ARGUMENT ESTIMATES FOR CERTAIN ANALYTIC FUNCTIONS ASSOCIATED WITH THE CONVOLUTION STRUCTURE

S.P. GOYAL, PRANAY GOSWAMI
Department of Mathematics
University of Rajasthan
Jaipur-302055, India
EMail: somprg@gmail.com, pranaygoswami83@gmail.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.
Key words:

Abstract:

Acknowledgements:

15 March, 2008
10 January, 2009
H.M. Srivastava

N. E. CHO

Department of Applied Mathematics
Pukyong National University
Pusan 608-737, Korea
EMail: necho@pknu.ac.kr

Argument Estimates
S.P. Goyal, Pranay Goswami and N. E. Cho

Title Page

Contents

Page 1 of 13
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3

2 Main Results 6
3 Some Remarks and Observations 1111

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}:=\{z:|z|<1\}$.
If $f \in \mathcal{A}$ is given by (1.1) and $g \in \mathcal{A}$ is given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

then the Hadamard product (or convolution) $f * g$ of f and g is defined by

$$
\begin{equation*}
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) . \tag{1.2}
\end{equation*}
$$

We observe that several known operators are deducible from the convolution. That is, for various choices of g in (1.2), we obtain some interesting operators studied by many authors. For example, for functions $f \in \mathcal{A}$ and the function defined by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\left(\alpha_{1}\right)_{n-1} \cdots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots\left(\beta_{s}\right)_{n-1}(n-1)!} z^{n} \tag{1.3}
\end{equation*}
$$

$$
\begin{gathered}
\left(\alpha_{i} \in \mathbb{C}, \beta_{j} \in \mathbb{C} \backslash Z_{0}^{-} ; Z_{0}^{-}=\{0,-1,-2, \ldots\} ; \quad i=1, \ldots, q ; \quad j=1, \ldots, s ;\right. \\
\left.q \leq s+1 ; \quad q, s \in N_{0}=N \cup\{0\} ; z \in U\right)
\end{gathered}
$$

the convolution (1.2) with the function g defined by (1.3) gives the operator studied by Dziok and Srivastava ([5], see also [4, 6]):

$$
\begin{equation*}
(g * f)(z):=H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z) \tag{1.4}
\end{equation*}
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

$\mathbf{4}$	
Page 3 of 13	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We note that the linear operator $H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)$ includes various other linear operators which were introduced and studied various researchers in the literature.

Next, if we define the function g by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty}\left(\frac{n+\lambda}{1+\lambda}\right)^{k} z^{n} \quad(\lambda \geq 0 ; k \in \mathbb{Z}) \tag{1.5}
\end{equation*}
$$

then for functions $f \in \mathcal{A}$, the convolution (1.2) with the function g defined by (1.5) reduces to the multiplier transformation studied by Cho and Srivastava [2]:

$$
\begin{equation*}
(g * f)(z):=I_{\lambda}^{k} f(z) \tag{1.6}
\end{equation*}
$$

For arbitrary fixed real numbers A and $B(-1 \leq B<A \leq 1)$, we denote by $P(A, B)$ the class of functions of the form

$$
q(z)=1+c_{1} z+\cdots,
$$

which are analytic in the unit disk \mathbb{U} and satisfies the condition

$$
\begin{equation*}
q(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}), \tag{1.7}
\end{equation*}
$$

where the symbol \prec stands for usual subordination. We note that the class $P(A, B)$ was introduced and studied by Janowski [9].

We also observe from (1.7) (see, also [11]) that a function $q(z) \in P(A, B)$ if and only if

$$
\begin{equation*}
\left|q(z)-\frac{1-A B}{1-B^{2}}\right|<\frac{A-B}{1-B^{2}} \quad(B \neq-1 ; z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

Page 4 of 13
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: l443-575b
and

$$
\begin{equation*}
\operatorname{Re}\{q(z)\}>\frac{1-A}{2} \quad(B=-1 ; z \in \mathbb{U}) . \tag{1.9}
\end{equation*}
$$

In the present paper, we obtain some argument properties for certain analytic functions in \mathcal{A} associated with the convolution structure by using the techniques involving the principle of differential subordination. Relevant connections of the results, which are presented in this paper, with various known operators are also considered.

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 5 of 13	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-5?5b

2. Main Results

Theorem 2.1. Let $f, g \in \mathcal{A}$ and $\beta \geq 0,0<\eta \leq 1$. Suppose also that

$$
\begin{equation*}
\frac{z(g * h)^{\prime}(z)}{(g * h)(z)} \prec \frac{1+A z}{1+B z} \quad(h \in \mathcal{A} ;-1 \leq B<A \leq 1 ; z \in \mathbb{U}) . \tag{2.1}
\end{equation*}
$$

$$
\left|\arg \left\{\beta \frac{(g * f)^{\prime}(z)}{(g * h)^{\prime}(z)}+(1-\beta) \frac{(g * f)(z)}{(g * h)(z)}\right\}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

then

$$
\left|\arg \left\{\frac{(g * f)(z)}{(g * h)(z)}\right\}\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

where $\alpha(0<\alpha \leq 1)$ is the solution of the equation given by

$$
\eta= \begin{cases}\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\beta \alpha \sin \frac{\pi}{2}(1-t(A, B))}{\frac{1+A}{1+B}+\beta \alpha \cos \frac{\pi}{2}(1-t(A, B))} & \text { for } B \neq-1 \tag{2.2}\\ \alpha & \text { for } B=-1\end{cases}
$$

and

$$
\begin{equation*}
t(A, B)=\frac{2}{\pi} \sin ^{-1}\left(\frac{A-B}{1-A B}\right) \tag{2.3}
\end{equation*}
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

Page 6 of 13

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

While, from the assumption (2.1) with (1.8) and (1.9), we obtain

$$
q(z)=\rho e^{\frac{\pi \theta}{2} i}
$$

where

$$
\left\{\begin{array}{l}
\frac{1-A}{1-B}<\rho<\frac{1+A}{1+B} \\
-t(A, B)<\theta<t(A, B) \quad \text { for } B \neq-1
\end{array}\right.
$$

when $t(A, B)$ is given by (2.3) and

$$
\left\{\begin{array}{l}
\frac{1-A}{2}<\rho<\infty \\
-1<\theta<1 \quad \text { for } B=-1
\end{array}\right.
$$

The remaining part of the proof of the Theorem 2.1 follows by known results due to Miller and Mocanu [9] and Nunokawa [10] and applying a method similar to that of Cho et al. [3, Proof of Theorem 2.3], so we omit the details.

In particular, if we put $g(z)=z /(1-z)$ in Theorem 2.1, we have the following result.
Corollary 2.2. Let $f \in \mathcal{A}$ and $\beta>0,0<\eta \leq 1$. If

$$
\left|\arg \left\{\beta f^{\prime}(z)+(1-\beta) \frac{f(z)}{z}\right\}\right|<\frac{\pi}{2} \eta,
$$

then

$$
\left|\arg \left\{\frac{f(z)}{z}\right\}\right|<\frac{\pi}{2} \alpha
$$

where $\alpha(0<\alpha<1)$ is the solution of the equation given by

$$
\begin{equation*}
\eta=\alpha+\frac{2}{\pi} \tan ^{-1}(\alpha \beta) \tag{2.4}
\end{equation*}
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

Page 7 of 13
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.3. Let $f, g, h \in \mathcal{A}$ and $\mu>0,0<\eta<1$. If
(2.5) $\left|\arg \left[\left(\frac{(g * h)(z)}{(g * f)(z)}\right)^{\mu}\left\{1+\frac{z(g * f)^{\prime}(z)}{(g * f)(z)}-\frac{z(g * h)^{\prime}(z)}{(g * h)(z)}\right\}\right]\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})$ then

$$
\left|\arg \left\{\frac{(g * f)(z)}{(g * h)(z)}\right\}^{\mu}\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

where $\alpha(0<\alpha<1)$ is the solution of the equation given by

$$
\begin{equation*}
\eta=-\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\alpha}{\mu} \tag{2.6}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p(z)=\left\{\frac{(g * f)(z)}{(g * h)(z)}\right\}^{\mu} \quad(\mu>0 ; z \in \mathbb{U}) \tag{2.7}
\end{equation*}
$$

By differentiating both sides of (2.7) logarithmically and simplifying, we get

$$
\left\{\frac{(g * h)(z)}{(g * f)(z)}\right\}^{\mu}\left\{1+\frac{z(g * f)^{\prime}(z)}{(g * f)(z)}-\frac{z(g * h)^{\prime}(z)}{(g * h)(z)}\right\}=\frac{1}{p(z)}\left(1+\frac{z p^{\prime}(z)}{\mu p(z)}\right)
$$

Now by using a lemma due to Nunokawa [10] and a method similar to the proof of Theorem 2.1, we get Theorem 2.3.

Setting $(g * h)(z)=z$ and $g(z)=z /(1-z)$ in Theorem 2.3, we obtain Corollary 2.4 below which is comparable to the result studied by Lashin [8].

Corollary 2.4. Let $f, g \in \mathcal{A}$ and $0<\mu, \eta<1$. If

$$
\left|\arg \left[\left\{\frac{z}{(g * f)(z)}\right\}^{\mu+1}(g * f)^{\prime}(z)\right]\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U}),
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 8 of 13	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
\left|\arg \left\{\frac{(g * f)(z)}{z}\right\}^{\mu}\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

where $\alpha(0<\alpha<1)$ is the solution of the equation given by (2.6).
Theorem 2.5. Let $f, g \in \mathcal{A}$ and $\beta>0,0<\eta \leq 1$. If

$$
\begin{equation*}
\left|\arg \left[\left(\frac{z(g * f)^{\prime}(z)}{\varphi[(g * f)(z)]}\right)\left\{1+\beta \frac{z(g * f)^{\prime \prime}(z)}{(g * f)^{\prime}(z)}-\beta \frac{z \varphi^{\prime}[(g * f)(z)]}{\varphi[(g * f)(z)]}\right\}\right]\right|<\frac{\pi}{2} \eta \tag{2.8}
\end{equation*}
$$

where $\varphi[w]$ is analytic in $(g * f)(U), \varphi[0]=\varphi^{\prime}[0]-1=0$ and $\varphi[w] \neq 0$ in $(g * f)(U) \backslash\{0\}$, then

$$
\left|\arg \left\{\frac{z(g * f)^{\prime}(z)}{\varphi(g * f)(z)}\right\}\right|<\frac{\pi}{2} \alpha
$$

where $\alpha(0<\alpha<1)$ is the solution of the equation given by (2.4).
Proof. Our proof of Theorem 2.5 is much akin to that of Theorem 2.3. Indeed in place (2.7) we define $p(z)$ by

$$
\begin{equation*}
p(z)=\left\{\frac{(g * f)(z)}{(g * h)(z)}\right\}^{\mu} \quad(\mu>0 ; z \in \mathbb{U}) . \tag{2.9}
\end{equation*}
$$

We choose to skip the detailed involved.
By setting $\varphi[(g * f)(z)]=(g * f)(z)$ and $g(z)=z /(1-z)$, we have the following result.

Corollary 2.6. Let $f \in \mathcal{A}$ and $\beta>0,0<\eta \leq 1$. If

$$
\left|\arg \left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left\{1+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\beta \frac{z f^{\prime}(z)}{f(z)}\right\}\right]\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

Page 9 of 13
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

where $\alpha(0<\alpha<1)$ is the solution of the equation given by (2.4).

Title Page
Contents

44

Page 10 of 13
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Some Remarks and Observations

Using the Hadamard product (or convolution) defined by (1.2) and applying the differential subordination techniques, we obtained some argument properties of normalized analytic functions in the open unit disk \mathbb{U}. If we replace g in Theorems 2.1, 2.3 and 2.5 by the function $H\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)$ defined by (1.4) or the multiplier transformation I_{λ}^{k} defined by (1.5), then we have the corresponding results to the Theorems 2.1, 2.3 and 2.5. Moreover, we note that, if we suitably choose φ introduced in Theorem 2.5 (which is called the φ-like function [1]), then we can obtain various interesting applications.

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 11 of 13	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. BRICKMAN, Action of a force near a planar surface between two semiinfinite φ-like analytic functions, Bull. Amer. Math. Soc., 79 (1973), 555-558.
[2] N.E. CHO AND H. M. SRIVASTAVA, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Appl. Math. Comput., 103 (1999), 39-49.
[3] N.E. CHO, J. PATEL and R.M. MOHPATRA, Argument estimates of certain multi-valent functions involving a linear operator, International J. Math. Math. Sci., 31(11) (2002), 659-673.
[4] J. DZIOK and H. M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[5] J. DZIOK AND H. M. SRIVASTAVA, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 2 (2002), 115-125.
[6] J. DZIOK AND H. M. SRIVASTAVA, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (2003), 7-18.
[7] W. JANOWSKI, Some extremal problems for certain families of analytic function I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), 17-23.
[8] A. Y. LASHIN, Applications of Nunokawa's theorem, J. Inequal. Pure Appl. Math., 5(4) (2004), Art. 111. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=466]

Argument Estimates S.P. Goyal, Pranay Goswami and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

Page 12 of 13
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[9] S.S. MILLER and P.T. MOCANU, Differential subordinations and inequalities in the complex plane, J. Differential Equations, 67 (1987), 199-211.
[10] M. NUNOKAWA, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci., 69 (1993), 234-237.
[11] H. SILVERMAN AND E.M. SILIVIA, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37 (1985), 48-61.

Argument Estimates S.P. Goyal, Pranay Goswami
and N. E. Cho
vol. 10, iss. 1, art. 20, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 13 of 13	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-575b

