Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 3, Article 51, 2004

NOTE ON FENG QI'S INTEGRAL INEQUALITY

J. PEČARIĆ AND T. PEJKOVIĆ

Faculty of Textile Technology
University of Zagreb
Pierottijeva 6, 10000 Zagreb
Croatia.
pecaric@mahazu.hazu.hr
pejkovic@student.math.hr

Received 20 January, 2004; accepted 27 April, 2004
Communicated by F. Qi

Abstract. We give a generalization of Feng Qi's result from [5] by showing that if a function $f \in \mathrm{C}^{1}([a, b])$ satisfies $f(a) \geq 0$ and $f^{\prime}(x) \geq n(x-a)^{n-1}$ for $x \in[a, b]$ and a positive integer n then $\int_{a}^{b}[f(x)]^{n+2} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{n+1}$ holds. This follows from our answer to Feng Qi's open problem.

Key words and phrases: Integral inequality.
2000 Mathematics Subject Classification. 26D15.
In the paper [5] Feng Qi proved the following proposition.
Proposition 1. Suppose that $f \in \mathrm{C}^{n}([a, b])$ satisfies $f^{(i)}(a) \geq 0$ and $f^{(n)}(x) \geq n!$ for $x \in[a, b]$, where $0 \leq i \leq n-1$ and $n \in \mathbb{N}$, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{n+2} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{n+1} \tag{1}
\end{equation*}
$$

This motivated him to propose an open problem.
Problem 1. Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{t-1} \tag{2}
\end{equation*}
$$

hold for $t>1$?
In the joint paper [6], K.W. Yu and F. Qi obtained one answer to the above problem: inequality (2) is valid for all $f \in \mathrm{C}([a, b])$ such that $\int_{a}^{b} f(x) d x \geq(b-a)^{t-1}$ for given $t>1$. Many authors considered different generalizations of Problem 11(cf. [1, 2, 3, 4]).

[^0]We will prove the following answer to Problem 1 which will imply a generalization of Proposition 1
Theorem 2. Suppose that $f \in \mathrm{C}^{1}([a, b])$ satisfies $f(a) \geq 0$ and $f^{\prime}(x) \geq(t-2)(x-a)^{t-3}$ for $x \in[a, b]$ and $t \geq 3$. Then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{t-1} \tag{3}
\end{equation*}
$$

holds. The equality holds only if $a=b$ or $f(x)=x-a$ and $t=3$.
Proof. Let f be a function satisfying the conditions of Theorem 2, Function f is increasing because $f^{\prime}(x)>0$ for $x \in(a, b]$, so from $f(\xi) \leq f(x)$ for $\xi \in[a, x]$ we obtain

$$
\begin{equation*}
f(x)(x-a) \geq \int_{a}^{x} f(\xi) d \xi, \quad \text { for all } x \in[a, b] . \tag{4}
\end{equation*}
$$

Now we define

$$
F(x) \triangleq \int_{a}^{x}[f(\xi)]^{t} d \xi-\left(\int_{a}^{x} f(\xi) d \xi\right)^{t-1}
$$

Then $F(a)=0$ and $F^{\prime}(x)=f(x) G(x)$, where

$$
G(x)=[f(x)]^{t-1}-(t-1)\left(\int_{a}^{x} f(\xi) d \xi\right)^{t-2}
$$

Clearly, $G(a)=[f(a)]^{t-1} \geq 0$ and

$$
G^{\prime}(x)=(t-1) f(x)\left([f(x)]^{t-3} f^{\prime}(x)-(t-2)\left(\int_{a}^{x} f(\xi) d \xi\right)^{t-3}\right)
$$

From the conditions of Theorem 2 and inequality (4) we have

$$
\begin{equation*}
[f(x)]^{t-3} f^{\prime}(x) \geq(t-2)(f(x)(x-a))^{t-3} \geq(t-2)\left(\int_{a}^{x} f(\xi) d \xi\right)^{t-3} \tag{5}
\end{equation*}
$$

Thus $G^{\prime}(x) \geq 0$, so with $G(a) \geq 0$ we get $G(x) \geq 0$. From $F(a)=0$ and $F^{\prime}(x)=f(x) G(x) \geq$ 0 it follows that $F(x) \geq 0$ for all $x \in[a, b]$, particularly

$$
F(b)=\int_{a}^{b}[f(\xi)]^{t} d \xi-\left(\int_{a}^{b} f(\xi) d \xi\right)^{t-1} \geq 0
$$

The equality in (3) holds only if $F^{\prime}(x)=0$ for all $x \in[a, b]$ which is equivalent to $f(a)=0$ and $G^{\prime}(x)=0$ and according to (5), if $t>3$, this is valid only for $f(a)=0, f^{\prime}(x)=$ $(t-2)(x-a)^{t-3}$ and f constant on $[a, b]$. But the last two conditions cannot hold simultaneously if $b \neq a$. The other possibility for equality to hold is if $f(a)=0$ and $t=3$. In that case (5) implies that $f^{\prime}(x)=1$ on $[a, b]$ so $f(x)=x-a$.
Corollary 3. Suppose that $f \in \mathrm{C}^{1}([a, b])$ satisfies $f(a) \geq 0$ and $f^{\prime}(x) \geq n(x-a)^{n-1}$ for $x \in[a, b]$ and a positive integer n, then

$$
\int_{a}^{b}[f(x)]^{n+2} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{n+1}
$$

Proof. Set $t=n+2$ in Theorem 2 .
Remark 4. Now we show that Proposition 1 follows from Corollary 3. Let the function f satisfy the conditions of Proposition 1. Since $f^{(n)}(x) \geq n$!, successively integrating $n-1$ times over $[a, x]$ we get $f^{\prime}(x) \geq n(x-a)^{n-1}, x \in[a, b]$. Therefore the conditions of Corollary 3 are fulfilled.

References

[1] L. BOUGOFFA, Notes on Qi type integral inequalities, J. Inequal. Pure and Appl. Math., 4(4) (2003), Art. 77. ONLINE [http://jipam.vu.edu.au/article.php?sid=318].
[2] V. CSISZÁR AND T.F. MÓRI, The convexity method of proving moment-type inequalities, Statist. Probab. Lett., (2004), in press.
[3] S. MAZOUZI AND F. QI, On an open problem regarding an integral inequality, J. Inequal. Pure and Appl. Math., 4(2) (2003), Art. 31. ONLINE [http://jipam.vu.edu.au/article.php? sid=269].
[4] T.K. POGÁNY, On an open problem of F. Qi, J. Inequal. Pure Appl. Math., 3(4) (2002), Art. 54. ONLINE [http://jipam.vu.edu.au/article.php?sid=206].
[5] F. QI, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 19. ONLINE [http://jipam.vu.edu.au/article.php?sid=113].
[6] K.-W. YU And F. QI, A short note on an integral inequality, RGMIA Res. Rep. Coll., 4(1) (2001), Art. 4, 23-25. ONLINE [http://rgmia.vu.edu.au/v4n1.html].

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 084-04

