Journal of Inequalities in Pure and Applied Mathematics

PARTITIONED CYCLIC FUNCTIONAL EQUATIONS

JAE-HYEONG BAE AND WON-GIL PARK

Department of Mathematics Chungnam National University Daejon 305-764, Korea. EMail: jhbae@math.cnu.ac.kr

EMail: wgpark@math.cnu.ac.kr

volume 4, issue 1, article 10, 2003.

Received 22 July, 2002; accepted 14 November, 2002.

Communicated by: Th.M. Rassias

©2000 Victoria University ISSN (electronic): 1443-5756 083-02

Abstract

We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional equation. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with partitioned functional equations in Banach algebras.

2000 Mathematics Subject Classification: 39B05, 39B82

Key words: Stability, Partitioned functional equation, Algebra homomorphism.

Contents

1	Partitioned Cyclic Functional Equations	3
2	Stability of Partitioned Cyclic Functional Equations	6
3	Approximate Algebra Homomorphisms in Banach Algebras	12
Ref	erences	

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 2 of 16

1. Partitioned Cyclic Functional Equations

Let E_1 and E_2 be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Th. M. Rassias [4] showed that there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in E_1$.

Recently, T. Trif [5] proved that, for vector spaces V and W, a mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

$$n_{n-2}C_{k-2}f\left(\frac{x_1 + \dots + x_n}{n}\right) + {}_{n-2}C_{k-1}\sum_{i=1}^n f(x_i)$$

$$= k \sum_{1 \le i_1 < \dots < i_k \le n} f\left(\frac{x_{i_1} + \dots + x_{i_k}}{k}\right)$$

for all $x_1, \ldots, x_n \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

Throughout this paper, let V and W be real normed vector spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively, and let p, k and n be positive integers with $k \leq p^n$.

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 3 of 16

Lemma 1.1. A mapping $f:V\to W$ with f(0)=0 satisfies the functional equation

$$(1.1) \quad p^{n} f\left(\frac{x_{1} + \dots + x_{p^{n}}}{p^{n}}\right) + p(k-1) \sum_{i=1}^{p^{n-1}} f\left(\frac{x_{pi-p+1} + \dots + x_{pi}}{p}\right)$$

$$= k \sum_{i=1}^{p^{n}} f\left(\frac{x_{i} + \dots + x_{i+k-1}}{k}\right)$$

for all $x_1 = x_{p^n+1}, \ldots, x_{k-1} = x_{p^n+k-1}, x_k, \ldots, x_{p^n} \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

Proof. Assume that a mapping $f: V \to W$ satisfies (1.1). Put $x_1 = x$, $x_2 = y$ and $x_3 = \cdots = x_{p^n} = 0$ in (1.1), then

(1.2)
$$p^n f\left(\frac{x+y}{p^n}\right) + p(k-1)f\left(\frac{x+y}{p}\right)$$

= $k\left[(k-1)f\left(\frac{x+y}{k}\right) + f\left(\frac{x}{k}\right) + f\left(\frac{y}{k}\right)\right].$

Putting y = 0 in (1.2),

(1.3)
$$p^n f\left(\frac{x}{p^n}\right) + p(k-1)f\left(\frac{x}{p}\right) = k^2 f\left(\frac{x}{k}\right).$$

Replacing x by kx and y by ky in (1.2),

$$(1.4) p^n f\left(\frac{kx+ky}{p^n}\right) + p(k-1)f\left(\frac{kx+ky}{p}\right)$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back Close

Quit

Page 4 of 16

$$= k[(k-1)f(x+y) + f(x) + f(y)].$$

Replacing x by kx + ky in (1.3),

$$(1.5) pn f\left(\frac{kx+ky}{p^n}\right) + p(k-1)f\left(\frac{kx+ky}{p}\right) = k^2 f(x+y).$$

From (1.4) and (1.5),

$$0 = -kf(x+y) + k[f(x) + f(y)].$$

Hence f is additive.

The converse is obvious.

The main purpose of this paper is to prove the generalized Hyers-Ulam-Rassias stability of the functional equation (1.1).

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit
Page 5 of 16

2. Stability of Partitioned Cyclic Functional Equations

From now on, let W be a Banach space.

We are going to prove the generalized Hyers-Ulam-Rassias stability of the functional equation (1.1). From now on, $n \geq 2$. For a given mapping $f: V \to W$, we set

(2.1)
$$Df(x_1, \dots, x_{p^n}) := p^n f\left(\frac{x_1 + \dots + x_{p^n}}{p^n}\right) + p(p^2 - 1) \sum_{i=1}^{p^{n-1}} f\left(\frac{x_{p^{i-p+1}} + \dots + x_{p^i}}{p}\right) - p^2 \sum_{i=1}^{p^n} f\left(\frac{x_i + \dots + x_{i+p^2-1}}{p^2}\right)$$

for all $x_1 = x_{p^n+1}, \dots, x_{p^2-1} = x_{p^n+p^2-1}, x_{p^2}, \dots, x_{p^n} \in V$.

Theorem 2.1. Let $f: V \to W$ be a mapping with f(0) = 0 for which there exists a function $\varphi: V^{p^n} \to [0, \infty)$ such that

(2.2)
$$\widetilde{\varphi}(x)$$

$$:=\sum_{j=0}^{\infty}p^{j}\varphi\left(\underbrace{\frac{x}{p^{j}},\cdots,\frac{x}{p^{j}},\underbrace{0,\ldots,0}_{p^{2}-p \ times}}, \ldots,\underbrace{\frac{x}{p^{j}},\ldots,\frac{x}{p^{j}},\underbrace{0,\ldots,0}_{p^{2}-p \ times}}\right)<\infty$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 6 of 16

and

$$(2.3) ||Df(x_1, \dots, x_{p^n})|| \le \varphi(x_1, \dots, x_{p^n})$$

for all $x, x_1 = x_{p^n+1}, \dots, x_{p^2-1} = x_{p^n+p^2-1}, x_{p^2}, \dots, x_{p^n} \in V$. Then there exists a unique additive mapping $T: V \to W$ such that

(2.4)
$$||f(x) - T(x)|| \le \frac{1}{(p^2 - 1)p^{n-1}}\widetilde{\varphi}(x)$$

for all $x \in V$. Furthermore, if f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in V$, then T is linear.

Proof. Let

$$x_1 = \dots = x_p = x, \quad x_{p+1} = \dots = x_{p^2} = 0,$$

 $x_{p^2+1} = \dots = x_{p^2+p} = x, \quad x_{p^2+p+1} = \dots = x_{2p^2} = 0,$
 $\dots \dots,$

$$x_{p^n-p^2+1} = \dots = x_{p^n-p^2+p} = x, \quad x_{p^n-p^2+p+1} = \dots = x_{p^n} = 0$$

in (2.3). Then we get

(2.5)
$$\left\| p^n f\left(\frac{x}{p}\right) + p^{n-1}(p^2 - 1)f(x) - p^2 \cdot p^n f\left(\frac{x}{p}\right) \right\|$$

$$< \varphi(x, \dots, x, 0, \dots, 0, \dots, x, \dots, x, 0, \dots, 0)$$

for all $x \in V$. So one can obtain

$$\left\| f(x) - pf\left(\frac{x}{p}\right) \right\| \le \frac{1}{(p^2 - 1)p^{n-1}} \varphi(x, \dots, x, 0, \dots, 0, x, \dots, x, 0, \dots, 0)$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Close

Quit

Page 7 of 16

for all $x \in V$. We prove by induction on j that

(2.6)
$$\left\| p^{j} f\left(\frac{1}{p^{j}} x\right) - p^{j+1} f\left(\frac{1}{p^{j+1}} x\right) \right\|$$

$$\leq \frac{p^{j}}{(p^{2} - 1)p^{n-1}} \varphi\left(\frac{x}{p^{j}}, \dots, \frac{x}{p^{j}}, 0, \dots, 0, \dots, \frac{x}{p^{j}}, \dots, \frac{x}{p^{j}}, 0, \dots, 0\right)$$

for all $x \in V$. So we get

(2.7)
$$\left\| f(x) - p^{j} f\left(\frac{1}{p^{j}} x\right) \right\|$$

$$\leq \frac{1}{(p^{2} - 1)p^{n-1}} \sum_{m=0}^{j-1} p^{m} \varphi\left(\frac{x}{p^{m}}, \dots, \frac{x}{p^{m}}, 0, \dots, 0, \dots, \frac{x}{p^{m}}, \dots, \frac{x}{p^{m}}, 0, \dots, 0\right)$$

for all $x \in V$.

Let x be an element in V. For positive integers l and m with l > m,

$$(2.8) \quad \left\| p^l f\left(\frac{1}{p^l} x\right) - p^m f\left(\frac{1}{p^m} x\right) \right\|$$

$$\leq \frac{1}{(p^2 - 1)p^{n-1}} \sum_{i=m}^{l-1} p^j \varphi\left(\frac{x}{p^j}, \dots, \frac{x}{p^j}, 0, \dots, 0, \dots, \frac{x}{p^j}, \dots, \frac{x}{p^j}, 0, \dots, 0\right),$$

which tends to zero as $m \to \infty$ by (2.2). So $\left\{p^j f\left(\frac{1}{p^j}x\right)\right\}$ is a Cauchy sequence for all $x \in V$. Since W is complete, the sequence $\left\{p^j f\left(\frac{1}{p^j}x\right)\right\}$ converges for

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 8 of 16

all $x \in V$. We can define a mapping $T: V \to W$ by

(2.9)
$$T(x) = \lim_{j \to \infty} p^j f\left(\frac{1}{p^j}x\right) \quad \text{for all} \quad x \in V.$$

By (2.3) and (2.9), we get

$$||DT(x_1, \dots, x_{p^n})|| = \lim_{j \to \infty} p^j ||Df\left(\frac{1}{p^j}x_1, \dots, \frac{1}{p^j}x_{p^n}\right)||$$

$$\leq \lim_{j \to \infty} p^j \varphi\left(\frac{1}{p^j}x_1, \dots, \frac{1}{p^j}x_{p^n}\right)$$

$$= 0$$

for all $x_1, \ldots, x_{p^n} \in V$. Hence $T(x_1, \ldots, x_{p^n}) = 0$ for all $x_1, \ldots, x_{p^n} \in V$. By Lemma A, T is additive. Moreover, by passing to the limit in (2.7) as $j \to \infty$, we get the inequality (2.4).

Now let $L: V \to W$ be another additive mapping satisfying

$$||f(x) - L(x)|| \le \frac{1}{(p^2 - 1)p^{n-1}}\widetilde{\varphi}(x)$$

for all $x \in V$.

$$\begin{split} \|T(x) - L(x)\| &= p^j \left\| T\left(\frac{1}{p^j}x\right) - L\left(\frac{1}{p^j}x\right) \right\| \\ &\leq p^j \left\| T\left(\frac{1}{p^j}x\right) - f\left(\frac{1}{p^j}x\right) \right\| + p^j \left\| f\left(\frac{1}{p^j}x\right) - L\left(\frac{1}{p^j}x\right) \right\| \\ &\leq \frac{2}{(p^2 - 1)p^{n-1}} p^j \widetilde{\varphi}\left(\frac{1}{p^j}x\right), \end{split}$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Close

Quit

Page 9 of 16

which tends to zero as $j \to \infty$ by (2.2). Thus T(x) = L(x) for all $x \in V$. This proves the uniqueness of T. Assume that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in V$. The additive mapping T given above is the same as the additive mapping T given in [4]. By the same reasoning as [4], the additive mapping $T: V \to W$ is linear.

Corollary 2.2. If a mapping $f: V \to W$ satisfies

$$(2.10) ||Df(x_1, \dots, x_{2^n})|| \le \varepsilon(||x_1||^p + \dots + ||x_{2^n}||^p)$$

for some p > 1 and for all $x_1, \ldots, x_{2^n} \in V$, then there exists a unique additive mapping $T: V \to W$ such that

(2.11)
$$||T(x) - f(x)|| \le \frac{2^{p-1}\varepsilon}{3(2^{p-1} - 1)} ||x||^p$$

for all $x \in V$. Moreover, if f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in V$, then the function T is linear.

Proof. Since $\varphi(x_1,\ldots,x_{2^n})=\varepsilon(\|x_1\|^p+\cdots+\|x_{2^n}\|^p)$ satisfies the condition (2.2), Theorem 2.1 says that there exists a unique additive mapping $T:V\to W$ such that

$$||T(x) - f(x)|| \le \frac{1}{3 \cdot 2^{n-1}} \widetilde{\varphi}(x)$$

$$= \frac{1}{3 \cdot 2^{n-1}} \sum_{j=0}^{\infty} 2^{j} \varepsilon \left(\left\| \frac{x}{2^{j}} \right\|^{p} + \dots + \left\| \frac{x}{2^{j}} \right\|^{p} \right)$$

$$= \frac{2^{p-1} \varepsilon}{3(2^{p-1} - 1)} ||x||^{p}$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 10 of 16

for all $x \in V$.

Theorem 2.3. Let $f: V \to W$ be a continuous mapping with f(0) = 0 such that (2.2) and (2.3) for all $x_1, \ldots, x_{2^n} \in V$. If the sequence $\{2^j f(\frac{1}{2^j}x)\}$ converges uniformly on V, then there exists a unique continuous linear mapping $T: V \to W$ satisfying (2.4).

Proof. By Theorem 2.1, there exists a unique linear mapping $T: V \to W$ satisfying (2.2). By the continuity of f, the uniform convergence and the definition of T, the linear mapping $T: V \to W$ is continuous, as desired.

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 11 of 16

3. Approximate Algebra Homomorphisms in Banach Algebras

In this section, let \mathbb{A} and \mathbb{B} be Banach algebras with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

D.G. Bourgin [3] proved the stability of ring homomorphisms between Banach algebras. In [1], R. Badora generalized the Bourgin's result.

We prove the generalized Hyers-Ulam-Rassias stability of algebra homomorphisms between Banach algebras associated with the functional equation (1.1).

Theorem 3.1. Let \mathbb{A} and \mathbb{B} be real Banach algebras, and $f: \mathbb{A} \to \mathbb{B}$ a mapping with f(0) = 0 for which there exist functions $\varphi: \mathbb{A}^{2^n} \to [0, \infty)$ and $\psi: \mathbb{A} \times \mathbb{A} \to [0, \infty)$ such that (2.2),

$$(3.1) ||Df(x_1,\ldots,x_{2^n})|| \leq \varphi(x_1,\ldots,x_{2^n}),$$

(3.2)
$$\widetilde{\psi}(x,y) := \sum_{j=0}^{\infty} 2^{j} \psi\left(\frac{1}{2^{j}}x,y\right) < \infty$$

and

(3.3)
$$||f(xy) - f(x)f(y)|| \le \psi(x, y)$$

for all $x, y, x_1, ..., x_{2^n} \in \mathbb{A}$, where D is in (2.1). If f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{A}$, then there exists a unique algebra homomorphism

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back

Close

Quit

Page 12 of 16

 $T: \mathbb{A} \to \mathbb{B}$ satisfying (2.4). Further, if \mathbb{A} and \mathbb{B} are unital, then f itself is an algebra homomorphism.

Proof. By the same method as the proof of Theorem 2.1, one can show that there exists a unique linear mapping $T: \mathbb{A} \to \mathbb{B}$ satisfying (2.4). The linear mapping $T: \mathbb{A} \to \mathbb{B}$ was given by

(3.4)
$$T(x) = \lim_{j \to \infty} 2^j f\left(\frac{1}{2^j}x\right)$$

for all $x \in \mathbb{A}$. Let

$$(3.5) R(x,y) = f(x \cdot y) - f(x)f(y)$$

for all $x, y \in \mathbb{A}$. By (3.2), we get

(3.6)
$$\lim_{j \to \infty} 2^j R\left(\frac{1}{2^j}x, y\right) = 0$$

for all $x, y \in \mathbb{A}$. So

(3.7)
$$T(xy) = \lim_{j \to \infty} 2^{j} f\left(\frac{1}{2^{j}}(xy)\right)$$
$$= \lim_{j \to \infty} 2^{j} f\left[\left(\frac{1}{2^{j}}x\right)y\right]$$
$$= \lim_{j \to \infty} 2^{j} \left[f\left(\frac{1}{2^{j}}x\right)f(y) + R\left(\frac{1}{2^{j}}x,y\right)\right]$$
$$= T(x)f(y)$$

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Close

Quit

Page 13 of 16

for all $x, y \in \mathbb{A}$. Thus

(3.8)
$$T(x)f\left(\frac{1}{2^{j}}y\right) = T\left[x\left(\frac{1}{2^{j}}y\right)\right]$$
$$= T\left[\left(\frac{1}{2^{j}}x\right)y\right] = T\left(\frac{1}{2^{j}}x\right)f(y) = \frac{1}{2^{j}}T(x)f(y)$$

for all $x, y \in \mathbb{A}$. Hence

(3.9)
$$T(x)2^{j}f\left(\frac{1}{2^{j}}y\right) = T(x)f(y)$$

for all $x, y \in \mathbb{A}$. Taking the limit in (3.9) as $j \to \infty$, we obtain

$$(3.10) T(x)T(y) = T(x)f(y)$$

for all $x, y \in \mathbb{A}$. Therefore,

$$(3.11) T(xy) = T(x)T(y)$$

for all $x, y \in \mathbb{A}$. So $T : \mathbb{A} \to \mathbb{B}$ is an algebra homomorphism. Now assume that \mathbb{A} and \mathbb{B} are unital. By (3.7),

(3.12)
$$T(y) = T(1y) = T(1)f(y) = f(y)$$

for all $y \in \mathbb{A}$. So $f : \mathbb{A} \to \mathbb{B}$ is an algebra homomorphism, as desired.

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Close

Quit

Page 14 of 16

Corollary 3.2. Let $f : \mathbb{A} \to \mathbb{B}$ be a mapping such that (3.2), (3.3) and

$$(3.13) ||Df(x_1, \dots, x_{2^n})|| \le \varepsilon(||x_1||^p + \dots + ||x_{2^n}||^p)$$

for some p > 1 and for all $x, y, x_1, \ldots, x_{2^n} \in \mathbb{A}$. If f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{A}$, then there exists a unique algebra homomorphism $T : \mathbb{A} \to \mathbb{B}$ such that

(3.14)
$$||T(x) - f(x)|| \le \frac{2^{p-1}\varepsilon}{3(2^{p-1} - 1)} ||x||^p$$

for all $x \in \mathbb{A}$.

Proof. By Corollary 2.2, there exists a unique linear mapping $T : \mathbb{A} \to \mathbb{B}$ such that (3.14). By Theorem 3.1, the linear mapping T is an algebra homomorphism.

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

References

- [1] R. BADORA, On approximate ring homomorphisms, preprint.
- [2] J.-H. BAE, K.-W. JUN AND W.-G. PARK, Partitioned functional equations in Banach modules and approximate algebra homomorphisms, *preprint*.
- [3] D.G. BOURGIN, Approximately isometric and multiplicative transformations on continuous function rings, *Duke Math. J.*, **16** (1949), 385–397.
- [4] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.*, **72** (1978), 297–300.
- [5] T. TRIF, On the stability of a functional equation deriving from an inequality of T. Popoviciu for convex functions, *J. Math. Anal. Appl.*, **272** (2002), 604–616.

Partitioned Cyclic Functional Equations

Jae-Hyeong Bae and Won-Gil Park

Title Page

Contents

Go Back
Close
Quit

Page 16 of 16