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ABSTRACT. The paper studies the weighted weak type inequalities for the Hardy operator as an
operator from weighted.” to weighted weall.¢ in the casep = 1. It considers two different
versions of the Hardy operator and characterizes their weighted weak type inequalities when
p = 1. It proves that for the classical Hardy operator, the weak type inequality is generally
weaker whery < p = 1. The best constant in the inequality is also estimated.
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1. INTRODUCTION

The classical Hardy operatdris the integral operatoff(z) = [ f(t)dt, where the lower
limit ¢ in the integral is generally taken to be 0 erc, depending on the underlying space
considered. In[4], Hardy first studied this operator frafto the weighted.?_, whenp > 1.
The boundedness of this operator frdmto L for general weights, v and different pairs of
indicesp andq was considered in[12], 2], [11] and [16]. The boundedness isfexpressed
by the strong type inequality

( / ff(x)%(x)dxf <c ( / f(y)pu(y)dy); i

which is also called the weighted norm inequality whep > 1. Whenp < 1, the integral
on the right hand side is no longer a norm, and the inequality is of little interest. Like other
integral operators, the weighted strong type inequality/ falways implies the weighted weak
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type inequality

i C 1
v(z)dx - Poy(u)d \ ‘
(/{zszm»} () ) <3 (/f(y) (v) y) L f>0,A>0

It is known that whenl < p < ¢ < oo, both the weighted strong type and weak type
inequalities for the classical Hardy operator impose the same condition on the weagids.
That is, for givenu andwv, either both inequalities hold or both fail. We say that the weighted
strong type and weak type inequalities are equivalent. However, whep and1 < p < oo,
the equivalence does not hold in general. Characteristics of weighted weak type inequalities for
the Hardy operator and modified Hardy operators were studied in 1], [3],15],.[7],[19], [10],
[13], and [14]. This paper looks at the Hardy Operator and considers the weighted weak type
inequalities in the special cape= 1.

The case = 1 is subtle, because in this case we need to consider two different operators. If
p # 1, considering inequalities faf from L2 to L is readily reduced to considering them for

the operator
/‘f
from L? to L?, wherew = u'~" with ;
However, wherp = 1, the inequalities foi do not reduce to those for the operatgr so we

need to deal with them separately. In Secfipn 2, a more general operatdy,ttsaconsidered.
Instead of considering,,, we consider the operatay,

(1.2) @f@>:/mfammw

wherey is theos-finite measure of the underlying space.

In Theorem 2.2, we show that the weighted weak type and strong type inequalitigsafer
still equivalent. In Theoretn 2.4, the weak type inequalityfowhenp = 1 and0 < ¢ < oo, is
considered. We will see that whérx ¢ < 1 = p, the weighted weak type inequality is weaker
in general.

Throughout the papeh is an arbitrary positive number, acting in the weak type inequalities.
The conventions d - co = 0,0/0 = 0, andoo/co = 0 are used.

2. THE CASE p = 1 FOR THE HARDY OPERATOR

First let us consider the operatéy defined in [(1.1), withc = —oo for convenience. The
strong type inequalities faf, whenp = 1 was studied in[[15], and we state the result in the
following proposition.

Proposition 2.1. Supposé) < ¢ < oo, andy, v are o-finite measures ofR. The strong type
inequality

@) ([ nswrar) <c [" s 520
holds if and only if
(2.2) /du<oo, WhereE:{xeR:/ du>0}.
E —00

In the next theorem, we show that conditipn {2.2) is also necessary and sufficient for the weak
type inequality, in other words, the strong type and weak type inequalitigs fme equivalent
whenp = 1.
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Theorem 2.2. Supposé < ¢ < oo, andpu, v are o-finite measures oR. Then the weak type
inequality
1 C
(2.3) iz Lf@) > A < Sllflle,,  f20,
and the strong type inequality (2.1) are equivalent.

Proof. Because the strong type inequality of an operator always implies the weak type inequal-
ity, we only need to prove (2.2) is also necessary for the weak type inequiality (2.3).

Since [*__ du is a non-decreasing function, the geis an interval of the fornE = (z, o)
or E = [z,00). Supposer # (), otherwise the proof is trivial.

If = # —o0, then we firstly suppose thatis an atom foru. Setf(t) = (1/u{z})x((1)-
Sincez € (—oo, z] for everyx € E we havel, f(z) = 1. Thus

(f) < (e nro=3})

<20]|fly, =2C < oo,

Secondly, suppose is not an atom fop:.. Lete > 0, and f(t) = [1/u(2, 2 + €)]X (2,240 ().
Then for everyr € [z + ¢€,00), we havel, f(z) = 1 and hence

([10)' (s 1))

< 20]|fllyy, =20 < oo.

Ase — 0%, we have( [, dy)% < oo, and ) holds.
If £ = (—o00,00), then we do the same discussion as above on the interval) and then
let = — —oo, and this completes the proof of Theorgm 2.2. O

Now let us consider the weighted weak type inequality for the classical Hardy opérator
(with ¢ = 0 for convenience). We make use of some of the techniques In [17]. Notice that
in Theorenj 2.2, the conclusion fdy, is independent of the relation between the indigesd
p = 1. The operator is a little bit more subtle. It does matter whetlger: 1 org > 1.

Definition 2.1. For a non-negative functiom, defineu by
ulw) = gl el
It is easy to see that is non-increasing and < u almost everywhere.

Lemma 2.3. Suppose thal < ¢ < oo and thatk(z, t) is a non-negative kernel which is non-
increasing int for eachx. Suppose: andv are non-negative functions. The best constant in
the weighted weak type inequality

(v{x:/mk(x,t)f(t)dt>)\}>qSg/mfu for f >0,
0 0

is unchanged wheun is replaced by.

Proof. Let C' be the best constant in the above inequality and’l&e the best constant in the
above inequality with; replaced by. Sinceu < u almost everywhere,’ < C. To prove the
reverse inequality it is enough to show that

29 (oo [Trenson =) < S [
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for all non-negativef € L'(z,00), wherez = inf{z > 0 : u(x) < oo}. The proof of Theorem
3.2 in [17] shows that for every non-negatiyec L!(z,oo) and anye > 0, there exists arf,

such that . . .
/ ﬁu§/1f2+%/)ﬁ

‘/muaﬂﬂﬂﬁghmmﬁwﬁ/muaﬂﬂﬁﬂt

and

If liminf o+ [ k(z,t) fe(t)dt > X, then [ k(z,t)f(t)dt > X for all sufficiently small
e > 0. Thus, for allz > z and all\ > 0,

X{dimint,_ o [ k(m,t)fs(t)dt>/\}( z) < lim mfe—>0+X{z k(w,t) fe t)dt>/\}( z).
We use these estimates to obtain

v {x : / k(x,t)f(t)dt > )\} <w {x liminf, o+ / k(x,t)f(t)dt > /\}
:/0 X adimint,_ o [ k(z,t)f€(t)dt>/\}(x)v(x)dx
S/o liminfeﬂmx{x:f; k(x7t)f6(t)dt>/\}(x)v(:c)dx
< lim infg_,0+/0 X[ k(x,t)fe(t)dt>>\}(x)v(x)dx
= liminf._g+v {x : / k(x,t)f(t)dt > )\}

[ )

00 q
< CIN Mliminf,_ o+ ( fu+ 26 f)

O (/:Ofu> |

< liminf,_ o+ CIN1?

which gives|[(2.4) and completes the proof. O
Theorem 2.4. Supposéd) < ¢ < oo, andu, v are non negative functions dR. Then the weak
type inequality for the classical Hardy operatbf fo
(2.5) (wlz: Tf(z) > AD)F < %/ £(1)
holds forf > 0 if and only if
(2.6) sgd%wﬁ@wW*=A<w-

Y

Moreover,C' = A is the best constant ifi (2.5).

Proof. Sincel f(z) = [i° x(0.0)(t)f (t)dt, the kernel o ., (t) satisfies the hypotheses of Lemimg 2.3.
By Lemmd 2.3, We only need to show thais the best constant in

1 C [
(2.7) (vfe = /(@) > ADv < 5 / fu
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We first consider the cagse= f;o b for someb satisfying

(2.8) /b<oo forall x > 0, and/ b = oo.
T 0

Then the right hand side df (2.7) becomes

%/OOO F(ult)dt = %/Ooo £(0) (/too b(x)dx) dat

:%/Ow(/oxf)b(x)dx.

Since any non-negative, non-decreasing functtors the limit of an increasing sequence of
functions of the formfoxf with f > 0, it is sufficient to show thal’ = A is also the best
constant in the following inequality

(2.9) v{z: F(z) > )\}5 < %/ Fb, for F >0, andF non-decreasing.
0

Suppose thatl < co andF' is non-decreasing, thefx : F'(x) > A} is an interval of the form
(y, 00) or [y, 00). Since the left end point does not change the integral, we have

v{x:F(z)>)\}%:v(yaoo)% SAg(y):A/OObSA/OO Fix)b:é/mFb?

which gives|(2.p) with the constarit
Now suppos€ (2]9) holds. Fix> 0. For a givere > 0, letA = 1 —¢, andF'(z) = x(y.00) (),

then . .
v(y,oo)tlz:v{x:F(x)>)\}flz§§/ Fb= ¢ / b= ¢ u(y).
0 y

1—c¢
Lettinge — 0T, we get
v(y, 00)ru(y) ™t < C.
In the cases(y) = 0, we use the convention- oo = 0. Then we obtaiM < C, and also get
that A is the best constant i (2.9).
Next we consider the case of genetial We can assume tha{x) < oo for all z, since if
u = oo on some interval0, =) then we translate to the left to get a smaller and reduce the
problem to one in which this does not happen. Then for each 0, the functionuy g ) is
finite, non-increasing and tends@at co. We can approximate it from above by functions of
the formfxoo b with b satisfying ). Lefu,,} be a non-increasing sequence of such functions
that converges tay ) pointwise almost everywhere. Let = vx o), then the first part of
the proof gives

X % 1 1 o0
wfos [ 10a= L < Sswnto0 e [T iOumoa, 20
0 A y>0 0

which implies

x i 1 1 o0

Un {x :/ guy, > A} < < sup v (y, OO)qum(y)‘l/ 9, 9>0.

0 A y>0 0

The Monotone Convergence Theorem, and thedad)) ' < u(y)~! wheny € (0,n) give

2 i1
(o {x : / gu~' > )\} < Xsupvn(y, o)
0

y>0

Q=

u(y)™ / g g>0.
0
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Let f = gu~'to get

vn{x:/f>)\} <lsupvny, )au /fu<—/ fu, f>0.
0 )\y>0

Letn — oo, we get[(2.F) with the constant = A.
Conversely, supposg (2.7) holds for some constargincev,, < v, then

Jun

(vnfz - I(fxom) (@) > A})T < = t/‘ I omit

Note thatux o) < um, then we have

(vl - 1 (x) > A})F < %/ Ftm.

The first part of the proof gives

SUP U (Y, 00) 1t (y) ™" < C.

y>0

Then for everyy > 0,

which gives

va(y, o0)1u(y) ™t < C,
whenm — oo. Thus

sup v(y, 00)iu(y) " < C,

y>0
which is A < C. SinceA itself is a constant such that (2.7) hold§,s the best constant in
(2.1). Theorem 2}4 is proved. O

Remark 2.5. Theoren| 24 characterizes the weighted weak type inequality for the classical
Hardy operator in the cage= 1. The theorem imposes no restriction gnexcept thay is

a positive number. In fact, differentreveals different information on the equivalence of the
weak and strong type inequalities. Recall that wheng < p = 1, the weight characterization

of the strong type inequality faf is (seel[17])

[aeren ([7) T (@) < oo,

This condition is stronger than the condition (2.6) in general. For example, if we(spt=
2 tD/1 andv(z) = 2 for somea < —1, then the conditior] (2]6) is satisfied but the above
condition for the strong type inequality does not hold.
For the casd = p < ¢ < o0, it is known that the weak and strong type inequalities for
the operatot are equivalent. This conclusion can also be confirmed By 2.4. Recall that when
1 =p < g < o, the necessary and sufficient condition of the strong type inequality i®r

(seell2])
© \ % B
sup / v Jum X0z < 00
r>0 r

Itis easy to see thatu~"x (o[~ coincides withu(r)~' and hence we geft (2.6).
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