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1. I NTRODUCTION

Let (E, ‖·‖) be a normed linear space over the real or complex number fieldK. On Kn

endowed with the canonical linear structure we consider a norm‖·‖n and the unit ball

B (‖·‖n) := {λ = (λ1, . . . , λn) ∈ Kn| ‖λ‖n ≤ 1} .

As an example of such norms we should mention the usualp−norms

(1.1) ‖λ‖n,p :=

{
max {|λ1| , . . . , |λn|} if p = ∞;

(
∑n

k=1 |λk|p)
1
p if p ∈ [1,∞).

TheEuclidean normis obtained forp = 2, i.e.,

‖λ‖n,2 =

(
n∑

k=1

|λk|2
) 1

2

.
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2 S.S. DRAGOMIR

It is well known that onEn := E×· · ·×E endowed with the canonical linear structure we can
define the followingp−norms:

(1.2) ‖X‖n,p :=

{
max {‖x1‖ , . . . , ‖xn‖} if p = ∞;

(
∑n

k=1 ‖xk‖p)
1
p if p ∈ [1,∞);

whereX = (x1, . . . , xn) ∈ En.
For a given norm‖·‖n onKn we define the functional‖·‖h,n : En → [0,∞) given by

(1.3) ‖X‖h,n := sup
(λ1,...,λn)∈B(‖·‖n)

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

whereX = (x1, . . . , xn) ∈ En.
It is easy to see that:

(i) ‖X‖h,n ≥ 0 for anyX ∈ En;

(ii) ‖X + Y ‖h,n ≤ ‖X‖h,n + ‖Y ‖h,n for anyX,Y ∈ En;

(iii) ‖αX‖h,n = |α| ‖X‖h,n for eachα ∈ K andX ∈ En;

and therefore‖·‖h,n is a semi-normon En. This will be called thehypo-semi-normgenerated
by the norm‖·‖n onXn.

We observe that‖X‖h,n = 0 if and only if
∑n

j=1 λjxj = 0 for any(λ1, . . . , λn) ∈ B (‖·‖n) .

If there existsλ0
1, . . . , λ

0
n 6= 0 such that(λ0

1, 0, . . . , 0) , (0, λ0
2, . . . , 0) , . . . , (0, 0, . . . , λ0

n) ∈
B (‖·‖n) then the semi-norm generated by‖·‖n is anormonEn.

If by Bn,p with p ∈ [1,∞] we denote the balls generated by thep−norms‖·‖n,p on Kn, then
we can obtain the followinghypo-p-normsonXn :

(1.4) ‖X‖h,n,p := sup
(λ1,...,λn)∈Bn,p

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

with p ∈ [1,∞] .
Forp = 2, we have the Euclidean ball inKn, which we denote byBn,

Bn =

{
λ = (λ1, . . . , λn) ∈ Kn

∣∣∣∣∣
n∑

i=1

|λi|2 ≤ 1

}
that generates thehypo-Euclidean normonEn, i.e.,

(1.5) ‖X‖h,e := sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ .

Moreover, ifE = H, H is a Hilbert space overK, then thehypo-Euclidean normonHn will
be denoted simply by

(1.6) ‖(x1, . . . , xn)‖e := sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

and its properties will be extensively studied in the present paper.
Both the notation in (1.6) and the necessity of investigating its main properties are motivated

by the recent work of G. Popescu [9] who introduced a similar norm on the Cartesian product
of Banach algebraB (H) of all bounded linear operators onH and used it to investigate var-
ious properties ofn−tuple of operators in Multivariable Operator Theory. The study is also
motivated by the fact that the hypo-Euclidean norm is closely related to the quadratic form
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HYPO-EUCLIDEAN NORM 3

∑n
j=1 |〈x, xj〉|2 (see the representation Theorem 2.2) that plays a key role in many problems

arising in the Theory of Fourier expansions in Hilbert spaces.
The paper is structured as follows: in Section 2 we establish the equivalence of the hypo-

Euclidean norm with the usual Euclidean norm onHn, provide a representation result and
obtain some lower bounds for it. In Section 3, on utilising the classical results of Boas-Bellman
and Bombieri as well as some recent similar results obtained by the author, we give various
upper bounds for the hypo-Euclidean norm. These are complemented in Section 4 with other
inequalities betweenp−norms and the hypo-Euclidean norm. Section 5 is devoted to the pre-
sentation of some conditional reverse inequalities between the hypo-Euclidean norm and the
norm of the sum of the vectors involved. In Section 6, the natural connection between the
hypo-Euclidean norm and the operator norm‖(·, . . . , ·)‖e introduced by Popescu in [9] is in-
vestigated. A representation result is obtained and some applications for operator inequalities
are pointed out. Finally, in Section 7, a new norm for operators is introduced and some natural
inequalities are obtained.

2. FUNDAMENTAL PROPERTIES

Let (H; 〈·, ·〉) be a Hilbert space overK andn ∈ N, n ≥ 1. In the Cartesian productHn :=
H × · · · × H, for then−tuples of vectorsX = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Hn, we can
define the inner product〈·, ·〉 by

(2.1) 〈X, Y 〉 :=
n∑

j=1

〈xj, yj〉 , X, Y ∈ Hn,

which generates the Euclidean norm‖·‖2 onHn, i.e.,

(2.2) ‖X‖2 :=

(
n∑

j=1

‖xj‖2

) 1
2

, X ∈ Hn.

The following result connects the usual Euclidean norm‖·‖ with the hypo-Euclidean norm
‖·‖e .

Theorem 2.1.For anyX ∈ Hn we have the inequalities

(2.3) ‖X‖2 ≥ ‖X‖e ≥
1√
n
‖X‖2 ,

i.e.,‖·‖2 and‖·‖e are equivalent norms onHn.

Proof. By the Cauchy-Bunyakovsky-Schwarz inequality we have

(2.4)

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ≤
(

n∑
j=1

|λj|2
) 1

2
(

n∑
j=1

‖xj‖2

) 1
2

for any(λ1, . . . , λn) ∈ Kn. Taking the supremum over(λ1, . . . , λn) ∈ Bn in (2.4) we obtain the
first inequality in (2.3).

If by σ we denote the rotation-invariant normalised positive Borel measure on the unit sphere
∂Bn

(
∂Bn = (λ1, . . . , λn) ∈ Kn

∣∣∑n
i=1 |λi|2 = 1

)
whose existence and properties have been
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4 S.S. DRAGOMIR

pointed out in [10], then we can state that∫
∂Bn

|λk|2 dσ (λ) =
1

n
and(2.5) ∫

∂Bn

λkλjdσ (λ) = 0 if k 6= j, k, j = 1, . . . , n.

Utilising these properties, we have

‖X‖2
e = sup

(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

k=1

λkxk

∥∥∥∥∥
2

= sup
(λ1,...,λn)∈Bn

[
n∑

k,j=1

λkλj 〈xk, xj〉

]

≥
∫

∂Bn

[
n∑

k,j=1

λkλj 〈xk, xj〉

]
dσ (λ) =

n∑
k,j=1

∫
∂Bn

[
λkλj 〈xk, xj〉

]
dσ (λ)

=
1

n

n∑
k=1

‖xk‖2 =
1

n
‖X‖2

2 ,

from where we deduce the second inequality in (2.3). �

The following representation result for the hypo-Euclidean norm plays a key role in obtaining
various bounds for this norm:

Theorem 2.2.For anyX ∈ Hn with X = (x1, . . . , xn) , we have

(2.6) ‖X‖e = sup
‖x‖=1

(
n∑

j=1

|〈x, xj〉|2
) 1

2

.

Proof. We use the following well known representation result for scalars:

(2.7)
n∑

j=1

|zj|2 = sup
(λ1,...,λn)∈Bn

∣∣∣∣∣
n∑

j=1

λjzj

∣∣∣∣∣
2

,

where(z1, . . . , zn) ∈ Kn.
Utilising this property, we thus have

(2.8)

(
n∑

j=1

|〈x, xj〉|2
) 1

2

= sup
(λ1,...,λn)∈Bn

∣∣∣∣∣
〈

x,

n∑
j=1

λjxj

〉∣∣∣∣∣
for anyx ∈ H.

Now, taking the supremum over‖x‖ = 1 in (2.8) we get

sup
‖x‖=1

(
n∑

j=1

|〈x, xj〉|2
) 1

2

= sup
‖x‖=1

[
sup

(λ1,...,λn)∈Bn

∣∣∣∣∣
〈

x,

n∑
j=1

λjxj

〉∣∣∣∣∣
]

= sup
(λ1,...,λn)∈Bn

[
sup
‖x‖=1

∣∣∣∣∣
〈

x,

n∑
j=1

λjxj

〉∣∣∣∣∣
]

= sup
(λ1,...,λn)∈Bn

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥ ,

since, in any Hilbert space we have thatsup‖u‖=1 |〈u, v〉| = ‖v‖ for eachv ∈ H. �
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HYPO-EUCLIDEAN NORM 5

Corollary 2.3. If X = (x1, . . . , xn) is ann−tuple of orthonormal vectors, i.e., we recall that
‖xk‖ = 1 and〈xk, xj〉 = 0 for k, j ∈ {1, . . . , n} with k 6= j, then‖X‖e ≤ 1.

The proof is obvious by Bessel’s inequality.
The next proposition contains two lower bounds for the hypo-Euclidean norm that are some-

times better than the one in (2.3), as will be shown by some examples later.

Proposition 2.4. For anyX = (x1, . . . , xn) ∈ Hn\ {0} we have

(2.9) ‖X‖e ≥


1

‖X‖2

∥∥∥∑n
j=1 ‖xj‖xj

∥∥∥ ,

1√
n

∥∥∥∑n
j=1 xj

∥∥∥ .

Proof. By the definition of the hypo-Euclidean norm we have that, if(λ0
1, . . . , λ

0
n) ∈ Bn, then

obviously

‖X‖e ≥

∥∥∥∥∥
n∑

j=1

λ0
jxj

∥∥∥∥∥ .

The choice

λ0
j :=

‖xj‖
‖X‖2

, j ∈ {1, . . . , n} ,

which satisfies the condition(λ0
1, . . . , λ

0
n) ∈ Bn will produce the first inequality while the se-

lection

λ0
j =

1√
n

, j ∈ {1, . . . , n} ,

will give the second inequality in (2.9). �

Remark 2.5. Forn = 2, the hypo-Euclidean norm onH2

‖(x, y)‖e = sup
(λ,µ)∈B2

‖λx + µy‖ = sup
‖z‖=1

[
|〈z, x〉|2 + |〈z, y〉|2

] 1
2

is bounded below by

B1 (x, y) :=
1√
2

(
‖x‖2 + ‖y‖2) 1

2 ,

B2 (x, y) :=
‖‖x‖x + ‖y‖ y‖(
‖x‖2 + ‖y‖2) 1

2

and

B3 (x, y) :=
1√
2
‖x + y‖ .

If H = C endowed with the canonical inner product〈x, y〉 := xȳ wherex, y ∈ C, then

B1 (x, y) =
1√
2

(
|x|2 + |y|2

) 1
2 ,

B2 (x, y) =
||x|x + |y| y|(
|x|2 + |y|2

) 1
2

and

B3 (x, y) =
1√
2
|x + y| , x, y ∈ C.
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6 S.S. DRAGOMIR

The plots of the differencesD1 (x, y) := B1 (x, y) − B2 (x, y) andD2 (x, y) := B1 (x, y) −
B3 (x, y) which are depicted in Figure 2.1 and Figure 2.2, respectively, show that the boundB1

is not always better thanB2 or B3. However, since the plot ofD3 (x, y) := B2 (x, y)−B3 (x, y)
(see Figure 2.3) appears to indicate that, at least in the case ofC2, it may be possible that the
boundB2 is always better thanB3, hence we can ask in general which bound from (2.6) is better
for a givenn ≥ 2? This is an open problem that will be left to the interested reader for further
investigation.
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3. UPPER BOUNDS VIA THE BOAS-BELLMAN AND BOMBIERI TYPE I NEQUALITIES

In 1941, R.P. Boas [3] and in 1944, independently, R. Bellman [1] proved the following
generalisation of Bessel’s inequality that can be stated for any family of vectors{y1, . . . , yn}(see
also [8, p. 392] or [5, p. 125]):

(3.1)
n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2

max
1≤j≤n

‖yj‖2 +

( ∑
1≤j 6=k≤n

|〈yk, yj〉|2
) 1

2


for anyx, y1 . . . , yn vectors in the real or complex inner product space(H; 〈·, ·〉) . This result is
known in the literature as theBoas-Bellman inequality.

The following result provides various upper bounds for the hypo-Euclidean norm:

Theorem 3.1.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.2) ‖X‖2
e ≤


max
1≤j≤n

‖xj‖2 +

( ∑
1≤j 6=k≤n

|〈xk, xj〉|2
) 1

2

,

max
1≤j≤n

‖xj‖2 + (n− 1) max
1≤j 6=k≤n

|〈xk, xj〉| ;

(3.3) ‖X‖2
e ≤

[
max
1≤j≤n

‖xj‖2
n∑

j=1

‖xj‖2 + max
1≤j 6=k≤n

{‖xj‖ ‖xk‖}
∑

1≤j 6=k≤n

|〈xj, xk〉|

] 1
2

and

(3.4) ‖X‖4
e ≤


max
1≤j≤n

‖xj‖2
n∑

j=1

‖xj‖2 + (n− 1) ‖X‖2
e max

1≤j 6=k≤n
|〈xj, xk〉| ,

‖X‖2
e max

1≤j≤n
‖xj‖2 + max

1≤j 6=k≤n
{‖xj‖ ‖xk‖}

∑
1≤j 6=k≤n

|〈xj, xk〉| .
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8 S.S. DRAGOMIR

Proof. Taking the supremum over‖x‖ = 1 in (3.1) and utilising the representation (2.6), we
deduce the first inequality in (3.2).

In [4], we proved amongst others the following inequalities

(3.5)

∣∣∣∣∣
n∑

j=1

cj 〈x, yj〉

∣∣∣∣∣
2

≤ ‖x‖2 ×


max
1≤j≤n

|cj|2
n∑

j=1

‖yj‖2 ,

n∑
j=1

|cj|2 max
1≤j≤n

‖yj‖2 ,

+ ‖x‖2 ×


max

1≤j 6=k≤n
{|cjck|}

∑
1≤j 6=k≤n

|〈yj, yk〉| ,

(n− 1)
n∑

j=1

|cj|2 max
1≤j 6=k≤n

|〈yj, yk〉| ,

for any y1, . . . , yn, x ∈ H and c1, . . . , cn ∈ K, where (3.5) should be seen as all possible
configurations.

The choicecj = 〈x, yj〉, j ∈ {1, . . . , n} will produce the following four inequalities:

(3.6)

[
n∑

j=1

|〈x, yj〉|2
]2

≤ ‖x‖2 ×


max
1≤j≤n

|〈x, yj〉|2
n∑

j=1

‖yj‖2 ,

n∑
j=1

|〈x, yj〉|2 max
1≤j≤n

‖yj‖2 ,

+ ‖x‖2 ×


max

1≤j 6=k≤n
{|〈x, yj〉| |〈x, yk〉|}

∑
1≤j 6=k≤n

|〈yj, yk〉| ,

(n− 1)
n∑

j=1

|〈x, yj〉|2 max
1≤j 6=k≤n

|〈yj, yk〉| .

Taking the supremum over‖x‖ = 1 and utilising the representation (2.6) we easily deduce the
rest of the four inequalities. �

A different generalisation of Bessel’s inequality for non-orthogonal vectors is theBombieri
inequality(see [2] or [8, p. 397] and [5, p. 134]):

(3.7)
n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2 max
1≤j≤n

{
n∑

k=1

|〈yj, yk〉|

}
,

for any x ∈ H, where y1, . . . , yn are vectors in the real or complex inner product space
(H; 〈·, ·〉) .

Note that, the Bombieri inequality was not stated in the general case of inner product spaces
in [2]. However, the inequality presented there easily leads to (3.7) which, apparently, was
firstly mentioned as is in [8, p. 394].

On utilising the Bombieri inequality (3.7) and the representation Theorem 2.2, we can state
the following simple upper bound for the hypo-Euclidean norm‖·‖e .

Theorem 3.2.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.8) ‖X‖2
e ≤ max

1≤j≤n

{
n∑

k=1

|〈xj, xk〉|

}
.

In [6] (see also [5, p. 138]), we have established the following norm inequalities:

(3.9)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
p
+ 1

t
−1

n∑
k=1

|αk|2
 n∑

k=1

(
n∑

j=1

|〈zj, zk〉|q
)u

q

 1
u

,
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HYPO-EUCLIDEAN NORM 9

where1
p

+ 1
q

= 1, 1
t
+ 1

u
= 1 and1 < p ≤ 2, 1 < t ≤ 2 andαj ∈ C, zj ∈ H, j ∈ {1, . . . , n} .

An interesting particular case of (3.9) obtained forp = q = 2, t = u = 2 is incorporated in

(3.10)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

k=1

|αk|2
(

n∑
j,k=1

|〈zj, zk〉|2
) 1

2

.

Other similar inequalities for norms are the following ones [6] (see also [5, pp. 139-140]):

(3.11)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
p

n∑
k=1

|αk|2 max
1≤j≤n


[

n∑
k=1

|〈zj, zk〉|q
] 1

q

 ,

provided that1 < p ≤ 2 and 1
p
+ 1

q
= 1, αj ∈ C, zj ∈ H, j ∈ {1, . . . , n} . In the particular case

p = q = 2, we have

(3.12)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
√

n
n∑

k=1

|αk|2 max
1≤j≤n

[
n∑

k=1

|〈zj, zk〉|2
] 1

2

.

Also, if 1 < m ≤ 2, then [6]:

(3.13)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
1
m

n∑
k=1

|αk|2
{

n∑
j=1

[
max
1≤k≤n

|〈zj, zk〉|l
]} 1

l

,

where 1
m

+ 1
l

= 1. Form = l = 2, we get

(3.14)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
√

n
n∑

k=1

|αk|2
[

n∑
j=1

(
max
1≤k≤n

|〈zj, zk〉|2
)] 1

2

.

Finally, we can also state the inequality [6]:

(3.15)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤ n
n∑

k=1

|αk|2 max
1≤j,k≤n

|〈zj, zk〉| .

Utilising the above norm-inequalities and the definition of the hypo-Euclidean norm, we can
state the following result which provides other upper bounds than the ones outlined in Theorem
3.1 and 3.2:
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Theorem 3.3.For anyX = (x1, . . . , xn) ∈ Hn, we have

(3.16) ‖X‖2
e ≤



n
1
p
+ 1

t
−1

 n∑
k=1

(
n∑

j=1

|〈xj, xk〉|q
)u

q


1
u

where 1
p

+ 1
q

= 1,

1
t
+ 1

u
= 1 and 1 < p ≤ 2, 1 < t ≤ 2;

n
1
p max

1≤j≤n


[

n∑
j=1

|〈xj, xk〉|q
] 1

q

 where 1
p

+ 1
q

= 1

and 1 < p ≤ 2;

n
1
m

{
n∑

j=1

[
max
1≤k≤n

|〈xj, xk〉|l
]} 1

l

where 1
m

+ 1
l

= 1

and 1 < m ≤ 2;

n max
1≤k≤n

|〈xk, zj〉| ;

and, in particular,

(3.17) ‖X‖2
e ≤



[
n∑

j,k=1

|〈xj, xk〉|2
] 1

2

;

√
n max

1≤j≤n

[
n∑

k=1

|〈xj, xk〉|2
] 1

2

;

√
n

[
n∑

j=1

(
max
1≤k≤n

{
|〈xj, xk〉|2

})] 1
2

.

4. VARIOUS I NEQUALITIES FOR THE HYPO-EUCLIDEAN NORM

For ann−tupleX = (x1, . . . , xn) of vectors inH, we consider the usualp−norms:

‖X‖p :=

(
n∑

j=1

‖xj‖p

) 1
p

,

wherep ∈ [1,∞), and denote withS the sum
∑n

j=1 xj.

With these notations we can state the following reverse of the inequality‖X‖2 ≥ ‖X‖e , that
has been pointed out in Theorem 2.1.

Theorem 4.1.For anyX = (x1, . . . , xn) ∈ Hn, we have

(4.1) (0 ≤) ‖X‖2
2 − ‖X‖2

e ≤ ‖X‖2
1 − ‖S‖2 .

If

‖X‖2
(2) :=

n∑
j,k=1

∥∥∥∥xj + xk

2

∥∥∥∥2

,

then also

(0 ≤) ‖X‖2
2 − ‖X‖2

e ≤ ‖X‖2
(2) − ‖S‖2(4.2)

( ≤ n ‖X‖2
2 − ‖S‖2).
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Proof. We observe, for anyx ∈ H, that∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

=
n∑

j=1

〈x, xj〉
n∑

k=1

〈x, xk〉 =

∣∣∣∣∣
n∑

j=1

〈x, xj〉
n∑

k=1

〈x, xk〉

∣∣∣∣∣(4.3)

=

∣∣∣∣∣
n∑

k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

〈x, xj〉 〈xk, x〉

∣∣∣∣∣
≤

n∑
k=1

|〈x, xk〉|2 +

∣∣∣∣∣ ∑
1≤j 6=k≤n

〈x, xj〉 〈xk, x〉

∣∣∣∣∣
≤

n∑
k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

|〈x, xj〉| |〈xk, x〉| .

Taking the supremum over‖x‖ = 1, we get

(4.4) sup
‖x‖=1

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤ sup
‖x‖=1

n∑
k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

sup
‖x‖=1

|〈x, xj〉| · sup
‖x‖=1

|〈xk, x〉| .

However,

sup
‖x‖=1

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

= sup
‖x‖=1

∣∣∣∣∣
〈

x,
n∑

j=1

xj

〉∣∣∣∣∣
2

= ‖S‖2 ,

sup
‖x‖=1

|〈x, xj〉| = ‖xj‖ and sup
‖x‖=1

|〈x, xk〉| = ‖xk‖

for j, k ∈ {1, . . . , n} , and by (4.4) we get

‖S‖2 ≤ ‖X‖2
e +

∑
1≤j 6=k≤n

‖xj‖ ‖xj‖

= ‖X‖2
e +

n∑
j,k=1

‖xj‖ ‖xk‖ −
n∑

k=1

‖xk‖2

= ‖X‖2
e + ‖X‖2

1 − ‖X‖2
2 ,

which is clearly equivalent with (4.1).
Further on, we also observe that, for anyx ∈ H we have the identity:∣∣∣∣∣

n∑
j=1

〈x, xj〉

∣∣∣∣∣
2

= Re

[
n∑

k,j=1

〈x, xj〉 〈xk, x〉

]
(4.5)

=
n∑

k=1

|〈x, xk〉|2 +
∑

1≤j 6=k≤n

Re [〈x, xj〉 〈xk, x〉] .

Utilising the elementary inequality for complex numbers

(4.6) Re (uv̄) ≤ 1

4
|u + v|2 , u, v ∈ C,
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12 S.S. DRAGOMIR

we can state that ∑
1≤k 6=j≤n

Re [〈x, xj〉 〈xk, x〉] ≤
1

4

∑
1≤k 6=j≤n

|〈x, xj〉+ 〈x, xk〉|2

=
∑

1≤k 6=j≤n

∣∣∣∣〈x,
xj + xk

2

〉∣∣∣∣2 ,

and by (4.5) we get

(4.7)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤
n∑

k=1

|〈x, xk〉|2 +
∑

1≤k 6=j≤n

∣∣∣∣〈x,
xj + xk

2

〉∣∣∣∣2
for anyx ∈ H.

Taking the supremum over‖x‖ = 1 in (4.7) we deduce∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≤ ‖X‖2
e +

∑
1≤k 6=j≤n

∥∥∥∥xj + xk

2

∥∥∥∥2

= ‖X‖2
e +

n∑
k,j=1

∥∥∥∥xj + xk

2

∥∥∥∥2

−
n∑

k=1

‖xk‖2

which provides the first inequality in (4.2).
By the convexity of‖·‖2 we have

n∑
j,k=1

∥∥∥∥xj + xk

2

∥∥∥∥2

≤ 1

2

n∑
j,k=1

[
‖xj‖2 + ‖xk‖2] = n

n∑
k=1

‖xk‖2

and the last part of (4.2) is obvious. �

Remark 4.2. Forn = 2, X = (x, y) ∈ H2 we have the upper bounds

B1 (x, y) := ‖x‖2 + ‖y‖2 − ‖x + y‖2

= 2 (‖x‖ ‖y‖ − Re 〈x, y〉)
and

B2 (x, y) := ‖x‖2 + ‖y‖2

for the difference‖X‖2
2 − ‖X‖2

e , X ∈ H2 as provided by (4.1) and (4.2) respectively. If
H = R thenB1 (x, y) = 2 (|xy| − xy) , B2 (x, y) = x2 + y2. If we consider the function
∆ (x, y) = B2 (x, y)− B1 (x, y) then the plot of∆ (x, y) depicted in Figure 4.1 shows that the
bounds provided by (4.1) and (4.2) cannot be compared in general, meaning that sometimes the
first is better than the second and vice versa.

From a different view-point we can state the following result:

Theorem 4.3.For anyX = (x1, . . . , xn) ∈ Hn, we have

(4.8) ‖S‖2 ≤ ‖X‖e

‖X‖e +

(
n∑

k=1

‖S − xk‖2

) 1
2


and

(4.9) ‖S‖2 ≤ ‖X‖e

‖X‖e +

max
1≤k≤n

‖S − xk‖2 +

( ∑
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
) 1

2


1
2

 ,
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Figure 4.1: The behaviour of∆ (x, y)

respectively.

Proof. Utilising the identity (4.5) above we have

(4.10)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

=
n∑

k=1

|〈x, xk〉|2 + Re

〈
x,

∑
1≤j 6=k≤n

〈x, xk〉xj

〉
for anyx ∈ H.

By the Schwarz inequality in the inner product space(H, 〈·, ·〉), we have that

Re

〈
x,

∑
1≤j 6=k≤n

〈x, xk〉xj

〉
≤ ‖x‖

∥∥∥∥∥ ∑
1≤j 6=k≤n

〈x, xk〉xj

∥∥∥∥∥(4.11)

= ‖x‖

∥∥∥∥∥
n∑

j,k=1

〈x, xk〉xj −
n∑

k=1

〈x, xk〉xk

∥∥∥∥∥
= ‖x‖

∥∥∥∥∥
〈

x,

n∑
k=1

xk

〉
n∑

j=1

xj −
n∑

k=1

〈x, xk〉xk

∥∥∥∥∥
= ‖x‖

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥ .

Utilising the Cauchy-Bunyakovsky-Schwarz inequality we have

(4.12)

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥ ≤
(

n∑
k=1

|〈x, xk〉|2
) 1

2
(

n∑
k=1

‖S − xk‖2

) 1
2
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and then by (4.10) – (4.12) we can state the inequality:

(4.13)

∣∣∣∣∣
n∑

j=1

〈x, xj〉

∣∣∣∣∣
2

≤

(
n∑

k=1

|〈x, xk〉|2
) 1

2

( n∑
k=1

|〈x, xk〉|2
) 1

2

+

(
n∑

k=1

‖S − xk‖2

) 1
2


for any x ∈ H, ‖x‖ = 1. Taking the supremum over‖x‖ = 1 we deduce the desired result
(4.8).

Now, following the above argument, we can also state that

(4.14)

∣∣∣∣∣
〈

x,

n∑
j=1

xj

〉∣∣∣∣∣
2

≤
n∑

k=1

|〈x, xk〉|2 + ‖x‖

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥
for anyx ∈ H.

Utilising the inequality

(4.15)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

j=1

|αj|2
max

1≤j≤n
‖zj‖2 +

( ∑
1≤j 6=k≤n

|〈zj, zk〉|2
) 1

2

 ,

whereαj ∈ C, zj ∈ H, j ∈ {1, . . . , n} , that has been obtained in [4], see also [5, p. 128], we
can state that

(4.16)

∥∥∥∥∥
n∑

k=1

〈x, xk〉 (S − xk)

∥∥∥∥∥
≤

(
n∑

k=1

|〈x, xk〉|2
) 1

2

max
1≤k≤n

‖S − xk‖2 +

( ∑
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
) 1

2


1
2

for anyx ∈ H.
Now, by the use of (4.14) – (4.16) we deduce the desired result (4.9). The details are omitted.

�

Remark 4.4. On utilising the inequality:

(4.17)

∥∥∥∥∥
n∑

j=1

αjzj

∥∥∥∥∥
2

≤
n∑

j=1

|αj|2
[

max
1≤k≤n

‖zk‖2 + (n− 1) max
1≤k 6=l≤n

|〈zk, zl〉|
]

,

whereαj ∈ C, zj ∈ H, j ∈ {1, . . . , n} , that has been obtained in [4], (see also [5, p. 130])
in place of (4.15) above, we can state the following inequality for the hypo-Euclidean norm as
well:

(4.18) ‖S‖2

≤ ‖X‖e

[
‖X‖e +

{
max
1≤k≤n

‖S − xk‖2 + (n− 1) max
1≤k 6=l≤n

|〈S − xk, S − xl〉|2
} 1

2

]
for anyX = (x1, . . . , xn) ∈ Hn.

Other similar results may be stated by making use of the results from [6]. The details are left
to the interested reader.
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5. REVERSE I NEQUALITIES

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean norm,
we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for real or com-
plex numbers as follows:

If γ, Γ ∈ K (K = C, R) andαj ∈ K, j ∈ {1, . . . , n} with the property that

0 ≤ Re [(Γ− αj) (αj − γ̄)](5.1)

= (Re Γ− Re αj) (Re αj − Re γ) + (Im Γ− Im αj) (Im αj − Im γ)

or, equivalently,

(5.2)

∣∣∣∣αj −
γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ|

for eachj ∈ {1, . . . , n} , then (see for instance [5, p. 9])

(5.3) n
n∑

j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ 1

4
· n2 |Γ− γ|2 .

In addition, ifRe (Γγ̄) > 0, then (see for example [5, p. 26]):

n
n∑

j=1

|αj|2 ≤
1

4
·

{
Re
[(

Γ̄ + γ̄
)∑n

j=1 αj

]}2

Re (Γγ̄)
(5.4)

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

and

(5.5) n
n∑

j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

.

Also, if Γ 6= −γ, then (see for instance [5, p. 32]):

(5.6)

(
n

n∑
j=1

|αj|2
) 1

2

−

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣ ≤ 1

4
n · |Γ− γ|2

|Γ + γ|
.

Finally, from [7] we can also state that

(5.7) n

n∑
j=1

|αj|2 −

∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣
2

≤ n
[
|Γ + γ| − 2

√
Re (Γγ̄)

] ∣∣∣∣∣
n∑

j=1

αj

∣∣∣∣∣ ,
providedRe (Γγ̄) > 0.

We notice that a simple sufficient condition for (5.1) to hold is that

(5.8) Re Γ ≥ Re αj ≥ Re γ and Im Γ ≥ Im αj ≥ Im γ

for eachj ∈ {1, . . . , n} .
We can state and prove the following conditional inequalities for the hypo-Euclidean norm

‖·‖e :

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 52, 22 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


16 S.S. DRAGOMIR

Theorem 5.1.Letϕ, φ ∈ K andX = (x1, . . . , xn) ∈ Hn such that either:

(5.9)

∣∣∣∣〈x, xj〉 −
ϕ + φ

2

∣∣∣∣ ≤ 1

2
|φ− ϕ|

or, equivalently,

(5.10) Re [(φ− 〈x, xj〉) (〈xj, x〉 − ϕ̄)] ≥ 0

for eachj ∈ {1, . . . , n} and for anyx ∈ H, ‖x‖ = 1. Then

(5.11) ‖X‖2
e ≤

1

n
‖S‖2 +

1

4
n |φ− ϕ|2 .

Moreover, ifRe (φϕ̄) > 0, then

(5.12) ‖X‖2
e ≤

1

4n
· |φ + ϕ|2

Re (φϕ)
‖S‖2

and

(5.13) ‖X‖2
e ≤

1

n
‖S‖2 +

[
|φ + ϕ| − 2

√
Re (φϕ̄)

]
‖S‖ .

If φ 6= −ϕ, then

(5.14) ‖X‖e ≤
1

n
‖S‖+

1

4
n · |φ− ϕ|2

|φ + ϕ|
,

whereS =
∑n

j=1 xj.

Proof. We only prove the inequality (5.11).
Let x ∈ H, ‖x‖ = 1. Then, on applying the inequality (5.3) forαj = 〈x, xj〉 , j ∈ {1, . . . , n}

andΓ = φ, γ = ϕ, we can state that

(5.15)
n∑

j=1

|〈x, xj〉|2 ≤
1

n

∣∣∣∣∣
〈

x,
n∑

j=1

xj

〉∣∣∣∣∣
2

+
1

4
n |φ− ϕ|2 .

Now if in (5.15) we take the supremum over‖x‖ = 1, then we get the desired inequality
(5.11).

The other inequalities follow by (5.4), (5.7) and (5.6) respectively. The details are omitted.
�

Remark 5.2. Due to the fact that∣∣∣∣〈x, xj〉 −
ϕ + φ

2

∣∣∣∣ ≤ ∥∥∥∥xj −
ϕ + φ

2
· x
∥∥∥∥

for anyj ∈ {1, . . . , n} andx ∈ H, ‖x‖ = 1, then a sufficient condition for (5.9) to hold is that∥∥∥∥xj −
ϕ + φ

2
· x
∥∥∥∥ ≤ 1

2
|φ− ϕ|

for eachj ∈ {1, . . . , n} andx ∈ H, ‖x‖ = 1.
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6. APPLICATIONS FOR n−TUPLES OF OPERATORS

In [9], the author has introduced the following norm on the Cartesian productB(n) (H) :=
B (H)×· · ·×B (H) , whereB (H) denotes the Banach algebra of all bounded linear operators
defined on the complex Hilbert spaceH :

(6.1) ‖(T1, . . . , Tn)‖e := sup
(λ1,...,λn)∈Bn

‖λ1T1 + · · ·+ λnTn‖ ,

where(T1, . . . , Tn) ∈ B(n) (H) andBn :=
{
(λ1, . . . , λn) ∈ Cn

∣∣∑n
i=1 |λi|2 ≤ 1

}
is the Eu-

clidean closed ball inCn. It is clear that‖·‖e is a norm onB(n) (H) and for any(T1, . . . , Tn) ∈
B(n) (H) we have

(6.2) ‖(T1, . . . , Tn)‖e = ‖(T ∗
1 , . . . , T ∗

n)‖e ,

whereT ∗
i is the adjoint operator ofTi, i ∈ {1, . . . , n} .

It has been shown in [9] that the following inequality holds true:

(6.3)
1√
n

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

≤ ‖(T1, . . . , Tn)‖e ≤

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

for anyn−tuple(T1, . . . , Tn) ∈ B(n) (H) and the constants1√
n

and1 are best possible.
In the same paper [9] the author has introduced theEuclidean operator radiusof ann−tuple

of operators(T1, . . . , Tn) by

(6.4) we (T1, . . . , Tn) := sup
‖x‖=1

(
n∑

j=1

|〈Tjx, x〉|2
) 1

2

and proved thatwe (·) is a norm onB(n) (H) and satisfies the double inequality:

(6.5)
1

2
‖(T1, . . . , Tn)‖e ≤ we (T1, . . . , Tn) ≤ ‖(T1, . . . , Tn)‖e

for eachn−tuple(T1, . . . , Tn) ∈ B(n) (H) .
As pointed out in [9], the Euclidean numerical radius also satisfies the double inequality:

(6.6)
1

2
√

n

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

≤ we (T1, . . . , Tn) ≤

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥
1
2

for any(T1, . . . , Tn) ∈ B(n) (H) and the constants1
2
√

n
and1 are best possible.

We are now able to establish the following natural connections that exists between the hypo-
Euclidean norm of vectors in a Cartesian product of Hilbert spaces and the norm‖·‖e for
n−tuples of operators in the Banach algebraB (H) .

Theorem 6.1.For any(T1, . . . , Tn) ∈ B(n) (H) we have

‖(T1, . . . , Tn)‖e = sup
‖y‖=1

‖(T1y, . . . , Tny)‖e(6.7)

= sup
‖y‖=1,‖x‖=1

(
n∑

j=1

|〈Tjy, x〉|2
) 1

2

.
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Proof. By the definition of the‖·‖e−norm onB(n) (H) and the hypo-Euclidean norm onHn,
we have:

‖(T1, . . . , Tn)‖e = sup
(λ1,...,λn)∈Bn

[
sup
‖y‖=1

‖(λ1T1 + · · ·+ λnTn) y‖

]
(6.8)

= sup
‖y‖=1

[
sup

(λ1,...,λn)∈Bn

‖λ1T1y + · · ·+ λnTny‖

]
= sup

‖y‖=1

‖(T1y, . . . , Tny)‖e .

Utilising the representation of the hypo-Euclidean norm onHn from Theorem 2.2, we have

(6.9) ‖(T1y, . . . , Tny)‖e = sup
‖x‖=1

(
n∑

j=1

|〈Tjy, x〉|2
) 1

2

.

Making use of (6.8) and (6.9) we deduce the desired equality (6.7). �

Remark 6.2. Utilising Theorem 2.1, we have

(6.10)

(
n∑

j=1

‖Tjy‖2

) 1
2

≥ ‖(T1y, . . . , Tny)‖e ≥
1√
n

(
n∑

j=1

‖Tjy‖2

) 1
2

for anyy ∈ H, ‖y‖ = 1.
Since

n∑
j=1

‖Tjy‖2 =

〈
n∑

j=1

T ∗
j Tjy, y

〉
, ‖y‖ = 1

hence, on taking the supremum over‖y‖ = 1 in (6.10) and on observing that

sup
‖y‖=1

〈
n∑

j=1

T ∗
j Tjy, y

〉
= w

(
n∑

j=1

T ∗
j Tj

)
=

∥∥∥∥∥
n∑

j=1

T ∗
j Tj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=1

TjT
∗
j

∥∥∥∥∥ ,

we deduce the inequality (6.3) that has been established in [9] by a different argument.

We observe that, due to the representation Theorem 6.1, some inequalities obtained for the
hypo-Euclidean norm can be utilised in obtaining various new inequalities for the operator
norm‖·‖e by employing a standard approach consisting in taking the supremum over‖y‖ = 1,
as described in the above remark.

The following different lower bound for the Euclidean operator norm‖·‖e can be stated:

Proposition 6.3. For any(T1, . . . , Tn) ∈ B(n) (H) , we have

(6.11) ‖(T1, . . . , Tn)‖e ≥
1√
n
‖T1 + · · ·+ Tn‖ .

Proof. Utilising Proposition 2.4 and Theorem 6.1 we have:

‖(T1, . . . , Tn)‖e = sup
‖y‖=1

‖(T1y, . . . , Tny)‖e

≥ 1√
n

sup
‖y‖=1

‖T1y + · · ·+ Tny‖

=
1√
n
‖T1 + · · ·+ Tn‖

which is the desired inequality (6.11). �
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We can state the following results concerning various upper bounds for the operator norm
‖(., . . . , .)‖e:

Theorem 6.4.For any(T1, . . . , Tn) ∈ B(n) (H) , we have the inequalities:

(6.12) ‖(T1, . . . , Tn)‖2
e ≤



max
1≤j≤n

{
‖Tj‖2}+

[ ∑
1≤j 6=k≤n

w2 (T ∗
k Tj)

] 1
2

;

max
1≤j≤n

{
‖Tj‖2}+ (n− 1) max

1≤j 6=k≤n
{w (T ∗

k Tj)} ;max
1≤j≤n

{
‖Tj‖2}∥∥∥∥∥ n∑

j=1

T ∗
j Tj

∥∥∥∥∥
2

+ max
1≤j 6=k≤n

{‖Tj‖ ‖Tk‖}
∑

1≤j 6=k≤n

w
(
TkT

∗
j

)] 1
2

.

The proof follows by Theorem 3.1 and Theorem 6.1 and the details are omitted.
On utilising the inequalities (3.8) and (3.17) we can state the following result as well:

Theorem 6.5.For any(T1, . . . , Tn) ∈ B(n) (H) , we have:

(6.13) ‖(T1, . . . , Tn)‖2
e ≤



max
1≤j≤n

{
n∑

k=1

w (T ∗
k Tj)

}
;[

n∑
j,k=1

w2 (T ∗
k Tj)

] 1
2

;

n max
1≤j≤n

[
n∑

k=1

w2 (T ∗
k Tj)

] 1
2

;

n

[
n∑

j=1

max
1≤k≤n

{w2 (T ∗
k Tj)}

] 1
2

.

The results from Section 5 can be also naturally used to provide some reverse inequalities
that are of interest.

Theorem 6.6.Let (T1, . . . , Tn) ∈ B(n) (H) andϕ, φ ∈ K such that

(6.14)

∥∥∥∥Tjy −
ϕ + φ

2
· x
∥∥∥∥ ≤ 1

2
|φ− ϕ| for any ‖x‖ = ‖y‖ = 1

and for eachj ∈ {1, . . . , n} . Then

(6.15) ‖(T1, . . . , Tn)‖2
e ≤

1

n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
1

n
|φ− ϕ|2 .

In addition, ifRe (φϕ̄) > 0, then

(6.16) ‖(T1, . . . , Tn)‖2
e ≤

1

4n
· |φ + ϕ|2

Re (φϕ̄)

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

and

(6.17) ‖(T1, . . . , Tn)‖2
e ≤

1

n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
[
|φ + ϕ| − 2

√
Re (φϕ̄)

] ∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥ .
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If φ 6= −ϕ, then also

(6.18) ‖(T1, . . . , Tn)‖e ≤
1√
n

∥∥∥∥∥
n∑

j=1

Tj

∥∥∥∥∥
2

+
1

4

√
n · |φ− ϕ|2

|φ + ϕ|
.

Proof. For anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 we have∣∣∣∣〈x, Tjy〉 −
ϕ + φ

2

∣∣∣∣ =

∣∣∣∣〈x, Tjy −
ϕ + φ

2
x

〉∣∣∣∣
≤ ‖x‖

∥∥∥∥Tjy −
ϕ + φ

2
x

∥∥∥∥
≤ 1

2
|φ− ϕ|

for eachj ∈ {1, . . . , n} .
Now, on applying Theorem 5.1 forxj = Tjy, we can write from (5.11) the following inequal-

ity

‖(T1y, . . . , Tny)‖e ≤
1

n

∥∥∥∥∥
n∑

j=1

Tjy

∥∥∥∥∥+
1

4
n |φ− ϕ|2

for eachy with ‖y‖ = 1.
Taking the supremum over‖y‖ = 1 and utilising Theorem 6.1, we deduce (6.15).
The other inequalities follow by a similar procedure on making use of the inequalities (5.12)

– (5.14) and the details are omitted. �

Remark 6.7. The inequality (6.14) is equivalent with

0 ≤ Re [(φ− 〈x, Tjy〉) (〈Tjy, x〉 − ϕ̄)](6.19)

= (Re (φ)− Re 〈x, Tjy〉) (Re 〈Tjy, x〉 − Re (ϕ))

+ (Im (φ)− Im 〈x, Tjy〉) (Im 〈Tjy, x〉 − Im (ϕ))

for eachj ∈ {1, . . . , n} and‖x‖ = ‖y‖ = 1. A sufficient condition for (6.19) to hold is then:

(6.20)

 Re (ϕ) ≤ Re 〈x, Tjy〉 ≤ Re (φ)

Im (ϕ) ≤ Im 〈x, Tjy〉 ≤ Im (φ)

for anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 andj ∈ {1, . . . , n} .

7. A NORM ON B (H)

For an operatorA ∈ B (H) we define

(7.1) δ (A) := ‖(A, A∗)‖e = sup
(λ,µ)∈B2

‖λA + µA∗‖ ,

whereB2 is the Euclidean unit ball inC2.
The properties of this functional are embodied in the following theorem:

Theorem 7.1.The functionalδ is a norm onB (H) and satisfies the double inequality:

(7.2) ‖A‖ ≤ δ (A) ≤ 2 ‖A‖

for anyA ∈ B (H) .
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Moreover, we have the inequalities

(7.3)

√
2

2

∥∥A2 + (A∗)2
∥∥ 1

2 ≤ δ (A) ≤
∥∥A2 + (A∗)2

∥∥ 1
2 ,

and

(7.4)

√
2

2
‖A + A∗‖ ≤ δ (A) ≤

[
‖A‖2 + w

(
A2
)] 1

2

for anyA ∈ B (H) , respectively.

Proof. First of all, observe, by Theorem 5.1, that we have the representation

(7.5) δ (A) = sup
‖x‖=1,‖y‖=1

[
|〈Ay, x〉|2 + |〈A∗y, x〉|2

] 1
2

for eachA ∈ B (H) .
Obviouslyδ (A) ≥ 0 for eachA ∈ B (H) and ofδ (A) = 0 then, by (7.5),〈Ay, x〉 = 0 for

anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 which implies thatA = 0. Also, by (7.5), we observe that

δ (αA) = sup
‖x‖=1,‖y‖=1

[
|〈αAy, x〉|2 + |〈ᾱA∗y, x〉|2

] 1
2

= |α| sup
‖x‖=1,‖y‖=1

[
|〈Ay, x〉|2 + |〈A∗y, x〉|2

] 1
2

= |α| δ (A)

for anyα ∈ R andA ∈ B (H) .
Now, if A, B ∈ B (H) , then

δ (A + B) = sup
(λ,µ)∈B2

‖λA + µA∗ + λB + µB∗‖

≤ sup
(λ,µ)∈B2

‖λA + µA∗‖+ sup
(λ,µ)∈B2

‖λB + µB∗‖

= δ (A) + δ (B) ,

which proves the triangle inequality.
Also, we observe that

δ (A) ≥ sup
‖x‖=1,‖y‖=1

|〈Ay, x〉| = ‖A‖

and

δ (A) ≤ sup
‖x‖=1,‖y‖=1

[|〈Ay, x〉|+ |〈A∗y, x〉|]

≤ sup
‖x‖=1,‖y‖=1

|〈Ay, x〉|+ sup
‖x‖=1,‖y‖=1

|〈A∗y, x〉|

= 2 ‖A‖
and the inequality (7.2) is proved.

The inequality (7.3) follows from (6.3) forn = 2, T1 = A andT2 = A∗ while (7.4) follows
from Proposition 6.3 and the second inequality in (6.12) for the same choices. �

Remark 7.2. It is easy to see that
√

2

2

∥∥A2 + (A∗)2
∥∥ 1

2 ≤ ‖A‖

and ∥∥A2 + (A∗)2
∥∥ 1

2 ,
[
‖A‖2 + w

(
A2
)] 1

2 ≤ 2 ‖A‖
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for eachA ∈ B (H) . Also, we notice that ifA is self-adjoint, then the equality case holds in
the second part of (7.3) and in both sides of (7.4). However, it is an open question for the author
which of the lower bounds‖A‖ ,

√
2

2
‖A + A∗‖ of the normδ (A) are better and when. The same

question applies for the upper bounds
∥∥A2 + (A∗)2

∥∥ 1
2 and

[
‖A‖2 + w (A2)

] 1
2 , respectively.
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