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ABSTRACT. We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional
equation. It is applied to show the stability of algebra homomorphisms between Banach algebras
associated with partitioned functional equations in Banach algebras.
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1. PARTITIONED CYCLIC FUNCTIONAL EQUATIONS

LetE1 andE2 be Banach spaces with norms‖·‖ and‖·‖, respectively. Considerf : E1 → E2

to be a mapping such thatf(tx) is continuous int ∈ R for each fixedx ∈ E1. Assume that
there exist constantsε ≥ 0 andp ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)
for all x, y ∈ E1. Th. M. Rassias [4] showed that there exists a uniqueR-linear mapping
T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p

for all x ∈ E1.
Recently, T. Trif [5] proved that, for vector spacesV andW , a mappingf : V → W with

f(0) = 0 satisfies the functional equation

n n−2Ck−2f

(
x1 + · · ·+ xn

n

)
+ n−2Ck−1

n∑
i=1

f(xi) = k
∑

1≤i1<···<ik≤n

f

(
xi1 + · · ·+ xik

k

)
for all x1, . . . , xn ∈ V if and only if the mappingf : V → W satisfies the additive Cauchy
equationf(x+ y) = f(x) + f(y) for all x, y ∈ V .
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2 JAE-HYEONG BAE AND WON-GIL PARK

Throughout this paper, letV andW be real normed vector spaces with norms‖·‖ and‖·‖,
respectively, and letp, k andn be positive integers withk ≤ pn.
Lemma 1.1. A mappingf : V → W with f(0) = 0 satisfies the functional equation

(1.1) pnf

(
x1 + · · ·+ xpn

pn

)
+ p(k − 1)

pn−1∑
i=1

f

(
xpi−p+1 + · · ·+ xpi

p

)

= k

pn∑
i=1

f

(
xi + · · ·+ xi+k−1

k

)
for all x1 = xpn+1, . . . , xk−1 = xpn+k−1, xk, . . . , xpn ∈ V if and only if the mappingf : V →
W satisfies the additive Cauchy equationf(x+ y) = f(x) + f(y) for all x, y ∈ V .

Proof. Assume that a mappingf : V → W satisfies (1.1). Putx1 = x, x2 = y andx3 = · · · =
xpn = 0 in (1.1), then

(1.2) pnf

(
x+ y

pn

)
+ p(k − 1)f

(
x+ y

p

)
= k

[
(k − 1)f

(
x+ y

k

)
+ f

(x
k

)
+ f

(y
k

)]
.

Puttingy = 0 in (1.2),

(1.3) pnf

(
x

pn

)
+ p(k − 1)f

(
x

p

)
= k2f

(x
k

)
.

Replacingx by kx andy by ky in (1.2),

(1.4) pnf

(
kx+ ky

pn

)
+ p(k − 1)f

(
kx+ ky

p

)
= k[(k − 1)f(x+ y) + f(x) + f(y)].

Replacingx by kx+ ky in (1.3),

(1.5) pnf

(
kx+ ky

pn

)
+ p(k − 1)f

(
kx+ ky

p

)
= k2f(x+ y).

From (1.4) and (1.5),
0 = −kf(x+ y) + k[f(x) + f(y)].

Hencef is additive.
The converse is obvious. �

The main purpose of this paper is to prove the generalized Hyers-Ulam- Rassias stability of
the functional equation (1.1).

2. STABILITY OF PARTITIONED CYCLIC FUNCTIONAL EQUATIONS

From now on, letW be a Banach space.
We are going to prove the generalized Hyers-Ulam-Rassias stability of the functional equa-

tion (1.1). From now on,n ≥ 2. For a given mappingf : V → W , we set

(2.1) Df(x1, . . . , xpn)

:= pnf

(
x1 + · · ·+ xpn

pn

)
+ p(p2 − 1)

pn−1∑
i=1

f

(
xpi−p+1 + · · ·+ xpi

p

)

− p2

pn∑
i=1

f

(
xi + · · ·+ xi+p2−1

p2

)
for all x1 = xpn+1, . . . , xp2−1 = xpn+p2−1, xp2 , . . . , xpn ∈ V .

J. Inequal. Pure and Appl. Math., 4(1) Art. 10, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


PARTITIONED CYCLIC FUNCTIONAL EQUATIONS 3

Theorem 2.1. Let f : V → W be a mapping withf(0) = 0 for which there exists a function
ϕ : V pn → [0,∞) such that

(2.2) ϕ̃(x) :=
∞∑

j=0

pjϕ

 x

pj
, · · · , x

pj︸ ︷︷ ︸,
p times

0, . . . , 0︸ ︷︷ ︸
p2−p times

, . . . ,
x

pj
, . . . ,

x

pj︸ ︷︷ ︸
p times

, 0, . . . , 0︸ ︷︷ ︸
p2−p times

 <∞

and

(2.3) ‖Df(x1, . . . , xpn)‖ ≤ ϕ(x1, . . . , xpn)

for all x, x1 = xpn+1, . . . , xp2−1 = xpn+p2−1, xp2 , . . . , xpn ∈ V . Then there exists a unique
additive mappingT : V → W such that

(2.4) ‖f(x)− T (x)‖ ≤ 1

(p2 − 1)pn−1
ϕ̃(x)

for all x ∈ V . Furthermore, iff(tx) is continuous int ∈ R for each fixedx ∈ V , thenT is
linear.

Proof. Let

x1 = · · · = xp = x, xp+1 = · · · = xp2 = 0,

xp2+1 = · · · = xp2+p = x, xp2+p+1 = · · · = x2p2 = 0,

· · · · · · ,
xpn−p2+1 = · · · = xpn−p2+p = x, xpn−p2+p+1 = · · · = xpn = 0

in (2.3). Then we get

(2.5)

∥∥∥∥pnf

(
x

p

)
+ pn−1(p2 − 1)f(x)− p2 · pnf

(
x

p

)∥∥∥∥
≤ ϕ(x, . . . , x, 0, . . . , 0, . . . , x, . . . , x, 0, . . . , 0)

for all x ∈ V . So one can obtain∥∥∥∥f(x)− pf

(
x

p

)∥∥∥∥ ≤ 1

(p2 − 1)pn−1
ϕ (x, . . . , x, 0, . . . , 0, , x, . . . , x, 0, . . . , 0)

for all x ∈ V . We prove by induction onj that

(2.6)

∥∥∥∥pjf

(
1

pj
x

)
− pj+1f

(
1

pj+1
x

)∥∥∥∥
≤ pj

(p2 − 1)pn−1
ϕ

(
x

pj
, . . . ,

x

pj
, 0, . . . , 0, . . . ,

x

pj
, . . . ,

x

pj
, 0, . . . , 0

)
for all x ∈ V . So we get

(2.7)

∥∥∥∥f(x)− pjf

(
1

pj
x

)∥∥∥∥
≤ 1

(p2 − 1)pn−1

j−1∑
m=0

pmϕ

(
x

pm
, . . . ,

x

pm
, 0, . . . , 0, . . . ,

x

pm
, . . . ,

x

pm
, 0, . . . , 0

)
for all x ∈ V .
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Let x be an element inV . For positive integersl andm with l > m,

(2.8)

∥∥∥∥plf

(
1

pl
x

)
− pmf

(
1

pm
x

)∥∥∥∥
≤ 1

(p2 − 1)pn−1

l−1∑
j=m

pjϕ

(
x

pj
, . . . ,

x

pj
, 0, . . . , 0, . . . ,

x

pj
, . . . ,

x

pj
, 0, . . . , 0

)
,

which tends to zero asm→∞ by (2.2). So
{
pjf

(
1
pj x

)}
is a Cauchy sequence for allx ∈ V .

SinceW is complete, the sequence
{
pjf

(
1
pj x

)}
converges for allx ∈ V . We can define a

mappingT : V → W by

(2.9) T (x) = lim
j→∞

pjf

(
1

pj
x

)
for all x ∈ V.

By (2.3) and (2.9), we get

‖DT (x, . . . , xpn)‖ = lim
j→∞

pj

∥∥∥∥Df (
1

pj
x1, . . . ,

1

pj
xpn

)∥∥∥∥
≤ lim

j→∞
pjϕ

(
1

pj
x1, . . . ,

1

pj
xpn

)
= 0

for all x1, . . . , xpn ∈ V . HenceT (x1, . . . , xpn) = 0 for all x1, . . . , xpn ∈ V . By Lemma A,T is
additive. Moreover, by passing to the limit in (2.7) asj →∞, we get the inequality (2.4).

Now letL : V → W be another additive mapping satisfying

‖f(x)− L(x)‖ ≤ 1

(p2 − 1)pn−1
ϕ̃(x)

for all x ∈ V .

‖T (x)− L(x)‖ = pj

∥∥∥∥T (
1

pj
x

)
− L

(
1

pj
x

)∥∥∥∥
≤ pj

∥∥∥∥T (
1

pj
x

)
− f

(
1

pj
x

)∥∥∥∥ + pj

∥∥∥∥f (
1

pj
x

)
− L

(
1

pj
x

)∥∥∥∥
≤ 2

(p2 − 1)pn−1
pjϕ̃

(
1

pj
x

)
,

which tends to zero asj → ∞ by (2.2). ThusT (x) = L(x) for all x ∈ V . This proves
the uniqueness ofT . Assume thatf(tx) is continuous int ∈ R for each fixedx ∈ V . The
additive mappingT given above is the same as the additive mappingT given in [4]. By the
same reasoning as [4], the additive mappingT : V → W is linear. �

Corollary 2.2. If a mappingf : V → W satisfies

(2.10) ‖Df(x1, . . . , x2n)‖ ≤ ε(‖x1‖p + · · ·+ ‖x2n‖p)

for somep > 1 and for all x1, . . . , x2n ∈ V , then there exists a unique additive mapping
T : V → W such that

(2.11) ‖T (x)− f(x)‖ ≤ 2p−1ε

3(2p−1 − 1)
‖x‖p

for all x ∈ V . Moreover, iff(tx) is continuous int ∈ R for each fixedx ∈ V , then the function
T is linear.
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Proof. Sinceϕ(x1, . . . , x2n) = ε(‖x1‖p + · · · + ‖x2n‖p) satisfies the condition (2.2), Theorem
2.1 says that there exists a unique additive mappingT : V → W such that

‖T (x)− f(x)‖ ≤ 1

3 · 2n−1
ϕ̃(x)

=
1

3 · 2n−1

∞∑
j=0

2jε
(∥∥∥ x

2j

∥∥∥p

+ · · ·+
∥∥∥ x

2j

∥∥∥p)
=

2p−1ε

3(2p−1 − 1)
‖x‖p

for all x ∈ V . �

Theorem 2.3. Let f : V → W be a continuous mapping withf(0) = 0 such that(2.2) and
(2.3) for all x1, . . . , x2n ∈ V . If the sequence

{
2jf

(
1
2j x

)}
converges uniformly onV , then

there exists a unique continuous linear mappingT : V → W satisfying(2.4).

Proof. By Theorem 2.1, there exists a unique linear mappingT : V → W satisfying (2.2).
By the continuity off , the uniform convergence and the definition ofT , the linear mapping
T : V → W is continuous, as desired. �

3. APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

In this section, letA andB be Banach algebras with norms‖·‖ and‖·‖, respectively.
D.G. Bourgin [3] proved the stability of ring homomorphisms between Banach algebras. In

[1], R. Badora generalized the Bourgin’s result.
We prove the generalized Hyers-Ulam-Rassias stability of algebra homomorphisms between

Banach algebras associated with the functional equation (1.1).

Theorem 3.1.LetA andB be real Banach algebras, andf : A → B a mapping withf(0) = 0
for which there exist functionsϕ : A2n → [0,∞) andψ : A× A → [0,∞) such that(2.2),

(3.1) ‖Df(x1, . . . , x2n)‖ ≤ ϕ(x1, . . . , x2n),

(3.2) ψ̃(x, y) :=
∞∑

j=0

2jψ

(
1

2j
x, y

)
<∞

and

(3.3) ‖f(xy)− f(x)f(y)‖ ≤ ψ(x, y)

for all x, y, x1, . . . , x2n ∈ A, whereD is in (2.1). If f(tx) is continuous int ∈ R for each fixed
x ∈ A, then there exists a unique algebra homomorphismT : A → B satisfying(2.4). Further,
if A andB are unital, thenf itself is an algebra homomorphism.

Proof. By the same method as the proof of Theorem 2.1, one can show that there exists a unique
linear mappingT : A → B satisfying (2.4). The linear mappingT : A → B was given by

(3.4) T (x) = lim
j→∞

2jf

(
1

2j
x

)
for all x ∈ A. Let

(3.5) R(x, y) = f(x · y)− f(x)f(y)
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for all x, y ∈ A. By (3.2), we get

(3.6) lim
j→∞

2jR

(
1

2j
x, y

)
= 0

for all x, y ∈ A. So

T (xy) = lim
j→∞

2jf

(
1

2j
(xy)

)
(3.7)

= lim
j→∞

2jf

[(
1

2j
x

)
y

]
= lim

j→∞
2j

[
f

(
1

2j
x

)
f(y) +R

(
1

2j
x, y

)]
= T (x)f(y)

for all x, y ∈ A. Thus

(3.8) T (x)f

(
1

2j
y

)
= T

[
x

(
1

2j
y

)]
= T

[(
1

2j
x

)
y

]
= T

(
1

2j
x

)
f(y) =

1

2j
T (x)f(y)

for all x, y ∈ A. Hence

(3.9) T (x)2jf

(
1

2j
y

)
= T (x)f(y)

for all x, y ∈ A. Taking the limit in (3.9) asj →∞, we obtain

(3.10) T (x)T (y) = T (x)f(y)

for all x, y ∈ A. Therefore,

(3.11) T (xy) = T (x)T (y)

for all x, y ∈ A. SoT : A → B is an algebra homomorphism.
Now assume thatA andB are unital. By (3.7),

(3.12) T (y) = T (1y) = T (1)f(y) = f(y)

for all y ∈ A. Sof : A → B is an algebra homomorphism, as desired. �

Corollary 3.2. Letf : A → B be a mapping such that(3.2), (3.3) and

(3.13) ‖Df(x1, . . . , x2n)‖ ≤ ε(‖x1‖p + · · ·+ ‖x2n‖p)

for somep > 1 and for allx, y, x1, . . . , x2n ∈ A. If f(tx) is continuous int ∈ R for each fixed
x ∈ A, then there exists a unique algebra homomorphismT : A → B such that

(3.14) ‖T (x)− f(x)‖ ≤ 2p−1ε

3(2p−1 − 1)
‖x‖p

for all x ∈ A.

Proof. By Corollary 2.2, there exists a unique linear mappingT : A → B such that (3.14). By
Theorem 3.1, the linear mappingT is an algebra homomorphism. �
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