taking
the time scale to be the real numbers) and a result for difference equations (obtained
by taking the time scale to be the integers). A great deal of work has been done since
1988, unifying and extending the theories of differential and difference equations,
and many results are now available in the general setting of time scales %, e [
3,4, 8, 9] and the references therein. We point out, however, that results concerning
p-Laplacian problems on time scales are sca&®. [ In this paper we prove the
existence of positive solutions to the problemij-(1.2) on a general time scale.
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2. Preliminaries

Our main tool to prove the existence of positive solutions (Thediédns the Guo-
Krasnoselskii fixed point theorem on cones.

Theorem 2.1 (Guo-Krasnoselskii fixed point theorem on coned B, 16]). Let X
be a Banach space andl C E be a cone inX. Assume tha®; and(2, are bounded
open subsets df with0 € Q; € Q; C O, and thatG : K — K is a completely
continuous operator such that

(i) either||Gw| < [Jw||, w € 09, and||Gw|| > |Jw]||, w € 09y; or
(i) |Gw|| > ||w|, w € 004, and||Gw]| < ||w]], w € 0Ny.
Then,G has a fixed point if2,\ (2;.

Using the properties of on a bounded s€0, T')r, we construct an operator (an
integral equation) whose fixed points are solutions to the probleij(1.2).

Now we introduce some basic concepts of time scales that are needed in the
sequel. For deeper details, the reader can see, for instdnéeg]. A time scaleT
is an arbitrary nonempty closed subseffof The forward jumpoperators and the
backward jumpoperatorp, both fromT to T, are defined in14):

ot)=inf{reT:7>t} T, pit)=sup{reT:7<t}eT.

A pointt € T is left-dense, left-scattered, right-dense, or right-scatterp jf=
t, p(t) <t,o(t) =t, oro(t) > t, respectively. IfT' has a right scattered minimum
m, defineT;, = T — {m}; otherwise seT,, = T. If T has a left scattered maximum
M, defineT* = T — {M}; otherwise sef* = T.

Let f : T — R andt € T* (assume is not left-scattered if = sup T), then
the delta derivative of at the point is defined to be the numbgr (¢) (provided it
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exists) with the property that for eaeh> 0 there is a neighborhoadd of ¢ such that
F(0() = f(s) = FAW(0(1) = 5)] < lo(t) — 5|, forallseU.

Similarly, fort € T (assume is not right-scattered if = inf T), the nabla derivative
of f at the pointt is defined to be the numbé (¢) (provided it exists) with the
property that for each > 0 there is a neighborhodd of ¢ such that

Existence for Thermistor
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1F(p(t) — f(s) = FY(t)(p(t) — s)| < |p(t) — 5|, forallsecU. Moulay Rehid Sidi Ammi

If T — R, thenz(t) — 2V (1) = 2/(1). I T = Z, thenz®(t) = 2(t + 1) — (1) abemE I e
is the forward difference operator whit€’ (t) = z(t) — x(t — 1) is the backward
difference operator.

A function f is left-dense continuousd-continuous) iff is continuous at each Title Page
left-dense point ifill' and its right-sided limit exists at each right-dense poinfin

vol. 8, iss. 3, art. 69, 2007

Content
Let f beld-continuous. IfF'Y (t) = f(t), then the nabla integral is defined by e
< »
b
| Ve =F) - Pla; <
. ' . . . Page 6 of 19
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3. Main Results
By a positive solution of (.1)-(1.2) we understand a functioin(t) which is positive
on (0, 7")r and satisfies]( 1) and (L.2).

Lemma 3.1. Assume that hypothesisl{) is satisfied. Theny(t) is a solution of
(1.D-(1.2) if and only ifu(t) € E is solution of the integral equation
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where

o) = [ Antu(r)vr - 4
A= 0,u20) =125 [ hatr) o
) — Af(uit))

(fOT u(r) vr)k’
B=ul0) = 1 {/ oaeNes 5 [ o atns).

Proof. We begin by proving necessity. Integrating the equatiofi (ve have

dp(u(s)) = ¢, (u”(0)) — / s Ah(u(r))Vr.
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Then,
_)\ﬂ n

A= ot 0) =25 |

h(u(r))Vr.

It follows that

Integrating the last equation, we obtain
(3.1) ut) =u(0) = [ oylgs) s
0
Moreover, by 8.1) and the boundary condition (2), we have
w0) = u(T) + [ oyfals)is
— Bu A
sutn) + | anlals)) s
= u(0) — s))As s))As.
5 (w0 - [oatnas) + [ atote)
Then,

w0y == (=5 [Catopas | ' 6u(a(s)2s).

Sufficiency follows by a simple calculation, taking the delta derivative(of. [

Lemma 3.2. Supposek( 1) holds. Then, a solution of (1.1)-(1.2) satisfies:(t) > 0
forall t € (0,7)r.
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-5
It follows thatg,(g(s)) > nceO < 3 < 1,we also have

)
z%{ﬁo% nas—5 [Maatenos)

Proof. We haveA = =22 [ h(u(r))Vr < 0. Then,g(s) = A [ h( —A>0.
0.S
1

1
>0
and
u(T) = u(0) —/O bq(9(s))As
— =5 [ atanos+ = [ autoenas— [ oatas
— =5 [ taonos+ 125 [ oot as
= A odanns - [Coanas)
> 0.
If t € (0,7)r,
) = u0) = [ on(ale)ss
> — Bq(g(s))As +u(0) =u(T) >0
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Lemma 3.3. If (H1) holds, thenu(T") > pu(0), wherep =
Proof. We have

T -

00 (9) = 0,u*(0) = [ Mh(u(r)Vr <0,
Since4 = ¢,(u”(0)) < 0, thenu® < 0. This means thatu|| = w(0), infe (o7, u(t) T ———
= u(T). Moreover,p,(u”(s)) is non increasing which implies, with the monotonic- Problems on Time Scales
ity of ¢,, thatu® is a non increasing function ai, 7')y. It follows from the con- Sl
cavity of u(t) that each point on the chord betwe@nu(0)) and (7", u(T)) is below
the graph ofu(t). We have

and Delfim F. M. Torres
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T
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It is easy to see thatl(1)-(1.2) has a solution: = w(t) if and only if u is a fixed
point of the operato€: : K — FE defined by

t
(3.2) Gult) = [ 6,((s)) & + B,
0
whereg and B are defined as in Lemntal
Lemma 3.4. Let G be defined by3.2). Then,
() G(K) € K;
(i) G: K — K is completely continuous.

Proof. Condition(i) holds from previous lemmas. We now pro\i€). Suppose that
D C K is abounded set. Let ¢ D. We have:

t

Gult)| = \— s, <g<s>ms+3\
) ‘_ / g </ U ;{u(<(>>))v>v ) A) fort
S/Ochq (/Os%iisg)w_fl) As+ B,
|A| = % Unh(u(r))VT

[T f) o | A8 swpuen fu)
= G7 far) v | = 1= Tinkuen)!
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In the same way, we have

Bl < 1= | eulatonns

/\SU-puEDf( ) 6
Sl—ﬂ/ %( (Tinfucp)F <3+1—6’7>)A3'

It follows that

T (Asup,ep f(u) A
'G““)'S/o %( (T infucn)" ( +1—ﬁ))AS+‘B"

As a consequence, we get

23 Asup,ep f(u) B
IGul < 3—5 | ¢(m(+ ))

2 Asup,ep f(u) T £n
= 1—ﬁ¢q< (T'inf,ep)” )/0 & (8+ 1—6) o

We conclude tha/(D) is bounded. Itengii) follows by a standard application of
the Arzela-Ascoli and Lebesgue dominated theorems. O

Theorem 3.5 (Existence result on conesSuppose that1) holds. Assume fur-
thermore that there exist two positive numbei@ndb such that

(H2) max f(u) < gylads),
(H3) i f(u) 2 6,(bBy).
where

A= T(lg__ﬁﬁ) O ((T infogulga fu))k (T ! 15__77&) )
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and
1-4 A
BT - n)qﬁp(n)% ((T SUPg<y<p f (U))k) |

Then, there exist8 < A\, < 1 such that the non local-Laplacian problem(1.1)-
(1.2) has at least one positive solutiana < u < b, for any\ € (0, \,).

B, =

Proof. Let Q, = {u € K, ||u|| < r}, 02 = {u € K, ||lu|]| = r}. If u € 99Q,, then
0<u<a,te (0,7)r. Thisimpliesf(u(t)) < maxo<u<q f(u) < ¢,(aA). We can
write that

|Gl < / bulg(5) s + B
T A fur)
< q 7 Vr—A|As+ B,
<[ ¢ </ T J(ulr) Vr)F ) !
A M S g M (ady

=B (J) flulr)) V) TS T (T infozuza f)F
/\(aA1)p_1 ( Bn ) .

Tinfoguga f(U))k T + 1— /6

g9(s) < (
Then,

T

auat & < 6, (g2 e (7+17%5) ) T

_ A 61
= o, ((T infocu<a f(u))* (T s 5)) '

0
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Moreover,

s e

ﬁ
my (/ Pulg )
)\ 677 Existence for Thermistor
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aAl 1 — ﬁ¢ ((T 1nf0§u§a f(u))k ( + 1 — ﬁ)) Moulay Rchid Sidi Ammi
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Gul = Y- 5¢q (Tinfocuz f(u))* 1-4 Title Page
2—p 1 1
< T4+ 21
= (bq()‘)aAlTl — ﬁ¢q ((T Mfoeuey f(1))F ( + 1 ﬂ)) Contents
20 1 Bn )) « S
< AT . T+
P Ak 1—- 5% ((TlnfOSuSa f(u))k < 1-3 < >
< ¢g(A)a Page 14 of 19
<a=|ul. 5
0 Back
If u € 00y, we have
Full Screen
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> 15 [ et as

SinceA < 0, we have
g(s) = )\/OS h(u(r))Vr — A > )\/OS h(u(r))Vr

C S
= A/o (T supocacy (1))
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4. An Example

We consider a functiori which arises with the negative coefficient thermistor (NTC-
thermistor). For this example the electrical resistivity decreases with the tempera-
ture.

Corollary 4.1. Assumeli1) holds. If

),
fO_}L_)O ¢p( ) 07 foo

f(w)
““OO pr( )

== —|—OO’

or

fO = +007 foo = 07
then problen(1.1)-(1.2) has at least one positive solution.
Proof. If f, = 0 thenV A, > 0 3 a such thatf(u) < (Au)*™, 0 < u < a.
Similarly as above, we can prove thgtu|| < ||ul|, V u € 9,. On the other hand,
if foo = 400, thenV B; > 0, 3b > 0 such thatf(u) > (Byu)?~!, u > b. Asin the
proof of Theoren®.5, we have||Gu|| > ||lu||, V u € 0€,. By Theorem?.1, G has a
fixed point. O

For the NTC-thermistor, the dependence of the resistivity to the temperature can
be expressed by

(4.2) f<8):(1+s)k’ k>2.
Forp = 2, we have
S o S
S T LN o R

It follows from Corollary4.1that the boundary value problem.{)-(1.2) with p = 2
andf asin ¢.1) has at least one positive solution.
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