THE HYPO-EUCLIDEAN NORM OF AN N-TUPLE OF VECTORS IN INNER PRODUCT SPACES AND APPLICATIONS

S.S. DRAGOMIR

School of Computer Science and Mathematics
Victoria University
PO Box 14428, Melbourne City
8001, VIC, Australia
EMail: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/dragomir

Received:
19 March, 2007
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

28 April, 2007
J.M. Rassias

Primary 47C05, 47C10; Secondary 47A12.
Inner product spaces, Norms, Bessel's inequality, Boas-Bellman and Bombieri inequalities, Bounded linear operators, Numerical radius.

The concept of hypo-Euclidean norm for an n-tuple of vectors in inner product spaces is introduced. Its fundamental properties are established. Upper bounds via the Boas-Bellman [1]-[3] and Bombieri [2] type inequalities are provided. Applications for n-tuples of bounded linear operators defined on Hilbert spaces are also given.

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

\uparrow	
4	
Page 1 of 43	
Go Back	

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Fundamental Properties 6
3 Upper Bounds via the Boas-Bellman and Bombieri Type Inequalities 14
4 Various Inequalities for the Hypo-Euclidean Norm 20
5 Reverse Inequalities 28
6 Applications for n-Tuples of Operators 32
7 A Norm on $B(H)$ 40

M

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 2 of 43

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let $(E,\|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K}. On \mathbb{K}^{n} endowed with the canonical linear structure we consider a norm $\|\cdot\|_{n}$ and the unit ball

$$
\mathbb{B}\left(\|\cdot\|_{n}\right):=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n} \mid\|\lambda\|_{n} \leq 1\right\}
$$

As an example of such norms we should mention the usual p-norms

$$
\|\lambda\|_{n, p}:= \begin{cases}\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\} & \text { if } p=\infty \tag{1.1}\\ \left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}} & \text { if } p \in[1, \infty)\end{cases}
$$

The Euclidean norm is obtained for $p=2$, i.e.,

$$
\|\lambda\|_{n, 2}=\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

It is well known that on $E^{n}:=E \times \cdots \times E$ endowed with the canonical linear structure we can define the following p-norms:

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 3 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $X=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$.
It is easy to see that:
(i) $\|X\|_{h, n} \geq 0$ for any $X \in E^{n}$;
(ii) $\|X+Y\|_{h, n} \leq\|X\|_{h, n}+\|Y\|_{h, n}$ for any $X, Y \in E^{n}$;
(iii) $\|\alpha X\|_{h, n}=|\alpha|\|X\|_{h, n}$ for each $\alpha \in \mathbb{K}$ and $X \in E^{n}$;
and therefore $\|\cdot\|_{h, n}$ is a semi-norm on E^{n}. This will be called the hypo-semi-norm generated by the norm $\|\cdot\|_{n}$ on X^{n}.

We observe that $\|X\|_{h, n}=0$ if and only if $\sum_{j=1}^{n} \lambda_{j} x_{j}=0$ for any $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in$ $B\left(\|\cdot\|_{n}\right)$. If there exists $\lambda_{1}^{0}, \ldots, \lambda_{n}^{0} \neq 0$ such that $\left(\lambda_{1}^{0}, 0, \ldots, 0\right),\left(0, \lambda_{2}^{0}, \ldots, 0\right), \ldots$, $\left(0,0, \ldots, \lambda_{n}^{0}\right) \in B\left(\|\cdot\|_{n}\right)$ then the semi-norm generated by $\|\cdot\|_{n}$ is a norm on E^{n}.

If by $\mathbb{B}_{n, p}$ with $p \in[1, \infty]$ we denote the balls generated by the $p-$ norms $\|\cdot\|_{n, p}$ on \mathbb{K}^{n}, then we can obtain the following hypo-p-norms on X^{n} :

$$
\begin{equation*}
\|X\|_{h, n, p}:=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n, p}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\| \tag{1.4}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 4 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Moreover, if $E=H, H$ is a Hilbert space over \mathbb{K}, then the hypo-Euclidean norm on H^{n} will be denoted simply by

$$
\begin{equation*}
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{e}:=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\| \tag{1.6}
\end{equation*}
$$

and its properties will be extensively studied in the present paper.
Both the notation in (1.6) and the necessity of investigating its main properties are motivated by the recent work of G. Popescu [9] who introduced a similar norm on the Cartesian product of Banach algebra $B(H)$ of all bounded linear operators on H and used it to investigate various properties of n-tuple of operators in Multivariable Operator Theory. The study is also motivated by the fact that the hypo-Euclidean norm is closely related to the quadratic form $\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2}$ (see the representation Theorem 2.2) that plays a key role in many problems arising in the Theory of Fourier expansions in Hilbert spaces.

The paper is structured as follows: in Section 2 we establish the equivalence of the hypo-Euclidean norm with the usual Euclidean norm on H^{n}, provide a representation result and obtain some lower bounds for it. In Section 3, on utilising the classical results of Boas-Bellman and Bombieri as well as some recent similar results obtained by the author, we give various upper bounds for the hypo-Euclidean norm. These are complemented in Section 4 with other inequalities between p-norms and the hypo-Euclidean norm. Section 5 is devoted to the presentation of some conditional reverse inequalities between the hypo-Euclidean norm and the norm of the sum of the vectors involved. In Section 6, the natural connection between the hypoEuclidean norm and the operator norm $\|(\cdot, \ldots, \cdot)\|_{e}$ introduced by Popescu in [9] is investigated. A representation result is obtained and some applications for operator inequalities are pointed out. Finally, in Section 7, a new norm for operators is introduced and some natural inequalities are obtained.

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 5 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

2. Fundamental Properties

Let $(H ;\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbb{K} and $n \in \mathbb{N}, n \geq 1$. In the Cartesian product $H^{n}:=H \times \cdots \times H$, for the n-tuples of vectors $X=\left(x_{1}, \ldots, x_{n}\right)$, $Y=\left(y_{1}, \ldots, y_{n}\right) \in H^{n}$, we can define the inner product $\langle\cdot, \cdot\rangle$ by

$$
\begin{equation*}
\langle X, Y\rangle:=\sum_{j=1}^{n}\left\langle x_{j}, y_{j}\right\rangle, \quad X, Y \in H^{n} \tag{2.1}
\end{equation*}
$$

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007
which generates the Euclidean norm $\|\cdot\|_{2}$ on H^{n}, i.e.,

$$
\begin{equation*}
\|X\|_{2}:=\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}\right)^{\frac{1}{2}}, \quad X \in H^{n} \tag{2.2}
\end{equation*}
$$

The following result connects the usual Euclidean norm $\|\cdot\|$ with the hypo-Euclidean norm $\|\cdot\|_{e}$.

Theorem 2.1. For any $X \in H^{n}$ we have the inequalities

Title Page
Contents

Page 6 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for any $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}$. Taking the supremum over $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}$ in (2.4) we obtain the first inequality in (2.3).

If by σ we denote the rotation-invariant normalised positive Borel measure on the unit sphere $\partial \mathbb{B}_{n}\left(\partial \mathbb{B}_{n}=\left.\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}\left|\sum_{i=1}^{n}\right| \lambda_{i}\right|^{2}=1\right)$ whose existence and properties have been pointed out in [10], then we can state that

$$
\begin{align*}
& \int_{\partial \mathbb{B}_{n}}\left|\lambda_{k}\right|^{2} d \sigma(\lambda)=\frac{1}{n} \quad \text { and } \tag{2.5}\\
& \int_{\partial \mathbb{B}_{n}} \lambda_{k} \overline{\lambda_{j}} d \sigma(\lambda)=0 \quad \text { if } \quad k \neq j, k, j=1, \ldots, n
\end{align*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 7 of 43
Go Back
Full Screen
from where we deduce the second inequality in (2.3).
The following representation result for the hypo-Euclidean norm plays a key role in obtaining various bounds for this norm:

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.2. For any $X \in H^{n}$ with $X=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\begin{equation*}
\|X\|_{e}=\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \tag{2.6}
\end{equation*}
$$

Proof. We use the following well known representation result for scalars:

$$
\begin{equation*}
\sum_{j=1}^{n}\left|z_{j}\right|^{2}=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left|\sum_{j=1}^{n} \lambda_{j} z_{j}\right|^{2} \tag{2.7}
\end{equation*}
$$

where $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{K}^{n}$.
Utilising this property, we thus have

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}}=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left|\left\langle x, \sum_{j=1}^{n} \lambda_{j} x_{j}\right\rangle\right| \tag{2.8}
\end{equation*}
$$

for any $x \in H$.
Now, taking the supremum over $\|x\|=1$ in (2.8) we get

$$
\begin{aligned}
\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}} & =\sup _{\|x\|=1}\left[\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left|\left\langle x, \sum_{j=1}^{n} \lambda_{j} x_{j}\right\rangle\right|\right] \\
& =\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left[\sup _{\|x\|=1}\left|\left\langle x, \sum_{j=1}^{n} \lambda_{j} x_{j}\right\rangle\right|\right] \\
& =\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\|,
\end{aligned}
$$

since, in any Hilbert space we have that $\sup _{\|u\|=1}|\langle u, v\rangle|=\|v\|$ for each $v \in H$.

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 8 of 43	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 2.3. If $X=\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple of orthonormal vectors, i.e., we recall that $\left\|x_{k}\right\|=1$ and $\left\langle x_{k}, x_{j}\right\rangle=0$ for $k, j \in\{1, \ldots, n\}$ with $k \neq j$, then $\|X\|_{e} \leq 1$.

The proof is obvious by Bessel's inequality.
The next proposition contains two lower bounds for the hypo-Euclidean norm that are sometimes better than the one in (2.3), as will be shown by some examples
later.

Proposition 2.4. For any $X=\left(x_{1}, \ldots, x_{n}\right) \in H^{n} \backslash\{0\}$ we have

$$
\|X\|_{e} \geq\left\{\begin{array}{l}
\frac{1}{\|X\|_{2}}\left\|\sum_{j=1}^{n}\right\| x_{j}\left\|x_{j}\right\| \tag{2.9}\\
\frac{1}{\sqrt{n}}\left\|\sum_{j=1}^{n} x_{j}\right\|
\end{array}\right.
$$

Proof. By the definition of the hypo-Euclidean norm we have that, if $\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right) \in$ \mathbb{B}_{n}, then obviously

$$
\|X\|_{e} \geq\left\|\sum_{j=1}^{n} \lambda_{j}^{0} x_{j}\right\|
$$

The choice

$$
\lambda_{j}^{0}:=\frac{\left\|x_{j}\right\|}{\|X\|_{2}}, \quad j \in\{1, \ldots, n\}
$$

which satisfies the condition $\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right) \in \mathbb{B}_{n}$ will produce the first inequality while the selection

$$
\lambda_{j}^{0}=\frac{1}{\sqrt{n}}, \quad j \in\{1, \ldots, n\}
$$

will give the second inequality in (2.9).

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
J
\qquad

Page 9 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 1. For $n=2$, the hypo-Euclidean norm on H^{2}

$$
\|(x, y)\|_{e}=\sup _{(\lambda, \mu) \in \mathbb{B}_{2}}\|\lambda x+\mu y\|=\sup _{\|z\|=1}\left[|\langle z, x\rangle|^{2}+|\langle z, y\rangle|^{2}\right]^{\frac{1}{2}}
$$

is bounded below by

$$
\begin{aligned}
B_{1}(x, y) & :=\frac{1}{\sqrt{2}}\left(\|x\|^{2}+\|y\|^{2}\right)^{\frac{1}{2}} \\
B_{2}(x, y) & :=\frac{\| \| x\|x+\| y\|y\|}{\left(\|x\|^{2}+\|y\|^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

and

$$
B_{3}(x, y):=\frac{1}{\sqrt{2}}\|x+y\|
$$

If $H=\mathbb{C}$ endowed with the canonical inner product $\langle x, y\rangle:=x \bar{y}$ where $x, y \in \mathbb{C}$, then

$$
\begin{aligned}
& B_{1}(x, y)=\frac{1}{\sqrt{2}}\left(|x|^{2}+|y|^{2}\right)^{\frac{1}{2}} \\
& B_{2}(x, y)=\frac{\| x|x+|y| y|}{\left(|x|^{2}+|y|^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 10 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$D_{3}(x, y):=B_{2}(x, y)-B_{3}(x, y)$ (see Figure 3) appears to indicate that, at least in the case of \mathbb{C}^{2}, it may be possible that the bound B_{2} is always better than B_{3}, hence we can ask in general which bound from (2.6) is better for a given $n \geq 2$? This is an open problem that will be left to the interested reader for further investigation.

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 11 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Figure 2: The behaviour of $D_{2}(x, y)$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 12 of 43
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Figure 3: The behaviour of $D_{3}(x, y)$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 13 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Upper Bounds via the Boas-Bellman and Bombieri Type Inequalities

In 1941, R.P. Boas [3] and in 1944, independently, R. Bellman [1] proved the following generalisation of Bessel's inequality that can be stated for any family of vectors $\left\{y_{1}, \ldots, y_{n}\right\}$ (see also [8, p. 392] or [5, p. 125]):

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \leq\|x\|^{2}\left[\max _{1 \leq j \leq n}\left\|y_{j}\right\|^{2}+\left(\sum_{1 \leq j \neq k \leq n}\left|\left\langle y_{k}, y_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\right] \tag{3.1}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
This result is known in the literature as the Boas-Bellman inequality.
The following result provides various upper bounds for the hypo-Euclidean norm:
Contents

Theorem 3.1. For any $X=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$, we have

$$
\|X\|_{e}^{2} \leq\left\{\begin{array}{l}
\max _{1 \leq j \leq n}\left\|x_{j}\right\|^{2}+\left(\sum_{1 \leq j \neq k \leq n}\left|\left\langle x_{k}, x_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \tag{3.2}\\
\max _{1 \leq j \leq n}\left\|x_{j}\right\|^{2}+(n-1) \max _{1 \leq j \neq k \leq n}\left|\left\langle x_{k}, x_{j}\right\rangle\right|
\end{array}\right.
$$

Page 14 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and
(3.4) $\|X\|_{e}^{4} \leq\left\{\begin{array}{l}\max _{1 \leq j \leq n}\left\|x_{j}\right\|^{2} \sum_{j=1}^{n}\left\|x_{j}\right\|^{2}+(n-1)\|X\|_{e}^{2} \max _{1 \leq j \neq k \leq n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|, \\ \|X\|_{e}^{2} \max _{1 \leq j \leq n}\left\|x_{j}\right\|^{2}+\max _{1 \leq j \neq k \leq n}\left\{\left\|x_{j}\right\|\left\|x_{k}\right\|\right\} \sum_{1 \leq j \neq k \leq n}\left|\left\langle x_{j}, x_{k}\right\rangle\right| .\end{array}\right.$

Proof. Taking the supremum over $\|x\|=1$ in (3.1) and utilising the representation (2.6), we deduce the first inequality in (3.2).

In [4], we proved amongst others the following inequalities

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 15 of 43

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
+\|x\|^{2} \times\left\{\begin{array}{l}
\max _{1 \leq j \neq k \leq n}\left\{\left|\left\langle x, y_{j}\right\rangle\right|\left|\left\langle x, y_{k}\right\rangle\right|\right\} \sum_{1 \leq j \neq k \leq n}\left|\left\langle y_{j}, y_{k}\right\rangle\right|, \\
(n-1) \sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \max _{1 \leq j \neq k \leq n}\left|\left\langle y_{j}, y_{k}\right\rangle\right|
\end{array}\right.
$$

Taking the supremum over $\|x\|=1$ and utilising the representation (2.6) we easily deduce the rest of the four inequalities.

A different generalisation of Bessel's inequality for non-orthogonal vectors is the Bombieri inequality (see [2] or [8, p. 397] and [5, p. 134]):

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, y_{j}\right\rangle\right|^{2} \leq\|x\|^{2} \max _{1 \leq j \leq n}\left\{\sum_{k=1}^{n}\left|\left\langle y_{j}, y_{k}\right\rangle\right|\right\} \tag{3.7}
\end{equation*}
$$

for any $x \in H$, where y_{1}, \ldots, y_{n} are vectors in the real or complex inner product space $(H ;\langle\cdot, \cdot\rangle)$.

Note that, the Bombieri inequality was not stated in the general case of inner product spaces in [2]. However, the inequality presented there easily leads to (3.7) which, apparently, was firstly mentioned as is in [8, p. 394].

On utilising the Bombieri inequality (3.7) and the representation Theorem 2.2, we can state the following simple upper bound for the hypo-Euclidean norm $\|\cdot\|_{e}$.
Theorem 3.2. For any $X=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$, we have

$$
\begin{equation*}
\|X\|_{e}^{2} \leq \max _{1 \leq j \leq n}\left\{\sum_{k=1}^{n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|\right\} \tag{3.8}
\end{equation*}
$$

In [6] (see also [5, p. 138]), we have established the following norm inequalities:

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq n^{\frac{1}{p}+\frac{1}{t}-1} \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2}\left[\sum_{k=1}^{n}\left(\sum_{j=1}^{n}\left|\left\langle z_{j}, z_{k}\right\rangle\right|^{q}\right)^{\frac{u}{q}}\right]^{\frac{1}{u}} \tag{3.9}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 16 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $\frac{1}{p}+\frac{1}{q}=1, \frac{1}{t}+\frac{1}{u}=1$ and $1<p \leq 2,1<t \leq 2$ and $\alpha_{j} \in \mathbb{C}, z_{j} \in H$, $j \in\{1, \ldots, n\}$.

An interesting particular case of (3.9) obtained for $p=q=2, t=u=2$ is incorporated in

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2}\left(\sum_{j, k=1}^{n}\left|\left\langle z_{j}, z_{k}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \tag{3.10}
\end{equation*}
$$

Other similar inequalities for norms are the following ones [6] (see also [5, pp. 139-140]):

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq n^{\frac{1}{p}} \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2} \max _{1 \leq j \leq n}\left\{\left[\sum_{k=1}^{n}\left|\left\langle z_{j}, z_{k}\right\rangle\right|^{q}\right]^{\frac{1}{q}}\right\} \tag{3.11}
\end{equation*}
$$

provided that $1<p \leq 2$ and $\frac{1}{p}+\frac{1}{q}=1, \alpha_{j} \in \mathbb{C}, z_{j} \in H, j \in\{1, \ldots, n\}$. In the particular case $p=q=2$, we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq \sqrt{n} \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2} \max _{1 \leq j \leq n}\left[\sum_{k=1}^{n}\left|\left\langle z_{j}, z_{k}\right\rangle\right|^{2}\right]^{\frac{1}{2}} . \tag{3.12}
\end{equation*}
$$

Also, if $1<m \leq 2$, then [6]:

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq n^{\frac{1}{m}} \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2}\left\{\sum_{j=1}^{n}\left[\max _{1 \leq k \leq n}\left|\left\langle z_{j}, z_{k}\right\rangle\right|^{l}\right]\right\}^{\frac{1}{l}} \tag{3.13}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 17 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Finally, we can also state the inequality [6]:

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \alpha_{j} z_{j}\right\|^{2} \leq n \sum_{k=1}^{n}\left|\alpha_{k}\right|^{2} \max _{1 \leq j, k \leq n}\left|\left\langle z_{j}, z_{k}\right\rangle\right| . \tag{3.15}
\end{equation*}
$$

Utilising the above norm-inequalities and the definition of the hypo-Euclidean norm, we can state the following result which provides other upper bounds than the ones outlined in Theorem 3.1 and 3.2:

Theorem 3.3. For any $X=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$, we have

$$
\begin{align*}
& \left\{\begin{array}{r}
n^{\frac{1}{p}+\frac{1}{t}-1}\left\{\sum_{k=1}^{n}\left(\sum_{j=1}^{n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{q}\right)^{\frac{u}{q}}\right\} \quad \text { where } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{u}+\frac{1}{u}=1 \text { and } 1<p<2, \quad 1<t<2 ;
\end{array}\right. \\
& n^{\frac{1}{p}} \max _{1 \leq j \leq n}\left\{\left[\sum_{j=1}^{n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{q}\right]^{\frac{1}{q}}\right\} \quad \text { where } \frac{1}{p}+\frac{1}{q}=1 \tag{3.16}\\
& \text { and } 1<p \leq 2 \text {; } \\
& n^{\frac{1}{m}}\left\{\sum_{j=1}^{n}\left[\max _{1 \leq k \leq n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{l}\right]\right\}^{\frac{1}{l}} \quad \text { where } \frac{1}{m}+\frac{1}{l}=1 \\
& \text { and } 1<m \leq 2 \text {; } \\
& n \max _{1 \leq k \leq n}\left|\left\langle x_{k}, z_{j}\right\rangle\right| ;
\end{align*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 18 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and, in particular,

$$
\|X\|_{e}^{2} \leq\left\{\begin{array}{l}
{\left[\sum_{j, k=1}^{n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{2}\right]^{\frac{1}{2}} ;} \tag{3.17}\\
\sqrt{n} \max _{1 \leq j \leq n}\left[\sum_{k=1}^{n}\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{2}\right]^{\frac{1}{2}} \\
\sqrt{n}\left[\sum_{j=1}^{n}\left(\max _{1 \leq k \leq n}\left\{\left|\left\langle x_{j}, x_{k}\right\rangle\right|^{2}\right\}\right)\right]^{\frac{1}{2}} .
\end{array}\right.
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 19 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: l443-575b

4. Various Inequalities for the Hypo-Euclidean Norm

For an n-tuple $X=\left(x_{1}, \ldots, x_{n}\right)$ of vectors in H, we consider the usual p-norms:

$$
\|X\|_{p}:=\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{p}\right)^{\frac{1}{p}}
$$

where $p \in[1, \infty)$, and denote with S the sum $\sum_{j=1}^{n} x_{j}$.
With these notations we can state the following reverse of the inequality $\|X\|_{2} \geq$ $\|X\|_{e}$, that has been pointed out in Theorem 2.1.

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$$
\|X\|_{(2)}^{2}:=\sum_{j, k=1}^{n}\left\|\frac{x_{j}+x_{k}}{2}\right\|^{2}
$$

then also

$$
\begin{align*}
& (0 \leq)\|X\|_{2}^{2}-\|X\|_{e}^{2} \leq\|X\|_{(2)}^{2}-\|S\|^{2} \tag{4.2}\\
& \left(\leq n\|X\|_{2}^{2}-\|S\|^{2}\right) .
\end{align*}
$$

Page 20 of 43
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq \sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\left|\sum_{1 \leq j \neq k \leq n}\left\langle x, x_{j}\right\rangle\left\langle x_{k}, x\right\rangle\right| \\
& \leq \sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\sum_{1 \leq j \neq k \leq n}\left|\left\langle x, x_{j}\right\rangle\right|\left|\left\langle x_{k}, x\right\rangle\right| .
\end{aligned}
$$

Taking the supremum over $\|x\|=1$, we get

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
However,

$$
\begin{aligned}
& \sup _{\|x\|=1}\left|\sum_{j=1}^{n}\left\langle x, x_{j}\right\rangle\right|^{2}=\sup _{\|x\|=1}\left|\left\langle x, \sum_{j=1}^{n} x_{j}\right\rangle\right|^{2}=\|S\|^{2}, \\
& \sup _{\|x\|=1}\left|\left\langle x, x_{j}\right\rangle\right|=\left\|x_{j}\right\| \quad \text { and } \quad \sup _{\|x\|=1}\left|\left\langle x, x_{k}\right\rangle\right|=\left\|x_{k}\right\|
\end{aligned}
$$

for $j, k \in\{1, \ldots, n\}$, and by (4.4) we get

$$
\begin{aligned}
\|S\|^{2} & \leq\|X\|_{e}^{2}+\sum_{1 \leq j \neq k \leq n}\left\|x_{j}\right\|\left\|x_{j}\right\| \\
& =\|X\|_{e}^{2}+\sum_{j, k=1}^{n}\left\|x_{j}\right\|\left\|x_{k}\right\|-\sum_{k=1}^{n}\left\|x_{k}\right\|^{2} \\
& =\|X\|_{e}^{2}+\|X\|_{1}^{2}-\|X\|_{2}^{2},
\end{aligned}
$$

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
which is clearly equivalent with (4.1).
Further on, we also observe that, for any $x \in H$ we have the identity:

$$
\begin{align*}
\left|\sum_{j=1}^{n}\left\langle x, x_{j}\right\rangle\right|^{2} & =\operatorname{Re}\left[\sum_{k, j=1}^{n}\left\langle x, x_{j}\right\rangle\left\langle x_{k}, x\right\rangle\right] \tag{4.5}\\
& =\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\sum_{1 \leq j \neq k \leq n} \operatorname{Re}\left[\left\langle x, x_{j}\right\rangle\left\langle x_{k}, x\right\rangle\right] .
\end{align*}
$$

Utilising the elementary inequality for complex numbers

$$
\begin{equation*}
\operatorname{Re}(u \bar{v}) \leq \frac{1}{4}|u+v|^{2}, \quad u, v \in \mathbb{C} \tag{4.6}
\end{equation*}
$$

Hypo-Euclidean Norm

S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$$
\begin{aligned}
\sum_{1 \leq k \neq j \leq n} \operatorname{Re}\left[\left\langle x, x_{j}\right\rangle\left\langle x_{k}, x\right\rangle\right] & \leq \frac{1}{4} \sum_{1 \leq k \neq j \leq n}\left|\left\langle x, x_{j}\right\rangle+\left\langle x, x_{k}\right\rangle\right|^{2} \\
& =\sum_{1 \leq k \neq j \leq n}\left|\left\langle x, \frac{x_{j}+x_{k}}{2}\right\rangle\right|^{2},
\end{aligned}
$$

and by (4.5) we get

$$
\begin{equation*}
\left|\sum_{j=1}^{n}\left\langle x, x_{j}\right\rangle\right|^{2} \leq \sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\sum_{1 \leq k \neq j \leq n}\left|\left\langle x, \frac{x_{j}+x_{k}}{2}\right\rangle\right|^{2} \tag{4.7}
\end{equation*}
$$

for any $x \in H$.
we can state that

Page 22 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
J
issn: 1443-575b

Taking the supremum over $\|x\|=1$ in (4.7) we deduce

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} x_{j}\right\|^{2} & \leq\|X\|_{e}^{2}+\sum_{1 \leq k \neq j \leq n}\left\|\frac{x_{j}+x_{k}}{2}\right\|^{2} \\
& =\|X\|_{e}^{2}+\sum_{k, j=1}^{n}\left\|\frac{x_{j}+x_{k}}{2}\right\|^{2}-\sum_{k=1}^{n}\left\|x_{k}\right\|^{2}
\end{aligned}
$$

which provides the first inequality in (4.2).
By the convexity of $\|\cdot\|^{2}$ we have

$$
\sum_{j, k=1}^{n}\left\|\frac{x_{j}+x_{k}}{2}\right\|^{2} \leq \frac{1}{2} \sum_{j, k=1}^{n}\left[\left\|x_{j}\right\|^{2}+\left\|x_{k}\right\|^{2}\right]=n \sum_{k=1}^{n}\left\|x_{k}\right\|^{2}
$$

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
and the last part of (4.2) is obvious.
Remark 2. For $n=2, X=(x, y) \in H^{2}$ we have the upper bounds

$$
\begin{aligned}
B_{1}(x, y) & :=\|x\|^{2}+\|y\|^{2}-\|x+y\|^{2} \\
& =2(\|x\|\|y\|-\operatorname{Re}\langle x, y\rangle)
\end{aligned}
$$

and

$$
B_{2}(x, y):=\|x\|^{2}+\|y\|^{2}
$$

for the difference $\|X\|_{2}^{2}-\|X\|_{e}^{2}, X \in H^{2}$ as provided by (4.1) and (4.2) respectively. If $H=\mathbb{R}$ then $B_{1}(x, y)=2(|x y|-x y), B_{2}(x, y)=x^{2}+y^{2}$. If we consider the function $\Delta(x, y)=B_{2}(x, y)-B_{1}(x, y)$ then the plot of $\Delta(x, y)$ depicted in Figure 4 shows that the bounds provided by (4.1) and (4.2) cannot be compared in general, meaning that sometimes the first is better than the second and vice versa.

Page 23 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

J

Figure 4: The behaviour of $\Delta(x, y)$

From a different view-point we can state the following result:
Theorem 4.2. For any $X=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}$, we have
(4.8)

$$
\|S\|^{2} \leq\|X\|_{e}\left[\|X\|_{e}+\left(\sum_{k=1}^{n}\left\|S-x_{k}\right\|^{2}\right)^{\frac{1}{2}}\right]
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 24 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and
(4.9) $\|S\|^{2}$

$$
\leq\|X\|_{e}\left[\|X\|_{e}+\left\{\max _{1 \leq k \leq n}\left\|S-x_{k}\right\|^{2}+\left(\sum_{1 \leq k \neq l \leq n}\left|\left\langle S-x_{k}, S-x_{l}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\right\}^{\frac{1}{2}}\right]
$$

respectively.

Proof. Utilising the identity (4.5) above we have
Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
for any $x \in H$.
By the Schwarz inequality in the inner product space $(H,\langle\cdot, \cdot\rangle)$, we have that

$$
\text { (4.11) } \begin{aligned}
\operatorname{Re}\left\langle x, \sum_{1 \leq j \neq k \leq n}\left\langle x, x_{k}\right\rangle x_{j}\right\rangle & \leq\|x\|\left\|\sum_{1 \leq j \neq k \leq n}\left\langle x, x_{k}\right\rangle x_{j}\right\| \\
& =\|x\|\left\|\sum_{j, k=1}^{n}\left\langle x, x_{k}\right\rangle x_{j}-\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle x_{k}\right\| \\
& =\|x\|\left\|\left\langle x, \sum_{k=1}^{n} x_{k}\right\rangle \sum_{j=1}^{n} x_{j}-\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle x_{k}\right\| \\
& =\|x\|\left\|\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle\left(S-x_{k}\right)\right\| .
\end{aligned}
$$

$$
\begin{equation*}
\left|\sum_{j=1}^{n}\left\langle x, x_{j}\right\rangle\right|^{2}=\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\operatorname{Re}\left\langle x, \sum_{1 \leq j \neq k \leq n}\left\langle x, x_{k}\right\rangle x_{j}\right\rangle \tag{4.10}
\end{equation*}
$$

Col

Page 25 of 43

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Utilising the Cauchy-Bunyakovsky-Schwarz inequality we have

$$
\begin{equation*}
\left\|\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle\left(S-x_{k}\right)\right\| \leq\left(\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left\|S-x_{k}\right\|^{2}\right)^{\frac{1}{2}} \tag{4.12}
\end{equation*}
$$

and then by (4.10) - (4.12) we can state the inequality:

$$
\begin{align*}
& \left|\sum_{j=1}^{n}\left\langle x, x_{j}\right\rangle\right|^{2} \tag{4.13}\\
& \quad \leq\left(\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\left[\left(\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{n}\left\|S-x_{k}\right\|^{2}\right)^{\frac{1}{2}}\right]
\end{align*}
$$

for any $x \in H,\|x\|=1$. Taking the supremum over $\|x\|=1$ we deduce the desired result (4.8).

Now, following the above argument, we can also state that

$$
\begin{equation*}
\left|\left\langle x, \sum_{j=1}^{n} x_{j}\right\rangle\right|^{2} \leq \sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}+\|x\|\left\|\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle\left(S-x_{k}\right)\right\| \tag{4.14}
\end{equation*}
$$

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 26 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $\alpha_{j} \in \mathbb{C}, z_{j} \in H, j \in\{1, \ldots, n\}$, that has been obtained in [4], see also [5, p . 128], we can state that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle\left(S-x_{k}\right)\right\| \tag{4.16}
\end{equation*}
$$

$$
\leq\left(\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\left\{\max _{1 \leq k \leq n}\left\|S-x_{k}\right\|^{2}+\left(\sum_{1 \leq k \neq l \leq n}\left|\left\langle S-x_{k}, S-x_{l}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\right\}^{\frac{1}{2}}
$$

for any $x \in H$.
Now, by the use of (4.14) - (4.16) we deduce the desired result (4.9). The details are omitted.

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 27 of 43
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

5. Reverse Inequalities

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean norm, we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for real or complex numbers as follows:

If $\gamma, \Gamma \in \mathbb{K}(\mathbb{K}=\mathbb{C}, \mathbb{R})$ and $\alpha_{j} \in \mathbb{K}, j \in\{1, \ldots, n\}$ with the property that

$$
\begin{align*}
0 & \leq \operatorname{Re}\left[\left(\Gamma-\alpha_{j}\right)\left(\overline{\alpha_{j}}-\bar{\gamma}\right)\right] \tag{5.1}\\
& =\left(\operatorname{Re} \Gamma-\operatorname{Re} \alpha_{j}\right)\left(\operatorname{Re} \alpha_{j}-\operatorname{Re} \gamma\right)+\left(\operatorname{Im} \Gamma-\operatorname{Im} \alpha_{j}\right)\left(\operatorname{Im} \alpha_{j}-\operatorname{Im} \gamma\right)
\end{align*}
$$

for each $j \in\{1, \ldots, n\}$, then (see for instance [5, p. 9])

$$
\begin{equation*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}-\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2} \leq \frac{1}{4} \cdot n^{2}|\Gamma-\gamma|^{2} \tag{5.3}
\end{equation*}
$$

In addition, if $\operatorname{Re}(\Gamma \bar{\gamma})>0$, then (see for example [5, p. 26]):

$$
\begin{align*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2} & \leq \frac{1}{4} \cdot \frac{\left\{\operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{j=1}^{n} \alpha_{j}\right]\right\}^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})} \tag{5.4}\\
& \leq \frac{1}{4} \cdot \frac{|\Gamma+\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2}
\end{align*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
J
\qquad

Page 28 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{equation*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}-\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2} \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2} \tag{5.5}
\end{equation*}
$$

Also, if $\Gamma \neq-\gamma$, then (see for instance [5, p. 32]):

$$
\begin{equation*}
\left(n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}-\left|\sum_{j=1}^{n} \alpha_{j}\right| \leq \frac{1}{4} n \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \tag{5.6}
\end{equation*}
$$

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 29 of 43
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
or, equivalently,

$$
\begin{equation*}
\operatorname{Re}\left[\left(\phi-\left\langle x, x_{j}\right\rangle\right)\left(\left\langle x_{j}, x\right\rangle-\bar{\varphi}\right)\right] \geq 0 \tag{5.10}
\end{equation*}
$$

for each $j \in\{1, \ldots, n\}$ and for any $x \in H,\|x\|=1$. Then

$$
\begin{equation*}
\|X\|_{e}^{2} \leq \frac{1}{n}\|S\|^{2}+\frac{1}{4} n|\phi-\varphi|^{2} . \tag{5.11}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$$
\begin{equation*}
\|X\|_{e}^{2} \leq \frac{1}{n}\|S\|^{2}+[|\phi+\varphi|-2 \sqrt{\operatorname{Re}(\phi \bar{\varphi})}]\|S\| . \tag{5.13}
\end{equation*}
$$

If $\phi \neq-\varphi$, then

$$
\begin{equation*}
\|X\|_{e} \leq \frac{1}{n}\|S\|+\frac{1}{4} n \cdot \frac{|\phi-\varphi|^{2}}{|\phi+\varphi|} \tag{5.14}
\end{equation*}
$$

where $S=\sum_{j=1}^{n} x_{j}$.
Proof. We only prove the inequality (5.11).
Let $x \in H,\|x\|=1$. Then, on applying the inequality (5.3) for $\alpha_{j}=\left\langle x, x_{j}\right\rangle$, $j \in\{1, \ldots, n\}$ and $\Gamma=\phi, \gamma=\varphi$, we can state that

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2} \leq \frac{1}{n}\left|\left\langle x, \sum_{j=1}^{n} x_{j}\right\rangle\right|^{2}+\frac{1}{4} n|\phi-\varphi|^{2} . \tag{5.15}
\end{equation*}
$$

Page 30 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now if in (5.15) we take the supremum over $\|x\|=1$, then we get the desired inequality (5.11).

The other inequalities follow by (5.4), (5.7) and (5.6) respectively. The details are omitted.

Remark 4. Due to the fact that

$$
\left|\left\langle x, x_{j}\right\rangle-\frac{\varphi+\phi}{2}\right| \leq\left\|x_{j}-\frac{\varphi+\phi}{2} \cdot x\right\|
$$

for any $j \in\{1, \ldots, n\}$ and $x \in H,\|x\|=1$, then a sufficient condition for (5.9) to hold is that

$$
\left\|x_{j}-\frac{\varphi+\phi}{2} \cdot x\right\| \leq \frac{1}{2}|\phi-\varphi|
$$

for each $j \in\{1, \ldots, n\}$ and $x \in H,\|x\|=1$.

Hypo-Euclidean Norm

S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 31 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

6. Applications for n-Tuples of Operators

In [9], the author has introduced the following norm on the Cartesian product $B^{(n)}(H):=$ $B(H) \times \cdots \times B(H)$, where $B(H)$ denotes the Banach algebra of all bounded linear operators defined on the complex Hilbert space H :

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}:=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left\|\lambda_{1} T_{1}+\cdots+\lambda_{n} T_{n}\right\| \tag{6.1}
\end{equation*}
$$

where $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ and $\mathbb{B}_{n}:=\left\{\left.\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}\left|\sum_{i=1}^{n}\right| \lambda_{i}\right|^{2} \leq 1\right\}$ is the Euclidean closed ball in \mathbb{C}^{n}. It is clear that $\|\cdot\|_{e}$ is a norm on $B^{(n)}(H)$ and for any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ we have

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}=\left\|\left(T_{1}^{*}, \ldots, T_{n}^{*}\right)\right\|_{e} \tag{6.2}
\end{equation*}
$$

where T_{i}^{*} is the adjoint operator of $T_{i}, i \in\{1, \ldots, n\}$.
It has been shown in [9] that the following inequality holds true:

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\left\|\sum_{j=1}^{n} T_{j} T_{j}^{*}\right\|^{\frac{1}{2}} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} \leq\left\|\sum_{j=1}^{n} T_{j} T_{j}^{*}\right\|^{\frac{1}{2}} \tag{6.3}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 32 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and proved that $w_{e}(\cdot)$ is a norm on $B^{(n)}(H)$ and satisfies the double inequality:

$$
\begin{equation*}
\frac{1}{2}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} \leq w_{e}\left(T_{1}, \ldots, T_{n}\right) \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} \tag{6.5}
\end{equation*}
$$

for each n-tuple $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$.
As pointed out in [9], the Euclidean numerical radius also satisfies the double inequality:

$$
\begin{equation*}
\frac{1}{2 \sqrt{n}}\left\|\sum_{j=1}^{n} T_{j} T_{j}^{*}\right\|^{\frac{1}{2}} \leq w_{e}\left(T_{1}, \ldots, T_{n}\right) \leq\left\|\sum_{j=1}^{n} T_{j} T_{j}^{*}\right\|^{\frac{1}{2}} \tag{6.6}
\end{equation*}
$$

for any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ and the constants $\frac{1}{2 \sqrt{n}}$ and 1 are best possible.
We are now able to establish the following natural connections that exists between the hypo-Euclidean norm of vectors in a Cartesian product of Hilbert spaces and the norm $\|\cdot\|_{e}$ for n-tuples of operators in the Banach algebra $B(H)$.

Theorem 6.1. For any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ we have

$$
\begin{align*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} & =\sup _{\|y\|=1}\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e} \tag{6.7}\\
& =\sup _{\|y\|=1,\|x\|=1}\left(\sum_{j=1}^{n}\left|\left\langle T_{j} y, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} .
\end{align*}
$$

Proof. By the definition of the $\|\cdot\|_{e}$-norm on $B^{(n)}(H)$ and the hypo-Euclidean norm on H^{n}, we have:

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}=\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left[\sup _{\|y\|=1}\left\|\left(\lambda_{1} T_{1}+\cdots+\lambda_{n} T_{n}\right) y\right\|\right] \tag{6.8}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 33 of 43

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =\sup _{\|y\|=1}\left[\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}}\left\|\lambda_{1} T_{1} y+\cdots+\lambda_{n} T_{n} y\right\|\right] \\
& =\sup _{\|y\|=1}\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e} .
\end{aligned}
$$

Utilising the representation of the hypo-Euclidean norm on H^{n} from Theorem 2.2, we have

$$
\begin{equation*}
\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e}=\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left\langle T_{j} y, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} \tag{6.9}
\end{equation*}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$$
\left(\sum_{j=1}^{n}\left\|T_{j} y\right\|^{2}\right)^{\frac{1}{2}} \geq\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e} \geq \frac{1}{\sqrt{n}}\left(\sum_{j=1}^{n}\left\|T_{j} y\right\|^{2}\right)^{\frac{1}{2}}
$$

for any $y \in H,\|y\|=1$.
Since

$$
\sum_{j=1}^{n}\left\|T_{j} y\right\|^{2}=\left\langle\sum_{j=1}^{n} T_{j}^{*} T_{j} y, y\right\rangle, \quad\|y\|=1
$$

hence, on taking the supremum over $\|y\|=1$ in (6.10) and on observing that

$$
\sup _{\|y\|=1}\left\langle\sum_{j=1}^{n} T_{j}^{*} T_{j} y, y\right\rangle=w\left(\sum_{j=1}^{n} T_{j}^{*} T_{j}\right)=\left\|\sum_{j=1}^{n} T_{j}^{*} T_{j}\right\|=\left\|\sum_{j=1}^{n} T_{j} T_{j}^{*}\right\|,
$$

we deduce the inequality (6.3) that has been established in [9] by a different argument.

Page 34 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We observe that, due to the representation Theorem 6.1, some inequalities obtained for the hypo-Euclidean norm can be utilised in obtaining various new inequalities for the operator norm $\|\cdot\|_{e}$ by employing a standard approach consisting in taking the supremum over $\|y\|=1$, as described in the above remark.

The following different lower bound for the Euclidean operator norm $\|\cdot\|_{e}$ can be stated:

Proposition 6.2. For any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$, we have

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} \geq \frac{1}{\sqrt{n}}\left\|T_{1}+\cdots+T_{n}\right\| \tag{6.11}
\end{equation*}
$$

Proof. Utilising Proposition 2.4 and Theorem 6.1 we have:

$$
\begin{aligned}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e} & =\sup _{\|y\|=1}\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e} \\
& \geq \frac{1}{\sqrt{n}} \sup _{\|y\|=1}\left\|T_{1} y+\cdots+T_{n} y\right\| \\
& =\frac{1}{\sqrt{n}}\left\|T_{1}+\cdots+T_{n}\right\|
\end{aligned}
$$

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 35 of 43
Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 6.3. For any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$, we have the inequalities:
(6.12) $\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}^{2} \leq\{$

$$
\left\{\begin{array}{l}
\max _{1 \leq j \leq n}\left\{\left\|T_{j}\right\|^{2}\right\}+\left[\sum_{1 \leq j \neq k \leq n} w^{2}\left(T_{k}^{*} T_{j}\right)\right]^{\frac{1}{2}} ; \\
\max _{1 \leq j \leq n}\left\{\left\|T_{j}\right\|^{2}\right\}+(n-1) \max _{1 \leq j \neq k \leq n}\left\{w\left(T_{k}^{*} T_{j}\right)\right\} ; \\
{\left[\max _{1 \leq j \leq n}\left\{\left\|T_{j}\right\|^{2}\right\}\left\|\sum_{j=1}^{n} T_{j}^{*} T_{j}\right\|^{2}\right.} \\
\left.\quad+\max _{1 \leq j \neq k \leq n}\left\{\left\|T_{j}\right\|\left\|T_{k}\right\|\right\} \sum_{1 \leq j \neq k \leq n} w\left(T_{k} T_{j}^{*}\right)\right]^{\frac{1}{2}} .
\end{array}\right.
$$

Hypo-Euclidean Norm

S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
On utilising the inequalities (3.8) and (3.17) we can state the following result as well:
Theorem 6.4. For any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$, we have:

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}^{2} \leq\left\{\begin{array}{l}
\max _{1 \leq j \leq n}\left\{\sum_{k=1}^{n} w\left(T_{k}^{*} T_{j}\right)\right\} ; \\
{\left[\sum_{j, k=1}^{n} w^{2}\left(T_{k}^{*} T_{j}\right)\right]^{\frac{1}{2}} ;} \tag{6.13}\\
n \max _{\leq j \leq n}\left[\sum_{k=1}^{n} w^{2}\left(T_{k}^{*} T_{j}\right)\right]^{\frac{1}{2}} ; \\
n\left[\sum_{j=1}^{n} \max _{1 \leq k \leq n}\left\{w^{2}\left(T_{k}^{*} T_{j}\right)\right\}\right]^{\frac{1}{2}} .
\end{array}\right.
$$

Page 36 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The results from Section 5 can be also naturally used to provide some reverse inequalities that are of interest.

Theorem 6.5. Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ and $\varphi, \phi \in \mathbb{K}$ such that

$$
\begin{equation*}
\left\|T_{j} y-\frac{\varphi+\phi}{2} \cdot x\right\| \leq \frac{1}{2}|\phi-\varphi| \quad \text { for any } \quad\|x\|=\|y\|=1 \tag{6.14}
\end{equation*}
$$

and for each $j \in\{1, \ldots, n\}$. Then

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}^{2} \leq \frac{1}{n}\left\|\sum_{j=1}^{n} T_{j}\right\|^{2}+\frac{1}{n}|\phi-\varphi|^{2} . \tag{6.15}
\end{equation*}
$$

In addition, if $\operatorname{Re}(\phi \bar{\varphi})>0$, then

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}^{2} \leq \frac{1}{4 n} \cdot \frac{|\phi+\varphi|^{2}}{\operatorname{Re}(\phi \bar{\varphi})}\left\|\sum_{j=1}^{n} T_{j}\right\|^{2} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{e}^{2} \leq \frac{1}{n}\left\|\sum_{j=1}^{n} T_{j}\right\|^{2}+[|\phi+\varphi|-2 \sqrt{\operatorname{Re}(\phi \bar{\varphi})}]\left\|\sum_{j=1}^{n} T_{j}\right\| . \tag{6.17}
\end{equation*}
$$

Page 37 of 43

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Proof. For any $x, y \in H$ with $\|x\|=\|y\|=1$ we have

$$
\begin{aligned}
\left|\left\langle x, T_{j} y\right\rangle-\frac{\varphi+\phi}{2}\right| & =\left|\left\langle x, T_{j} y-\frac{\varphi+\phi}{2} x\right\rangle\right| \\
& \leq\|x\|\left\|T_{j} y-\frac{\varphi+\phi}{2} x\right\| \\
& \leq \frac{1}{2}|\phi-\varphi|
\end{aligned}
$$

for each $j \in\{1, \ldots, n\}$.
Now, on applying Theorem 5.1 for $x_{j}=T_{j} y$, we can write from (5.11) the following inequality

$$
\left\|\left(T_{1} y, \ldots, T_{n} y\right)\right\|_{e} \leq \frac{1}{n}\left\|\sum_{j=1}^{n} T_{j} y\right\|+\frac{1}{4} n|\phi-\varphi|^{2}
$$

for each y with $\|y\|=1$.
Taking the supremum over $\|y\|=1$ and utilising Theorem 6.1, we deduce (6.15).
The other inequalities follow by a similar procedure on making use of the inequalities (5.12) - (5.14) and the details are omitted.

Remark 6. The inequality (6.14) is equivalent with

$$
\begin{align*}
0 \leq & \operatorname{Re}\left[\left(\phi-\left\langle x, T_{j} y\right\rangle\right)\left(\left\langle T_{j} y, x\right\rangle-\bar{\varphi}\right)\right] \tag{6.19}\\
= & \left(\operatorname{Re}(\phi)-\operatorname{Re}\left\langle x, T_{j} y\right\rangle\right)\left(\operatorname{Re}\left\langle T_{j} y, x\right\rangle-\operatorname{Re}(\varphi)\right) \\
& \quad+\left(\operatorname{Im}(\phi)-\operatorname{Im}\left\langle x, T_{j} y\right\rangle\right)\left(\operatorname{Im}\left\langle T_{j} y, x\right\rangle-\operatorname{Im}(\varphi)\right)
\end{align*}
$$

for each $j \in\{1, \ldots, n\}$ and $\|x\|=\|y\|=1$. A sufficient condition for (6.19) to

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 38 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
hold is then:

$$
\left\{\begin{array}{l}
\operatorname{Re}(\varphi) \leq \operatorname{Re}\left\langle x, T_{j} y\right\rangle \leq \operatorname{Re}(\phi) \tag{6.20}\\
\operatorname{Im}(\varphi) \leq \operatorname{Im}\left\langle x, T_{j} y\right\rangle \leq \operatorname{Im}(\phi)
\end{array}\right.
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and $j \in\{1, \ldots, n\}$.

Hypo-Euclidean Norm
S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 39 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

7. A Norm on $B(H)$

For an operator $A \in B(H)$ we define

$$
\begin{equation*}
\delta(A):=\left\|\left(A, A^{*}\right)\right\|_{e}=\sup _{(\lambda, \mu) \in \mathbb{B}_{2}}\left\|\lambda A+\mu A^{*}\right\|, \tag{7.1}
\end{equation*}
$$

where \mathbb{B}_{2} is the Euclidean unit ball in \mathbb{C}^{2}.
The properties of this functional are embodied in the following theorem:
Theorem 7.1. The functional δ is a norm on $B(H)$ and satisfies the double inequality:

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 40 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Obviously $\delta(A) \geq 0$ for each $A \in B(H)$ and of $\delta(A)=0$ then, by (7.5), $\langle A y, x\rangle=0$ for any $x, y \in H$ with $\|x\|=\|y\|=1$ which implies that $A=0$. Also, by (7.5), we observe that

$$
\begin{aligned}
\delta(\alpha A) & =\sup _{\|x\|=1,\|y\|=1}\left[|\langle\alpha A y, x\rangle|^{2}+\left|\left\langle\bar{\alpha} A^{*} y, x\right\rangle\right|^{2}\right]^{\frac{1}{2}} \\
& =|\alpha| \sup _{\|x\|=1,\|y\|=1}\left[|\langle A y, x\rangle|^{2}+\left|\left\langle A^{*} y, x\right\rangle\right|^{2}\right]^{\frac{1}{2}} \\
& =|\alpha| \delta(A)
\end{aligned}
$$

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents
$\leq \sup _{(\lambda, \mu) \in \mathbb{B}_{2}}\left\|\lambda A+\mu A^{*}\right\|+\sup _{(\lambda, \mu) \in \mathbb{B}_{2}}\left\|\lambda B+\mu B^{*}\right\|$
$=\delta(A)+\delta(B)$,
which proves the triangle inequality.
Also, we observe that

$$
\delta(A) \geq \sup _{\|x\|=1,\|y\|=1}|\langle A y, x\rangle|=\|A\|
$$

and

$$
\begin{aligned}
\delta(A) & \leq \sup _{\|x\|=1,\|y\|=1}\left[|\langle A y, x\rangle|+\left|\left\langle A^{*} y, x\right\rangle\right|\right] \\
& \leq \sup _{\|x\|=1,\|y\|=1}|\langle A y, x\rangle|+\sup _{\|x\|=1,\|y\|=1}\left|\left\langle A^{*} y, x\right\rangle\right| \\
& =2\|A\|
\end{aligned}
$$

Page 41 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and the inequality (7.2) is proved.
The inequality (7.3) follows from (6.3) for $n=2, T_{1}=A$ and $T_{2}=A^{*}$ while (7.4) follows from Proposition 6.2 and the second inequality in (6.12) for the same choices.

Remark 7. It is easy to see that

$$
\frac{\sqrt{2}}{2}\left\|A^{2}+\left(A^{*}\right)^{2}\right\|^{\frac{1}{2}} \leq\|A\|
$$

and

$$
\left\|A^{2}+\left(A^{*}\right)^{2}\right\|^{\frac{1}{2}},\left[\|A\|^{2}+w\left(A^{2}\right)\right]^{\frac{1}{2}} \leq 2\|A\|
$$

for each $A \in B(H)$. Also, we notice that if A is self-adjoint, then the equality case holds in the second part of (7.3) and in both sides of (7.4). However, it is an open question for the author which of the lower bounds $\|A\|, \frac{\sqrt{2}}{2}\left\|A+A^{*}\right\|$ of the norm $\delta(A)$ are better and when. The same question applies for the upper bounds $\left\|A^{2}+\left(A^{*}\right)^{2}\right\|^{\frac{1}{2}}$ and $\left[\|A\|^{2}+w\left(A^{2}\right)\right]^{\frac{1}{2}}$, respectively.

Hypo-Euclidean Norm

S.S. Dragomir
vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

Page 42 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] R. BELLMAN, Almost orthogonal series, Bull. Amer. Math. Soc., 50 (1944), 517-519.
[2] E. BOMBIERI, A note on the large sieve, Acta Arith., 18 (1971), 401-404.
[3] R.P. BOAS, A general moment problem, Amer. J. Math., 63 (1941), 361-370.
[4] S.S. DRAGOMIR, On the Boas-Bellman inequality in inner product spaces, Bull. Austral. Math. Soc., 69(2) (2004), 217-225.
[5] S.S. DRAGOMIR, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., 2005.
[6] S.S. DRAGOMIR, On the Bombieri inequality in inner product spaces, Libertas Math., 25 (2005), 13-26.
[7] S.S. DRAGOMIR, Reverses of the Schwarz inequality generalising the Klamkin-McLeneghan result, Bull. Austral. Math. Soc., 73(1) (2006), 69-78.
[8] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[9] G. POPESCU, Unitary invariants in multivariable operator theory, Preprint, Ar χ iv.math.04/0410492.
[10] W. RUDIN, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer Verlag, New York, Berlin, 1980.
J

Hypo-Euclidean Norm
S.S. Dragomir vol. 8, iss. 2, art. 52, 2007

Title Page
Contents

$\mathbf{4}$	$>$
$\mathbf{4}$	$>$

Page 43 of 43
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

