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ABSTRACT. We analyze the relations of three coefficient conditions of different type implying
one by one the absolute convergence of the Haar series. Furthermore we give a sharp condition
which guaranties the equivalence of these coefficient conditions.
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1. I NTRODUCTION

A known result of P.L. Ul’janov [4] asserts that the condition

(1.1) σ1 :=
∞∑

n=3

an√
n

< ∞ (an ≥ 0)

implies the absolute convergence of the Haar series, i.e.
∞∑

m=0

2m∑
k=1

∣∣b(k)
m χ(k)

m (x)
∣∣ ≡ ∞∑

n=0

|an χn(x)| < ∞

almost everywhere in(0, 1). He also verified, among others, that if the sequence{an} is mono-
tone then the condition (1.1) is not only sufficient, but also necessary to the absolute conver-
gence of the Haar series.

In [1] we verified that if the condition

(1.2) σ2 :=
∞∑

m=1

{
2m+1∑

n=2m+1

a2
n

} 1
2

< ∞
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holds then the Haar series is absolute(C, α)-summable for anyα ≥ 0, consequently the condi-
tion (1.2) also guarantees the absolute convergence of the Haar series.

Recently, in [3], we showed that if the sequence{an} is only locally quasi decreasing, i.e. if

an ≤ K am for m ≤ n ≤ 2m and for all m,

and the Haar series is absolute(C, α ≥ 0)-summable almost everywhere, then (1.2) holds.
Here and in the sequel,K andKi will denote positive constants, not necessarily the same at

each occurrence. Furthermore we shall say that a sequence{an} is quasi decreasingif

(0 ≤)an ≤ K am

holds for anyn ≥ m. This will be denoted by{an} ∈ QDS, and if the sequence{an} is a
locally quasi decreasing, then we use the short notion{an} ∈ LQDS.

P.L. Ul’janov [5], implicitly, gave a further condition in the form

(1.3) σ3 :=
∞∑

m=3

1

m(log m)
1
2

{
∞∑

n=m

a2
n

} 1
2

< ∞

which also implies the absolute convergence of the Haar series.
These results propose the question: What is the relation among these conditions?
We shall show that the condition (1.3) claims more than (1.2), and (1.2) demands more than

(1.1); and in general, they cannot be reversed. In order to get an opposite implication, a certain
monotonicity condition on the sequence{an} is required.

2. RESULTS

We establish the following theorem.

Theorem 2.1.Suppose thata := {an} is a sequence of nonnegative numbers. Then the follow-
ing assertions hold:

(2.1) σ1 ≤ K σ2,

and ifa ∈ LQDS then

(2.2) σ2 ≤ K σ1.

Similarly

(2.3) σ2 ≤ K σ3,

and if the sequence{Am} defined by

Am :=

{
2m+1∑

k=2m+1

a2
k

} 1
2

belongs toQDS then

(2.4) σ3 ≤ K σ2.

Finally

(2.5) σ1 ≤ K σ3,

and if the sequence{n a2
n} ∈ QDS then

(2.6) σ3 ≤ K σ1.

Corollary 2.2. If the sequence{n a2
n} ∈ QDS then the conditions (1.1), (1.2) and (1.3) are

equivalent.
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Next we show that the assumption{n a2
n} ∈ QDS in a certain sense is sharp. Namely if we

claim only that the sequence{nα a2
n} ∈ QDS with α < 1, then already the implication (1.1)⇒

(1.3), in general, does not hold.

Proposition 2.3. If (0 ≤) α < 1 then there exists a sequence{an} such that the sequence
{nα a2

n} ∈ QDS, furthermore

σ1 < ∞ but σ3 = ∞.

Finally we verify the following.

Proposition 2.4. The requirements

(2.7) {n a2
n} ∈ QDS

and the following two assumptions jointly

(2.8) {Am} ∈ QDS and {an} ∈ LQDS

are equivalent.

Acknowledgement 1. I would like to sincerest thanks to the referee for his worthy sugges-
tions, exceptionally for the remark that the inequality (2.6) also follows from (2.2), (2.4) and
Proposition 2.4.

3. L EMMA

We require the following lemma being a special case of a theorem proved in [2, Satz] ap-
pended with the inequality (3.2) which was also verified, in the same paper, in the proof of the
"Hilfssatz" (see p. 217).

Lemma 3.1. The inequality (1.3) holds if and only if there exists a nondecreasing sequence
{µn} of positive numbers with the properties

(3.1)
∞∑

n=1

1

n µn

< ∞ and
∞∑

n=1

a2
n µn < ∞.

Furthermore

(3.2)
∞∑

n=3

1

n(log n)
1
2

{
∞∑

k=n

a2
k

} 1
2

≤ K

{
∞∑

n=3

a2
n µn

} 1
2
{
∞∑

n=1

1

n µn

} 1
2

also holds.

4. PROOFS

Proof of Theorem 2.1.The inequality (2.1) can be verified by then Hölder inequality. Namely

σ1 =
∞∑

m=1

2m+1∑
n=2m+1

an√
n
≤

∞∑
m=1

{
2m+1∑

n=2m+1

a2
n

} 1
2
{

2m+1∑
n=2m+1

1

n

} 1
2

≤ σ2.

To prove the inequality (2.2) we utilize the monotonicity assumption and thus we get that

σ2 ≤ K
∞∑

m=1

2m/2a2m+1 ≤ K1

∞∑
m=1

2m+1∑
n=2m+1

1√
n

an = K1σ1.
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The inequality (2.3) also comes via the Hölder inequality. LetRm :=

{
∞∑

n=m

a2
n

} 1
2

. Then

σ2 =
∞∑

ν=0

2ν+1−1∑
m=2ν

{
2m+1∑

n=2m+1

a2
n

} 1
2

≤
∞∑

ν=0

2ν/2


22ν+1∑

n=22ν +1

a2
n


1
2

≤
∞∑

ν=0

2ν/2


∞∑

n=22ν +1

a2
n


1
2

≤ R3 + K

∞∑
ν=1

22ν∑
n=22ν−1+1

1

n(log n)
1
2

R22ν
+1

≤ K1

∞∑
n=3

1

n(log n)
1
2

Rn = K1σ3.

In order to prove (2.4) first we define a nondecreasing sequence{µn} as follows. Let

µn := max
1≤k≤m

A−1
k for 2m < n ≤ 2m+1, m = 1, 2, . . . ,

furthermore letµ1 = µ2 = µ3. It is clear by{Am} ∈ QDS that

(4.1) A−1
m ≤ µ2m+1 ≤ K A−1

m (m ≥ 1),

holds. Hence we obtain by (1.2) and (4.1) that

(4.2)
∞∑

m=1

2m+1∑
n=2m+1

a2
n µn ≤ K σ2 < ∞

and
∞∑

n=1

1

n µn

≤ K

∞∑
n=3

1

n µn

= K
∞∑

m=1

2m+1∑
n=2m+1

1

n µn

≤ K1

∞∑
m=1

1

µ2m+1

(4.3)

≤ K1

∞∑
m=1

Am = K1σ2 < ∞.

Finally, using the inequality (3.2), the estimations (4.2) and (4.3) clearly imply the statement
(2.4).

The assertion (2.5) is an immediate consequence of (2.1) and (2.3).
The proof of the declaration (2.6) is analogous to that of (2.4). The assumption{n a2

n} ∈
QDS enables us to define again a nondecreasing sequence{µn} satisfying the inequalities in
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(3.1). We can clearly assume that allak > 0, otherwise (2.6) is trivial if{n a2
n} ∈ QDS. Let

for n ≥ 3

µn := max
1≤k≤n

1

ak

√
k
, and µ1 = µ2 = µ3.

The definition ofµn and the assumption{n a2
n} ∈ QDS certainly imply that

(4.4)
1

an

√
n
≤ µn ≤

K

an

√
n

is valid. The definition ofσ1 given in (1.1) and (4.4) convey the estimations

∞∑
n=3

a2
n µn ≤ K

∞∑
n=3

an√
n
≤ K σ1 < ∞

and
∞∑

n=1

1

n µn

≤ K
∞∑

n=3

1

n µn

= K
∞∑

n=3

an√
n

= K σ1 < ∞.

These estimations and (3.2) verify (2.6).
Herewith the whole theorem is proved. �

Proof of Corollary 2.2.The inequalities (2.1), (2.3) and (2.6) proved in the theorem obviously
deliver the assertion of the corollary. The proof is ready. �

Proof of Proposition 2.3.Setting

νm := 22m

, εm := 2−m/2ν
α−1

2
m+1

and

a2
n := ε2

m n−α if νm < n ≤ νm+1, m = 0, 1, . . .

Then
∞∑

n=3

an√
n

=
∞∑

m=0

εm

νm+1∑
n=νm+1

n−
1+α

2

≤
∞∑

m=0

εm ν
1−α

2
m+1 =

∞∑
m=0

2−m/2 < ∞,

however, withRn :=

{
∞∑

k=n

a2
k

} 1
2

,

σ3 =
∞∑

n=3

1

n(log n)
1
2

Rn

=
∞∑

m=0

νm+1∑
n=νm+1

1

n(log n)
1
2

Rn

≥ 1

4

∞∑
m=0

Rνm+12
m/2,
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furthermore

R2
νm
≥

∞∑
k=m

νk+1∑
n=νk+1

a2
n =

∞∑
k=m

ε2
k

νk+1∑
n=νk+1

k−α

≥ 1

K

∞∑
k=m

ε2
k ν1−α

k+1 =
1

K

∞∑
k=m

2−k ≥ 1

K
2−m.

From the last two estimations we clearly get thatσ3 = ∞, as stated.
The proof is complete. �

Proof of Proposition 2.4.First we prove that the assumption (2.7) implies both properties claimed
in (2.8). Namely by{n a2

n} ∈ QDS we get that ifµ > m then

A2
m =

2m+1∑
n=2m+1

a2
nn

n
≥ 1

2m+1
2m 1

K
a2

2m+12m+1

≥ 1

2K2
a2

2µ2µ ≥ 1

2K3

2µ+1∑
n=2µ+1

a2
n

=
1

2K3
A2

µ,

i.e. {n a2
n} ∈ QDS ⇒ {An} ∈ QDS holds.

The implications{n a2
n} ∈ QDS ⇒ {an} ∈ QDS ⇒ {an} ∈ LQDS are trivial.

To prove the implication (2.8)⇒ (2.7) we first prove by{an} ∈ LQDS that if µ > m then

2m+1∑
k=2m+1

a2
k ≤ K 2m a2

2m

and
2µ∑

k=2µ−1+1

a2
k ≥ 2µ−1 1

K
a2

2µ ,

thus by{An} ∈ QDS we obtain that

2µ a2
2µ ≤ K1 2m a2

2m

holds, whence{n a2
n} ∈ QDS plainly follows.

The proof is ended. �
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