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ABSTRACT. We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional
equation. It is applied to show the stability of algebra homomorphisms between Banach algebras
associated with partitioned functional equations in Banach algebras.
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1. PARTITIONED CYCLIC FUNCTIONAL EQUATIONS

Let £, andE, be Banach spaces with norihg and||-||, respectively. Considef: E; — Fj
to be a mapping such thg{tx) is continuous in. € R for each fixedr € E;. Assume that
there exist constants> 0 andp € [0, 1) such that

1 (z +y) — ) = F)ll < ell]]” +[lyl[")

for all x,y € E;. Th. M. Rassias |4] showed that there exists a uniBdénear mapping

T : E, — E5such that
2e

2—2p

[l[”

1f () = T(2)]| <

forall z € E;.
Recently, T. Trif [5] proved that, for vector spacE€sandW, a mappingf : V. — W with
f(0) = 0 satisfies the functional equation

T+, . Tiy + -+ @
nsChoaf (—) FaCa S fa) =k Y f (T)
n i=1 1<t << <n
forall z,...,x, € V if and only if the mappingf : V — W satisfies the additive Cauchy
equationf(x +y) = f(x) + f(y) forall z,y € V.
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respectively, and let, £ andn be positive integers with < p".
Lemma 1.1. A mappingf : V — W with f(0) = 0 satisfies the functional equation

(L) p"f (—xl i ‘];;Hp") k-1 f (xp””“ J;' - +x”)

i=1
_sz(iﬁz +371+k 1)

forall 1 = xpniq,...,Th—1 = Tpngp—1, Tk, ..., 2pn € V if and only if the mapping : V' —
W satisfies the additive Cauchy equatipfx + y) = f(x) + f(y) forall z,y € V.

Proof. Assume that a mapping: V' — W satisfies[(1]1). Put; = z, 2, =y andz; = --- =
= 0in (1.1), then

@2) s (S0 ) pte -7 (S0) =k e (S0 s (5) 1 (3).
Puttingy = 0 in (1.2),
n x T\ o, (T
(13) b (p—) +p(k—1)f (5) =12 ()
Replacinge by kxz andy by ky in (1.2),
@y (B gt - 07 () k- 0k )+ £+ 50)
Replacinge by kx + ky in (1.3),
(L5) by (’”; ky) Fp(k— 1) (’“E : ’“y) — Kf(x +).
From (1.4) and[(1]5),

0=—kf(z+y)+klf(z)+ fly).
Hencef is additive.
The converse is obvious. O

The main purpose of this paper is to prove the generalized Hyers-Ulam- Rassias stability of
the functional equatior (1.1).

2. STABILITY OF PARTITIONED CYCLIC FUNCTIONAL EQUATIONS

From now on, let?” be a Banach space.
We are going to prove the generalized Hyers-Ulam-Rassias stability of the functional equa-
tion (1.1). From now onyp > 2. For a given mapping : V' — W, we set

(2.1) Df(zy,...,zm)

=p"f (xl i

p
Co Tpn Tpi—p1 + 0+ Ty
— p>+p(p2—1)§ f(’””+1 p)
i=1

p p

pn
Tyt Tigp2 g
_p2Zf< p2 +p )
i=1

forall xy = xpni1, ..., Tp21 = Tpnip2 1, Tp2, ..., Tpn € V.
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Theorem 2.1.Let f : V — W be a mapping withf(0) = 0 for which there exists a function
¢ VP" — [0, 00) such that

> . T T T T
2.2 ~x = —.,"',—.,O,...,O,...,—.,...,—.,O,...,O < 0
22) @) z_gp%opj > S
= N~——~—"p2—ptimes ~———" p2—ptimes
ptimes ptimes
and
(2.3) IDf(x1,...,xp;m)|| < @(x1,...,2pm)
forall z, xy = zpnyr, ..., T2y = Tpnyp2 1,72, ..., 2,» € V. Then there exists a unique
additive mapping” : V' — W such that
1
(2.4) flx)=T(@)| < —————p(x
1f(z) = T(z)]| -1y ()

for all x € V. Furthermore, iff(tz) is continuous int € R for each fixedr € V, thenT is
linear.

Proof. Let
Ty = =Ty =T, Tpp = "+ =xp =070,
‘rp2+1:"':xp2+p:‘r7 xp2+p+1:”':$2p2:07
...... ,
Ipn_p2+1 —_ = ﬂ?pn_p2+p — l’, xpn_p2+p+1 — s = xpn —

in (2.3). Then we get

(2.5)

T B we [T
ot (2) 400 - s - (2)
p p
<e(x,...,z,0,...,0, ... ,x,...,x, 0,...,0)

forall x € V. So one can obtain
X
xr)— -NMNS ——v(,...,2,0,...,0, ,2,...,2,0,...,0
'f() pf(p) _<p2_1)pn_1<p( )
for all z € V. We prove by induction or that
2.6 ' L 1 L
(2.6) ||pf Ex -y pﬁx

2 T T T T
SWQO E,...,E,O,...,O,...,—,7...,—,70,...,()

forall z € V. So we get

1 I (x T x x )
<> P, 0,0, = 0,...,0
(p* = 1)pr! mZ:O VT pm T pm

e |- ()
p

forallz € V.
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Letz be an element ifv’. For positive integersandm with [ > m,

1 1
Plf (737) -p"f (—ma:)
p p

T xr
, ,O,...,O,...,—.,...,—.,0,...,0 ,
"12%0( i P )

which tends to zero as — o~ by .) So P f (% )} is a Cauchy sequence for alle V.

(2.8)

SincelV is complete, the sequen({@ff (pj )} converges for al € V. We can define a
mapping? : V — W by

(2.9) T(x) = lim p’ f ( ) for all xeV.

j—>00

By (2.3) and[(2.P), we get
_ A 1 1
| DT (x, ... ,xm)| :jlir&p’ HDf (ﬁﬂm, . .,Expn) H

, 1 1
< lim py (Eml, ceey —.:Upn)

J—00 p]
=0

forall zq,...,2,» € V. HenceT'(zy,...,xn) =0forall zy,...,2,» € V. By LemmaA,T is
additive. Moreover, by passing to the limit jn (2.7)as» oo, we get the inequality (2.4).
Now let L : V' — W be another additive mapping satisfying

|uuy—u@ns65;%ﬁﬁaw>

forallz € V.

-t (3137
ol ()Gl )+

S(ﬁ—-)"lﬁw(w )

which tends to zero ap — oo by (2.2). ThusT'(z) = L(z) for all z € V. This proves
the uniqueness df’. Assume thatf(¢x) is continuous int € R for each fixedr € V. The
additive mappindl” given above is the same as the additive mapfingiven in [4]. By the
same reasoning asl [4], the additive mapplhg” — W is linear. 0J

<.

Corollary 2.2. If a mappingf : V — W satisfies

(2.10) [Df (1, xon)|| < e(flan]]” + - 4 [[z2n]”)
for somep > 1 and for all zq,...,29n € V, then there exists a unique additive mapping
T :V — W such that
P —1
2.11 T —||z||?
(2.11) IT(x) — f(z )||—3(2p1 )II ||

for all z € V. Moreover, iff (tx) is continuous irt € R for each fixed: € V, then the function
T'is linear.
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Proof. Sincep(x1,...,xm) = e(|ja1||P + - - - + |2 ||P) satisfies the conditiof (4.2), Theorem
[2.7 says that there exists a unique additive mapfing” — W such that

1
IT(@) — ()] < 3 F(a)
1 < T ||P T ||P
_ J _ e -
_3~2n12025(‘ 5l T +}2J’ )
J:
or—1g
forallz € V. O

Theorem 2.3.Let f : V' — W be a continuous mapping with(0) = 0 such that(2.2)) and
(2.3) for all zy,...,2n € V. If the sequencd2’f (5;)} converges uniformly oY, then
there exists a unique continuous linear mappingl” — W satisfying(2.4)).

Proof. By Theoreni 2.]1, there exists a unique linear mapging V' — W satisfying [2.2).
By the continuity off, the uniform convergence and the definitiongfthe linear mapping
T :V — W is continuous, as desired. O

3. APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

In this section, let\ andB be Banach algebras with norrig| and||-||, respectively.

D.G. Bourgin [3] proved the stability of ring homomorphisms between Banach algebras. In
[1], R. Badora generalized the Bourgin’s result.

We prove the generalized Hyers-Ulam-Rassias stability of algebra homomorphisms between
Banach algebras associated with the functional equatioh (1.1).

Theorem 3.1.Let A andB be real Banach algebras, anfl: A — B a mapping withf(0) = 0
for which there exist functions : A*" — [0, 00) andy : A x A — [0, 0o) such that(2.2)),

(3.1) |Df(z1,...,29:)|| < p(21,...,29m),

(3.2 @@y%z}j?¢<%my)<aa
=0

and

(3.3) 1 (zy) = f(@) W)l < ¥(z,y)

forall z,y,z,...,xen € A, whereD isin (2.1)). If f(¢z) is continuous irt € R for each fixed
x € A, then there exists a unique algebra homomorpHisimA — B satisfying(2.4)). Further,
if A andB are unital, thenf itself is an algebra homomorphism.

Proof. By the same method as the proof of Theofem 2.1, one can show that there exists a unique
linear mappingdl” : A — B satisfying [2.4). The linear mappiriy: A — B was given by

(3.4) T(x) = lim 2/ f (ix)

j—)oo 2.7
forall z € A. Let

(3.5) R(x,y) = f(z-y) — f(x)f(y)
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forall z,y € A. By (3.7), we get

(3.6) lim 2R (—]x,y) =0
forall z,y € A. So

(3.7) T(ry) = lim 27 f

forall z,y € A. Thus

@8 1 (50) =7 |+ (50)| =7 | (52) o] =7 (5¢) 100 = 0210

forall z,y € A. Hence

39) T f (g50) =T
for all z,y € A. Taking the limitin [3.9) ag — oo, we obtain
(3.10) T(x)T(y) = T(x)f(y)
forall x,y € A. Therefore,

(3.11) T(zy) =T (x)T(y)

forall z,y € A. SoT : A — B is an algebra homomorphism.
Now assume thak andB are unital. By|[(3.]7),

(3.12) T(y) =T(y) =TW)f(y) = fy)

forally € A. Sof : A — B is an algebra homomorphism, as desired. O
Corollary 3.2. Let f : A — B be a mapping such th#8.2), and

(3.13) [Df (1, xon)[| < e(flaa]]” + - 4 [[z2n]”)

for somep > 1 and for allz, y, x1, ..., xon € A. If f(tz) is continuous int € R for each fixed
x € A, then there exists a unique algebra homomorpHhismA — B such that

2=l
(3.14) 1T (z) — f(z)] < m|

|[|?
forall x € A.

Proof. By Corollary[2.2, there exists a unique linear mappihg A — B such that[(3.14). By
Theorenj 3.]1, the linear mappifgis an algebra homomorphism. O

J. Inequal. Pure and Appl. Math4(1) Art. 10, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

PARTITIONED CYCLIC FUNCTIONAL EQUATIONS 7

REFERENCES
[1] R. BADORA, On approximate ring homomorphisnpseprint.

[2] J.-H. BAE, K.-W. JUNAND W.-G. PARK, Partitioned functional equations in Banach modules and
approximate algebra homomorphismegprint.

[3] D.G. BOURGIN, Approximately isometric and multiplicative transformations on continuous func-
tion rings,Duke Math. J.16 (1949), 385-397.

[4] Th.M.RASSIAS, On the stability of the linear mapping in Banach spdees,. Amer. Math. Soc72
(1978), 297-300.

[5] T. TRIF, On the stability of a functional equation deriving from an inequality of T. Popoviciu for
convex functions). Math. Anal. Appl.272(2002), 604—-616.

J. Inequal. Pure and Appl. Math4(1) Art. 10, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Partitioned Cyclic Functional Equations
	2. Stability of Partitioned Cyclic Functional Equations
	3. Approximate Algebra Homomorphisms in Banach Algebras
	References

