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ABSTRACT. The paper studies the weighted weak type inequalities for the Hardy operator as an
operator from weightedLp to weighted weakLq in the casep = 1. It considers two different
versions of the Hardy operator and characterizes their weighted weak type inequalities when
p = 1. It proves that for the classical Hardy operator, the weak type inequality is generally
weaker whenq < p = 1. The best constant in the inequality is also estimated.
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1. I NTRODUCTION

The classical Hardy operatorI is the integral operatorIf(x) =
∫ x

c
f(t)dt, where the lower

limit c in the integral is generally taken to be 0 or−∞, depending on the underlying space
considered. In [4], Hardy first studied this operator fromLp to the weightedLp

x−p whenp > 1.
The boundedness of this operator fromLp

u to Lq
v for general weightsu, v and different pairs of

indicesp andq was considered in [12], [2], [11] and [16]. The boundedness ofI is expressed
by the strong type inequality(∫

If(x)qv(x)dx

) 1
q

≤ C

(∫
f(y)pu(y)dy

) 1
p

, f ≥ 0,

which is also called the weighted norm inequality whenp, q ≥ 1. Whenp < 1, the integral
on the right hand side is no longer a norm, and the inequality is of little interest. Like other
integral operators, the weighted strong type inequality forI always implies the weighted weak
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type inequality(∫
{x:If(x)>λ}

v(x)dx

) 1
q

≤ C

λ

(∫
f(y)pu(y)dy

) 1
p

, f ≥ 0, λ > 0.

It is known that when1 ≤ p ≤ q < ∞, both the weighted strong type and weak type
inequalities for the classical Hardy operator impose the same condition on the weightsu andv.
That is, for givenu andv, either both inequalities hold or both fail. We say that the weighted
strong type and weak type inequalities are equivalent. However, whenq < p and1 < p < ∞,
the equivalence does not hold in general. Characteristics of weighted weak type inequalities for
the Hardy operator and modified Hardy operators were studied in [1], [3], [5], [7], [9], [10],
[13], and [14]. This paper looks at the Hardy Operator and considers the weighted weak type
inequalities in the special casep = 1.

The casep = 1 is subtle, because in this case we need to consider two different operators. If
p 6= 1, considering inequalities forI from Lp

u to Lq
v is readily reduced to considering them for

the operator

Iwf(x) =

∫ x

c

f(t)w(t)dt

from Lp
w to Lq

v, wherew = u1−p′ with 1
p

+ 1
p′

= 1.
However, whenp = 1, the inequalities forI do not reduce to those for the operatorIw, so we

need to deal with them separately. In Section 2, a more general operator thanIw is considered.
Instead of consideringIw, we consider the operatorIµ,

(1.1) Iµf(x) =

∫ x

c

f(t)dµ(t),

whereµ is theσ-finite measure of the underlying space.
In Theorem 2.2, we show that the weighted weak type and strong type inequalities forIµ are

still equivalent. In Theorem 2.4, the weak type inequality forI, whenp = 1 and0 < q < ∞, is
considered. We will see that when0 < q < 1 = p, the weighted weak type inequality is weaker
in general.

Throughout the paper,λ is an arbitrary positive number, acting in the weak type inequalities.
The conventions of0 · ∞ = 0, 0/0 = 0, and∞/∞ = 0 are used.

2. THE CASE p = 1 FOR THE HARDY OPERATOR

First let us consider the operatorIµ defined in (1.1), withc = −∞ for convenience. The
strong type inequalities forIµ whenp = 1 was studied in [15], and we state the result in the
following proposition.

Proposition 2.1. Suppose0 < q < ∞, andµ, ν are σ-finite measures onR. The strong type
inequality

(2.1)

(∫ ∞

−∞
Iµf(x)qdν

) 1
q

≤ C

∫ ∞

−∞
f(y)dµ, f ≥ 0,

holds if and only if

(2.2)
∫

E

dν < ∞, whereE =

{
x ∈ R :

∫ x

−∞
dµ > 0

}
.

In the next theorem, we show that condition (2.2) is also necessary and sufficient for the weak
type inequality, in other words, the strong type and weak type inequalities forIµ are equivalent
whenp = 1.
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Theorem 2.2. Suppose0 < q < ∞, andµ, ν are σ-finite measures onR. Then the weak type
inequality

(2.3) (ν{x : Iµf(x) > λ})
1
q ≤ C

λ
||f ||L1

dµ
, f ≥ 0,

and the strong type inequality (2.1) are equivalent.

Proof. Because the strong type inequality of an operator always implies the weak type inequal-
ity, we only need to prove (2.2) is also necessary for the weak type inequality (2.3).

Since
∫ x

−∞ dµ is a non-decreasing function, the setE is an interval of the formE = (z,∞)
or E = [z,∞). SupposeE 6= ∅, otherwise the proof is trivial.

If z 6= −∞, then we firstly suppose thatz is an atom forµ. Setf(t) = (1/µ{z})χ{z}(t).
Sincez ∈ (−∞, x] for everyx ∈ E we haveIµf(x) = 1. Thus(∫

E

dν

) 1
q

≤
({

x : Iµf(x) >
1

2

}) 1
q

≤ 2C||f ||L1
dµ

= 2C < ∞.

Secondly, supposez is not an atom forµ. Let ε > 0, andf(t) = [1/µ(z, z + ε)]χ(z,z+ε)(t).
Then for everyx ∈ [z + ε,∞), we haveIµf(x) = 1 and hence(∫ ∞

z+ε

dν

) 1
q

≤
({

x : Iµf(x) >
1

2

}) 1
q

≤ 2C||f ||L1
dµ

= 2C < ∞.

As ε → 0+, we have
(∫

E
dν

) 1
q < ∞, and (2.2) holds.

If E = (−∞,∞), then we do the same discussion as above on the interval[z,∞) and then
let z → −∞, and this completes the proof of Theorem 2.2. �

Now let us consider the weighted weak type inequality for the classical Hardy operatorI
(with c = 0 for convenience). We make use of some of the techniques in [17]. Notice that
in Theorem 2.2, the conclusion forIµ is independent of the relation between the indicesq and
p = 1. The operatorI is a little bit more subtle. It does matter whetherq < 1 or q ≥ 1.

Definition 2.1. For a non-negative functionu, defineu by

u(x) = essinf
0<t<x

u(t).

It is easy to see thatu is non-increasing andu ≤ u almost everywhere.

Lemma 2.3. Suppose that0 < q < ∞ and thatk(x, t) is a non-negative kernel which is non-
increasing int for eachx. Supposeu andv are non-negative functions. The best constant in
the weighted weak type inequality(

v

{
x :

∫ ∞

0

k(x, t)f(t)dt > λ

}) 1
q

≤ C

λ

∫ ∞

0

fu for f ≥ 0,

is unchanged whenu is replaced byu.

Proof. Let C be the best constant in the above inequality and letC be the best constant in the
above inequality withu replaced byu. Sinceu ≤ u almost everywhere,C ≤ C. To prove the
reverse inequality it is enough to show that

(2.4)

(
v

{
x :

∫ ∞

x

k(x, t)f(t)dt > λ

}) 1
q

≤ C

λ

∫ ∞

x

fu
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for all non-negativef ∈ L1(x,∞), wherex = inf{x ≥ 0 : u(x) < ∞}. The proof of Theorem
3.2 in [17] shows that for every non-negativef ∈ L1(x,∞) and anyε > 0, there exists anfε

such that ∫ ∞

x

fεu ≤
∫ ∞

x

fu + 2ε

∫ ∞

x

f,

and ∫ ∞

x

k(x, t)f(t)dt ≤ lim infε→0+

∫ ∞

x

k(x, t)fε(t)dt.

If lim infε→0+

∫∞
x

k(x, t)fε(t)dt > λ, then
∫∞

x
k(x, t)fε(t)dt > λ for all sufficiently small

ε > 0. Thus, for allx ≥ x and allλ > 0,

χ{x:lim infε→0+

∫∞
x k(x,t)fε(t)dt>λ}(x) ≤ lim infε→0+χ{x:

∫∞
x k(x,t)fε(t)dt>λ}(x).

We use these estimates to obtain

v

{
x :

∫ ∞

x

k(x, t)f(t)dt > λ

}
≤ v

{
x : lim infε→0+

∫ ∞

x

k(x, t)fε(t)dt > λ

}
=

∫ ∞

0

χ{x:lim infε→0+

∫∞
x k(x,t)fε(t)dt>λ}(x)v(x)dx

≤
∫ ∞

0

lim infε→0+χ{x:
∫∞

x k(x,t)fε(t)dt>λ}(x)v(x)dx

≤ lim infε→0+

∫ ∞

0

χ{x:
∫∞

x k(x,t)fε(t)dt>λ}(x)v(x)dx

= lim infε→0+v

{
x :

∫ ∞

x

k(x, t)fε(t)dt > λ

}
≤ lim infε→0+Cqλ−q

(∫ ∞

x

fεu

)q

≤ Cqλ−qlim infε→0+

(∫ ∞

x

fu + 2ε

∫ ∞

x

f

)q

= Cqλ−q

(∫ ∞

x

fu

)q

,

which gives (2.4) and completes the proof. �

Theorem 2.4. Suppose0 < q < ∞, andu, v are non-negative functions onR. Then the weak
type inequality for the classical Hardy operatorIf(x) =

∫ x

0
f(t)dt,

(2.5) (v{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

f(t)u(t)dt,

holds forf ≥ 0 if and only if

(2.6) sup
y>0

v(y,∞)
1
q (u(y))−1 = A < ∞.

Moreover,C = A is the best constant in (2.5).

Proof. SinceIf(x) =
∫∞

0
χ(0,x)(t)f(t)dt, the kernelχ(0,x)(t) satisfies the hypotheses of Lemma 2.3.

By Lemma 2.3, we only need to show thatA is the best constant in

(2.7) (v{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

fu.
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We first consider the caseu =
∫∞

x
b for someb satisfying

(2.8)
∫ ∞

x

b < ∞ for all x > 0, and
∫ ∞

0

b = ∞.

Then the right hand side of (2.7) becomes

C

λ

∫ ∞

0

f(t)u(t)dt =
C

λ

∫ ∞

0

f(t)

(∫ ∞

t

b(x)dx

)
dt

=
C

λ

∫ ∞

0

(∫ x

0

f

)
b(x)dx.

Since any non-negative, non-decreasing functionF is the limit of an increasing sequence of
functions of the form

∫ x

0
f with f ≥ 0, it is sufficient to show thatC = A is also the best

constant in the following inequality

(2.9) v{x : F (x) > λ}
1
q ≤ C

λ

∫ ∞

0

Fb, for F ≥ 0, andF non-decreasing.

Suppose thatA < ∞ andF is non-decreasing, then{x : F (x) > λ} is an interval of the form
(y,∞) or [y,∞). Since the left end pointy does not change the integral, we have

v{x : F (x) > λ}
1
q = v(y,∞)

1
q ≤ Au(y) = A

∫ ∞

y

b ≤ A

∫ ∞

y

F (x)

λ
b =

A

λ

∫ ∞

y

Fb,

which gives (2.9) with the constantA.
Now suppose (2.9) holds. Fixy > 0. For a givenε > 0, letλ = 1− ε, andF (x) = χ(y,∞)(x),

then

v(y,∞)
1
q = v{x : F (x) > λ}

1
q ≤ C

λ

∫ ∞

0

Fb =
C

1− ε

∫ ∞

y

b =
C

1− ε
u(y).

Letting ε → 0+, we get

v(y,∞)
1
q u(y)−1 ≤ C.

In the caseu(y) = 0, we use the convention0 · ∞ = 0. Then we obtainA ≤ C, and also get
thatA is the best constant in (2.9).

Next we consider the case of generalu. We can assume thatu(x) < ∞ for all x, since if
u = ∞ on some interval(0, x) then we translateu to the left to get a smalleru and reduce the
problem to one in which this does not happen. Then for eachn > 0, the functionuχ(0,n) is
finite, non-increasing and tends to0 at∞. We can approximate it from above by functions of
the form

∫∞
x

b with b satisfying (2.8). Let{um} be a non-increasing sequence of such functions
that converges touχ(0,n) pointwise almost everywhere. Letvn = vχ(0,n), then the first part of
the proof gives

vn

{
x :

∫ x

0

f(t)dt > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q um(y)−1

∫ ∞

0

f(t)um(t)dt, f ≥ 0,

which implies

vn

{
x :

∫ x

0

gu−1
m > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q um(y)−1

∫ ∞

0

g, g ≥ 0.

The Monotone Convergence Theorem, and the factum(y)−1 < u(y)−1 wheny ∈ (0, n) give

vn

{
x :

∫ x

0

gu−1 > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q u(y)−1

∫ ∞

0

g, g ≥ 0.
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Let f = gu−1 to get

vn

{
x :

∫ x

0

f > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q u(y)−1

∫ ∞

0

fu ≤ A

λ

∫ ∞

0

fu, f ≥ 0.

Let n →∞, we get (2.7) with the constantC = A.
Conversely, suppose (2.7) holds for some constantC. Sincevn ≤ v, then(

vn{x : I(fχ(0,n))(x) > λ}
) 1

q ≤ C

λ

∫ ∞

0

fχ(0,n)u.

Note thatuχ(0,n) ≤ um, then we have

(vn{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

fum.

The first part of the proof gives

sup
y>0

vn(y,∞)
1
q um(y)−1 ≤ C.

Then for everyy > 0,

vn(y,∞)
1
q um(y)−1 ≤ C,

which gives

vn(y,∞)
1
q u(y)−1 ≤ C,

whenm →∞. Thus

sup
y>0

v(y,∞)
1
q u(y)−1 ≤ C,

which is A ≤ C. SinceA itself is a constant such that (2.7) holds,A is the best constant in
(2.7). Theorem 2.4 is proved. �

Remark 2.5. Theorem 2.4 characterizes the weighted weak type inequality for the classical
Hardy operator in the casep = 1. The theorem imposes no restriction onq, except thatq is
a positive number. In fact, differentq reveals different information on the equivalence of the
weak and strong type inequalities. Recall that when0 < q < p = 1, the weight characterization
of the strong type inequality forI is (see [17])∫ ∞

0

u(x)q/(q−1)

(∫ ∞

x

v

) q
1−q

v(x)dx < ∞.

This condition is stronger than the condition (2.6) in general. For example, if we setu(x) =
x(α+1)/q andv(x) = xα for someα < −1, then the condition (2.6) is satisfied but the above
condition for the strong type inequality does not hold.

For the case1 = p ≤ q < ∞, it is known that the weak and strong type inequalities for
the operatorI are equivalent. This conclusion can also be confirmed by 2.4. Recall that when
1 = p ≤ q < ∞, the necessary and sufficient condition of the strong type inequality forI is
(see [2])

sup
r>0

(∫ ∞

r

v

) 1
q

||u−1χ(0,r)||L∞ < ∞.

It is easy to see that||u−1χ(0,r)||L∞ coincides withu(r)−1 and hence we get (2.6).
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