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Abstract

We consider a particular definite integral and reduce it to hypergeometric form.
Then we develop identities for some numerical constants and the number π.
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1. Introduction
π, is a real number and defined as the ratio of the circumference of a circle to
its diameter.π′s digits have many interesting properties andπ has a rich history
dating back to the time of the Babylonians and Egyptians, circa 2000 B.C. The
Bible has two references, I Kings 7:23 and Chronicles 4:2, to Pi and gives it
an estimate of about 3. The Babylonians gave an estimate ofπ as31

8
and the

Egyptians also obtained313
81

as an estimate. We know that31
8

< π < 313
81

.
Many researchers have increasingly calculated the number of decimal places

for the value ofπ. Apparently in September 2002, Dr. Kanada and his team,
from the University of Tokyo, calculatedπ to 1.2411 trillion digits, indeed a
world record. Many, many formulae also exist for the representation ofπ, and
a collection of these formulae is listed below.

Vieta (~1593), see [7], gave an infinite product of nested radicals for the
reciprocal ofπ, namely

2

π
=

√
1

2

√
1

2
+

1

2

√
1

2

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · .

Wallis (~1650), see [7], gave

π

4
=

∞∏
r=1

(
1− 1

(2r + 1)2

)
.

Leibnitz (~1670), see [7], gave the very slow converging series

π

4
=

∞∑
r=0

(−1)r

2r + 1
.
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Newton (~1666) admitted being ashamed at having computedπ to fifteen
decimal places, by the formula

π =
3
√

3

4
+ 24

∫ 1
4

0

√
x− x2dx

=
3
√

3

4
+ 2− 3

4

{
1

5
+

1

7 · 24
+

1

9 · 27
+

5

11 · 212
+ · · ·

}
=

3
√

3

4
+ 2− 3

4

∞∑
k=0

(
2k
k

)
1

16k (k + 1) (2k + 5)

Euler (~1750) gave many representations ofπ including:

π

2
= lim

n→∞

[
1

n
+

1

6n2
+ 4n

n∑
j=1

1

n2 + j2

]
.

Ramanujan (~1914) has also given many representations ofπ and its recip-
rocal, including:

1

π
=

2
√

2

34 · 112

∞∑
r=0

(4r)! (1103 + (2 · 5 · 7 · 13 · 29) r)

(r!)4 (22 · 32 · 11)4r .

For a fuller account of Ramanujan’s work the interested reader is referred to the
books of Berndt [4].

Comtet (1974) gave

π4 =
23 · 34 · 5

17

∞∑
r=1

1

r4
(

2r
r

) .
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D. and G. Chudnovsky (1989) gave

1

π
= 12

∞∑
r=0

(−1)r (6r)!

(r!)3 (3r)!
· 13 · 1045493 + 2 · 32 · 7 · 11 · 19 · 127 · 163r

(218 · 33 · 53 · 233 · 293)r+ 1
2

.

Bailey, Borwein and Plouffe (1996) gave

(1.1) π =
∞∑

r=0

1

16r

[
4

8r + 1
− 2

8r + 4
− 1

8r + 5
− 1

8r + 6

]
.

Bellard (1997) gave

π =
1

32 · 52 · 11 · 13 · 23

[
∞∑

r=1

3P (r)(
7r
2r

)
2r−1

− 24 · 5 · 254741

]
,

where

P (r) = −13 · 29 · 2351653r5 + 193 · 16193509r4 − 52 · 7 · 79 · 212873r3

+ 5 · 206392559r2 − 2 · 98441137r + 23 · 13 · 43 · 2459.

Lupas [10], gave

π = 4 +
∞∑

k=1

(−16)k

(
2k
k

)
(40k2 + 16k + 1)(

4k
2k

)2
2k (4k + 1)2

.

The original Lupas formula contained a minor misprint which has been cor-
rected here.
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Borwein and Girgensohn (2003), wrote

π = ln 4 + 10
∞∑

r=1

1

2rr
(

3r
r

) .
Sofo [16] has given

π

2
=
√

2 + ln
(√

2− 1
)

+
∞∑

r=0

(
4r

2r

)
1

16r (2r + 1) (4r + 1)

and

π2 =
1308

135
+

12

5

∞∑
r=1

4r

r2
(

2r
r

)
(r + 1) (2r + 1) (2r + 3)

.

Many other representations ofπ exist, including the famous Machin-type
formulae such as

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
.

There are also many other connections ofπ and other mathematical constants,
including:

eiπ + 1 = 0,

π3 + 8π = 56− 8
∞∑

r=1

(−1)r

r (r + 1) (2r + 1)3 ,

π2

6
= 3 ln2 φ +

∞∑
r=0

(−1)r (r!)2

(2r)! (2r + 1)2 , whereφ is the Golden ratio
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and

π2 = −12e3

∞∑
r=1

1

r2
cos

 9

rπ +
√

(rπ)2 − 32

 .

A selection of some series expansion representations ofπ including some of
the above is given by Sebah and Gourdon [15].

There are other nice articles and books relating toπ including [2, 3, 6, 7, 8,
11, 12].

The aim of this paper is to derive representations ofπ, as well as some other
constants, by the consideration of a particular definite integral. The following
integral will now be investigated.
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2. The Integral
Theorem 2.1.For k, m andα real positive numbers anda ≥ 1, then

I (a, k,m, α) =

∫ 1
a

0

xm

(1− xk)α dx(2.1)

=
∞∑

r=0

(α)r

r! (rk + m + 1) ark+m+1
(2.2)

= T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
(2.3)

=
1

k

[
B

(
1−α,

m + 1

k

)
−B

(
1−a−k; 1−α,

m + 1

k

)]
,(2.4)

where

(2.5) T0 =
1

(m + 1) am+1
,

(b)s is Pochhammer’s symbol defined by

(2.6)


(b)0 = 1

(b)s = b (b + 1) · · · (b + s− 1) = Γ(b+s)
Γ(b)

,

Γ (b) is the classical Gamma function,2F1 [· ·] is the Gauss Hypergeometric
function,B (s, t) is the classical Beta function and

B (z; s, t) =

∫ z

0

us−1 (1− u)t−1 du

http://jipam.vu.edu.au/
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is the incomplete Beta function.

Proof.

I (a, k, m, α) =

∫ 1
a

0

xm

(1− xk)α dx

=

∫ 1
a

0

∞∑
r=0

(−1)r

(
−α

r

)
xkr+m.

where we have utilised

1

(1 + z)β
=

∞∑
r=0

(
−β

r

)
zr

and from (
−β

r

)
= (−1)r

(
β + r − 1

r

)
=

(−1)r (β)r

r!

we have

I(a, k,m, α) =

∫ 1
a

0

∞∑
r=0

(α)r

r!
xkr+m.

Reversing the order of integration and summation and substituting the integra-
tion limits we obtain the result (2.2). The result (2.4) is obtained by the use of
the substitutionu = 1− xk.

Binomial sums are intrinsically associated with generalised hypergeometric
functions and if from (2.2) we let

(2.7) Tr =
(α)r

r! (rk + m + 1) ark+m+1
,

http://jipam.vu.edu.au/
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then we get the ratio

(2.8)
Tr+1

Tr

=
(α + r)

(
r + m+1

k

)
ak (r + 1)

(
r + m+1+k

k

)
whereT0 is given by (2.5). From (2.5) and (2.2) we can write

I(a, k,m, α) = T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
=

1

k

[
B

(
1− α,

m + 1

k

)
−B

(
1− a−k; 1− α,

m + 1

k

)]
,

which is the result (2.3). We can now match (2.2) and (2.3) so that

∞∑
r=0

(α)r

r! (rk + m + 1) ark+m+1

= T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
=

1

k

[
B

(
1− α,

m + 1

k

)
−B

(
1− a−k; 1− α,

m + 1

k

)]
,

and the infinite series converges for
∣∣a−k

∣∣ < 1.

In a previous paper, Sofo [17] has utilised (2.1) for the casea = 1 and

http://jipam.vu.edu.au/
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developed identities forπ and other constants, such as

π =
15p!

(√
30 + 6

√
5 + 1−

√
5
)

4
(

7
30

)
p

∞∑
r=0

(
7
30

)
r

r! (30r + 30p + 7)
,

for p = 0, 1, 2, 3, . . .

Remark 1. Bailey, Borwein, Borwein and Plouffe see [7] utilised (2.1) for
a =

√
2, α = 1, k = 8 and m = β − 1, β < 8 to prove the new formula

(1.1). Subsequently Hirschhorn [9] has shown that (1.1) can be obtained from
standard integration procedures.

The following lemma will be useful in the consideration of the integral (2.1).

Lemma 2.2. For p = 0, 1, 2, . . . the following well-known identities are given
by Beyer [5]

(2.9) sin2p+1 x =
(−1)p

22p

p∑
j=0

(−1)j

(
2p + 1

p

)
sin ((2p + 1− 2j) x)

and

(2.10) sin2p+2 x

=
1

22p+1

[(
2p + 1

p

)
− (−1)p

p∑
j=0

(−1)j

(
2p + 2

p

)
cos ((2p + 2− 2j) x)

]
.

http://jipam.vu.edu.au/
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The integral (2.1) can be simplified as follows. Consider the casek = 2;
then from (2.1)

(2.11) I (a, m, 2, α) =

∫ 1
a

0

xm

(1− x2)α dx.

The following lemma concerns the integral (2.11).

Lemma 2.3.
(i) For m = 2p + 1, 2α = 2q + 1; p = 0, 1, 2, . . . , andq = 0, 1, 2, . . .

I (a, m, 2, α)(2.12)

=

∫ 1
a

0

x2p+1

(1− x2)
2q+1

2

dx =

∫ θ∗

0

sin2p+1 θ

cos2q θ
dθ

=
1

2

[
B

(
1− 2q

2
, p + 1

)
−B

(
1− a−2;

1− 2q

2
, p + 1

)]
=

1

2q − 1
·
(

1
a

)2p+2

cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i)− 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i)− 1

2 (q − i) + 1

[
(−1)p

22p

×
p∑

s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

)
{1− cos ((2p− 2s + 1) θ∗)}

]
.

wherex = sin θ andθ∗ = arcsin
(

1
a

)
.

Note, the middle term in the right hand side of (2.12) is identically zero for
q = 1 and only the last sum applies forq = 0.
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(ii) For m = 2p + 2, 2α = 2q + 1; p = 0, 1, 2, . . . , andq = 0, 1, 2, . . .

I (a, m, 2, α)(2.13)

=

∫ 1
a

0

x2p+2

(1− x2)
2q+1

2

dx =

∫ θ∗

0

sin2p+2 θ

cos2q θ
dθ

=
1

2

[
B

(
1− 2q

2
, p +

3

2

)
−B

(
1− a−2;

1− 2q

2
, p +

3

2

)]
=

1

2q − 1
·
(

1
a

)2p+3

cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+3

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i + 1)

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i + 1)

2 (q − i) + 1

{
1

22p+1

[(
2p + 1

p

)
θ∗

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin ((2p− 2s + 2) θ∗)

]}
.

wherex = sin θ andθ∗ = arcsin
(

1
a

)
.

Note, the middle term in the right hand side of (2.13) is identically zero for
q = 1 and only the last two terms apply forq = 0.

Proof. (i) From

I (a, m, 2, α) =

∫ θ∗

0

sin2p+1 θ

cos2q θ
dθ,

http://jipam.vu.edu.au/
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integrating by parts once leads to

I (a, m, 2, α) =
1

2q − 1

[
sin2p+2 θ

cos2q−1 θ

}θ∗

0

− (2p + 3− 2q)

∫ θ∗

0

sin2p+1 θ

cos2q−2 θ
dθ

]

=

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗
− 2p− 2q + 3

2q − 1

∫ θ∗

0

sin2p+1 θ

cos2q−2 θ
dθ,

and repeated integration by parts gives us

(2.14) I (a, m, 2, α) =

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗

+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i) + 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i) + 1

2 (q − i) + 1

∫ θ∗

0

sin2p+1 θdθ.

Substituting (2.9), from Lemma2.2, into (2.14) and integrating, results in
(2.12) hence part (i) of the lemma is proved.

(ii) The proof of part (ii) of the lemma follows the same footsteps as part (i).

The following lemma is given and will be useful in the simplification of the
left hand side of (2.17) and (2.18).

http://jipam.vu.edu.au/
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Lemma 2.4. For r = 0, 1, 2, . . . andq = 1, 2, 3, . . . then

(2.15)

(
q + 1

2

)
r

r!
=

1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1
,

and forq = 0,

(2.16)

(
1
2

)
r

r!
=

1

4r

(
2r

r

)
.

Proof. For q = 0, then(
1
2

)
r

r!
=

Γ
(
r + 1

2

)
r!Γ
(

1
2

) =
1

4r

(
2r

r

)
.

This result is well known and is also given by Wilf [18].
For q ≥ 1, let

P (q) :=

(
q + 1

2

)
r

r!
=

1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1

then

P (1) =

(
3
2

)
r

r!
=

(2r + 1)

2

Γ
(

1
2

)
Γ
(

3
2

) (1
2

)
r

r!
,

and from (2.16)

P (1) =
2r + 1

4r

(
2r

r

)
,

http://jipam.vu.edu.au/
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which satisfies the right hand of (2.15) for q = 1.

Consider

P (q + 1) =

(
q + 3

2

)
r

r!
=

Γ
(
q + r + 3

2

)
r!Γ
(
q + 3

2

)
=

(
2q + 2r + 1

2q + 1

)
Γ
(
q + r + 1

2

)
r!Γ
(
q + 1

2

)
=

(
2q + 2r + 1

2q + 1

) (
q + 1

2

)
r

r!

and from (2.15)

P (q + 1) =

(
2q + 2r + 1

2q + 1

)
1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1

=
1

4r

(
2r

r

) q∏
ρ=0

2r + 2ρ + 1

2ρ + 1

hence the lemma is proved.

Fork = 2 the following theorem now applies.

Theorem 2.5.

(i) For m = 2p + 1, 2α = 2q + 1; p = 0, 1, 2, . . . , q = 0, 1, 2, . . . ,

(2.17)
∞∑

r=0

(
q + 1

2

)
r

r! (2r + 2p + 2) a2r+2p+2
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=
∞∑

r=0

(
2r
r

) ∏q−1
ρ=0

2r+2ρ+1
2ρ+1

4r (2r + 2p + 2) a2r+2p+2

= T ∗0 2F1

[
p + 1, 1

2
(2q + 1)

p + 2

∣∣∣∣ 1

a2

]
=

1

2

[
B

(
1− 2q

2
, p + 1

)
−B

(
1− a−2;

1− 2q

2
, p + 1

)]
=

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i) + 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i) + 1

2 (q − i) + 1

×

[
(−1)p

22p

p∑
s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

)
{1− cos ((2p− 2s + 1) θ∗)}

]

where

T ∗0 =
1

(2p + 2) a2p+2

andθ∗ = arcsin
(

1
a

)
.

(ii) For m = 2p + 2, 2α = 2q + 1; p = 0, 1, 2, . . . , q = 0, 1, 2, . . . ,

(2.18)
∞∑

r=0

(
q + 1

2

)
r

r! (2r + 2p + 3) a2r+2p+3
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=
∞∑

r=0

(
2r
r

) ∏q−1
ρ=0

2r+2ρ+1
2ρ+1

4r (2r + 2p + 3) a2r+2p+3

= T∇0 2F1

[
1
2
(2p + 3) , 1

2
(2q + 1)

1
2
(2p + 5)

∣∣∣∣ 1

a2

]
=

1

2

[
B

(
1− 2q

2
, p +

3

2

)
−B

(
1− a−2;

1− 2q

2
, p +

3

2

)]
=

(
1
a

)2p+3

(2q − 1) cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+3

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i + 1)

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i + 1)

2 (q − i) + 1

{
1

22p+1

[(
2p + 1

p

)
θ∗

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin ((2p− 2s + 2) θ∗)

]}
,

where

T∇0 =
1

(2p + 3) a2p+3

andθ∗ = arcsin
(

1
a

)
.

The proof of Theorem2.5 follows directly from Lemma2.3 , (2.14) and
Lemma2.4.

Some examples will now be given expressingπ and other constants in terms
of an infinite series.
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3. Illustrative Examples
Example 3.1.From (2.17) with q = 2, a = 2 andθ∗ = π

6
, we have

2√
3

(
8

3
− 2 (2p− 1)

)
+ 8 (−1)p (2p− 1) (2p + 1)

×
p∑

s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

){
1− cos (2p− 2s + 1)

π

6

}
=

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

16r (r + p + 1)
.

Hence, forp = 7,

√
3 =

3 · 222

7 · 163 · 6367
− 32 · 11

26 · 7 · 163 · 6376

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

16r (r + 8)
.

Example 3.2.From (2.18) with q = 2, a = 2√
3

andθ∗ = π
3
, we have

8− 4p +
16p (p + 1)(√

3
)2p+3

[(
2p + 1

p

)
π

3

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3

]

=
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
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or rearranging,

π

3
=

3p+ 3
2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
,

and forp = 2

20
√

3π

81
= 1 +

1

16

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

2r + 7

(
3

16

)r

.

For p = 2, a =
√

2

π =
8

3
+

1

3
√

2

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

2r + 5

(
1

8

)r

.

Example 3.3.For q = 3, p = 2 anda =
√

2,

π =
52

15
− 1

30
√

2

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5)

2r + 7

(
1

8

)r

.

Example 3.4.For q = 4, p = 3 anda = 2,

π =
1712

√
3

945
+

1

8960

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5) (2r + 7)

(2r + 9) 16r
.
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Example 3.5.For q = 5, p = 0 anda =
√

5,

√
5 =

211

3 · 5 · 193 · 2731

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 5) (2r + 7) (2r + 9) (2r + 11)

20r
.

Example 3.6.For q = 6, p = 5 anda =
√

2,

π =
23 · 1289

5 · 7 · 9 · 11
+

1

5 · 16 · 829 ·
√

2

∞∑
r=0

[(
2r

r

)
× (2r + 1) (2r + 3) (2r + 5) (2r + 7) (2r + 9) (2r + 11)

(2r + 13) 8r

]
.

Example 3.7.For q = 4
(
α = 9

2

)
, p = 59 (m = 120) anda = 2,

π =
Ω1

Ω2

√
3

+
1

Ω3

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5) (2r + 7)

(2r + 121) 16r
,

where

Ω1 = 15604102274295581508678435968572864501995513795052733

= (46042305118509401202197) (338907929004245243145594887689) ,

Ω2 = 26 · 35 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59

· 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113
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and

Ω3 = 211 · 33 · 5 · 7 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 59

· 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113.

In this case the first term of the sum givesπ accurate to over forty decimal
places.

Other particular values of constants may be obtained from (2.13).

Example 3.8.For a = 2, m = 10, k = 1 andα = 7

ln 2 =
27947

27 · 32 · 5 · 7
+

1

212 · 3 · 5 · 7

∞∑
r=0

(
r + 6

r

)
1

(r + 11) 2r
.

It is of some interest to note that from (2.18) for m = 0 andα = w > 1, integer,
we may eventually write, after integration by parts, and using (2.2)

ln

(
a + 1

a− 1

)
=

2w (w − 1)!

(2w − 3)!!

[
∞∑

r=0

(
r + w − 1

r

)
1

(2r + 1) a2r+1

− 1

a (2w − 1)

w−1∑
j=1

1

2j

(
a2

a2 − 1

)w−j j∏
ν=1

2w − 2ν + 1

w − ν

]
,

where(2w − 3)!! = (2w − 3) (2w − 5) · · · 5 · 3 · 1, anda > 1.
For a = 11 andw = 7, we have

ln

(
6

5

)
=

211

3 · 7 · 112

∞∑
r=0

(
r + 6

r

)
1

(2r + 1) 121r
− 11 · 179 · 17047711

29 · 38 · 56
.
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Remark 2. In the degenerative case ofw = 1 then we obtain the well-known
formula as listed in Abramowitz and Stegun [1], namely

ln

(
a + 1

a− 1

)
= 2

∞∑
r=0

1

(2r + 1) a2r+1
.
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4. Some Estimates
It is useful to be able to obtain some estimates of the representation of the series
(2.2). This is done in the following theorems.

Theorem 4.1.Given that

(4.1) S (a, k, α, m) =
∞∑

r=0

(α)r

r! (rk + m + 1) ark+m+1
,

then

1

(m + 1) am+1
(4.2)

< S (a, k, α, m)

≤


1

((mq+1)amq+1)
1
q k

1
p

[
B
(
1− αp, 1

k

)
−B

(
1− a−k; 1− αp, 1

k

)] 1
p ,

(
ak

ak−1

)α
1

(m+1)am+1 , a > 1,

for real numbersp andq wherep > 1, 1
p

+ 1
q

= 1, B (s, t) is the classical Beta
function andB (z; s, t) is the incomplete Beta function as described in Theorem
2.1.

Proof. Let f (x) = 1

(1−xk)
α and g (x) = xm. Since |f (x)|p and |g (x)|q are

integrable functions defined onx ∈
[
0, 1

a

]
, then by Hölder’s integral inequality
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[14]

S (a, k, α, m) ≤

(∫ 1
a

0

xmqdx

) 1
q
(∫ 1

a

0

dx

(1− xk)αp

) 1
p

.

Now ∫ 1
a

0

dx

(1− xk)αp =
1

k

[
B

(
1− αp,

1

k

)
−B

(
1− a−k; 1− αp,

1

k

)]
by the substitutionu = 1− xk, and hence

S (a, k, α, m) ≤ 1

((mq + 1) amq+1)
1
q k

1
p

×
[
B

(
1− αp,

1

k

)
−B

(
1− a−k; 1− αp,

1

k

)] 1
p

.

The lower bound onS (a, k, α, m) is 1
(m+1)am+1 since the sum (2.2) is one of

positive terms.
The second part of the inequality (4.2) is obtained from∫ x1

x0

|f (x) g (x)| dx ≤ ess sup
x∈[x0,x1]

|f (x)|
∫ x1

x0

|g (x)| dx.

Sincef (x) is monotonic onx ∈
[
0, 1

a

]
,

ess sup
x∈[0, 1

a ]

{
1

(1− xk)α

}
=

(
ak

ak − 1

)α

http://jipam.vu.edu.au/
mailto:anthony.sofo@vu.edu.au
http://jipam.vu.edu.au/


π and Some Other Constants

Anthony Sofo

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 31

J. Ineq. Pure and Appl. Math. 6(5) Art. 138, 2005

http://jipam.vu.edu.au

and ∫ 1
a

0

xmdx =
1

(m + 1) am+1
,

hence

1

(m + 1) am+1
< S (a, k, α, m) ≤

(
ak

ak − 1

)α
1

(m + 1) am+1
.

The result (4.2) follows and the theorem is proved.

The next theorem develops an inequality of (4.1) based on the pre-Grüss
result.

Theorem 4.2.For a > 1,

(4.3)

∣∣∣∣S (a, k, α, m)− 1

k (m + 1) am

×
{

B

(
1− α,

1

k

)
−B

(
1− a−k; 1− α,

1

k

)}∣∣∣∣
≤ m

2 (m + 1) am+1
√

2m + 1

[(
ak

ak − 1

)α

− 1

]
.

Proof. Define

T (g, f) :=
1

x1 − x0

∫ x1

x0

f (x) g (x) dx

− 1

x1 − x0

∫ x1

x0

f (x) dx · 1

x1 − x0

∫ x1

x0

g (x) dx
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for f (x) andg (x) integrable functions, as given in Theorem4.1, and defined
onx ∈

[
0, 1

a

]
, then the pre-Grüss inequality [13] states that

|T (g, f)| ≤ Γ− γ

2
[T (g, g)]

1
2

for γ ≤ f (x) ≤ Γ.

Now, for x ∈
[
0, 1

a

]
γ = 1 ≤ f (x) =

1

(1− xk)α ≤
(

ak

ak − 1

)α

= Γ,

T (g, f) = a

∫ 1
a

0

xm

(1− xk)α dx− a2

∫ 1
a

0

dx

(1− xk)α

∫ 1
a

0

xmdx

= aS (a, k, α, m)− a2

(m + 1) am+1k

×
[
B

(
1− α,

1

k

)
−B

(
1− a−k; 1− α,

1

k

)]
.

In a similar fashion

[T (g, g)]
1
2 =

m

(m + 1) am
√

2m + 1
.

CombiningT (g, f) and[T (g, g)]
1
2 gives us the result (4.3) after a little al-

gebraic simplification.
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Open Problem 1. From Example3.2, we have that

U∞ =
3p+ 3

2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
=

π

3
.

Now let us consider the following. For a finite positive integerR let

UR =
3p+ 3

2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
R∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
,

UR = V + W,

in fact
UR <

π

3
.

For a fixed positive integerR, it can be shown, by standard analysis methods,
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that

lim
p−>∞

V = lim
p−>∞

3p+ 3
2

16p(p + 1)
(

2p+1
p

)
×

{
4p− 8 +

R∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

= 0

and asp− > ∞ uniformly

W =
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
u

π

3
.

This implies that forp− > ∞, W u U∞ and

W =
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
u

π

3
.

An open problem is to prove, or provide a contradiction to,

lim
p−>∞

W = lim
p−>∞

 (−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3


=

π

3
.
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