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Abstract

Some recent and classical integral inequalities are extended to the general
time-scale calculus, including the inequalities of Steffensen, Iyengar, Čebyšev,
and Hermite-Hadamard.
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1. Preliminaries on Time Scales
The unification and extension of continuous calculus, discrete calculus,q-calculus,
and indeed arbitrary real-number calculus to time-scale calculus was first ac-
complished by Hilger in his Ph.D. thesis [8]. Since then, time-scale calculus
has made steady inroads in explaining the interconnections that exist among the
various calculi, and in extending our understanding to a new, more general and
overarching theory. The purpose of this work is to illustrate this new under-
standing by extending some continuous andq-calculus inequalities and some
of their applications, such as those by Steffensen, Hermite-Hadamard, Iyengar,
andČebyšev, to arbitrary time scales.

The following definitions will serve as a short primer on the time-scale cal-
culus; they can be found in Agarwal and Bohner [1], Atici and Guseinov [3],
and Bohner and Peterson [4]. A time scaleT is any nonempty closed subset of
R. Within that set, define the jump operatorsρ, σ : T → T by

ρ(t) = sup{s ∈ T : s < t} and σ(t) = inf{s ∈ T : s > t},

whereinf ∅ := sup T andsup ∅ := inf T. The pointt ∈ T is left-dense, left-
scattered, right-dense, right-scattered ifρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,
respectively. IfT has a right-scattered minimumm, defineTκ := T − {m};
otherwise, setTκ = T. If T has a left-scattered maximumM , defineTκ :=
T−{M}; otherwise, setTκ = T. The so-called graininess functions areµ(t) :=
σ(t)− t andν(t) := t− ρ(t).

Forf : T → R andt ∈ Tκ, the nabla derivative [3] of f at t, denotedf∇(t),
is the number (provided it exists) with the property that given anyε > 0, there
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is a neighborhoodU of t such that

|f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|

for all s ∈ U . Common special cases again includeT = R, wheref∇ = f ′, the
usual derivative;T = Z, where the nabla derivative is the backward difference
operator,f∇(t) = f(t) − f(t − 1); q-difference equations with0 < q < 1 and
t > 0,

f∇(t) =
f(t)− f(qt)

(1− q)t
.

For f : T → R andt ∈ Tκ, the delta derivative [4] of f at t, denotedf∆(t),
is the number (provided it exists) with the property that given anyε > 0, there
is a neighborhoodU of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U . For T = R, f∆ = f ′, the usual derivative; forT = Z the delta
derivative is the forward difference operator,f∆(t) = f(t + 1) − f(t); in the
case ofq-difference equations withq > 1,

f∆(t) =
f(qt)− f(t)

(q − 1)t
, f∆(0) = lim

s→0

f(s)− f(0)

s
.

A function f : T → R is left-dense continuous or ld-continuous provided
it is continuous at left-dense points inT and its right-sided limits exist (finite)
at right-dense points inT. If T = R, thenf is ld-continuous if and only if
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f is continuous. It is known from [3] or Theorem 8.45 in [4] that if f is ld-
continuous, then there is a functionF such thatF∇(t) = f(t). In this case, we
define ∫ b

a

f(t)∇t = F (b)− F (a).

In the same way, from Theorem 1.74 in [4] we have that ifg is right-dense
continuous, there is a functionG such thatG∆(t) = g(t) and∫ b

a

g(t)∆t = G(b)−G(a).

The following theorem is part of Theorem 2.7 in [3] and Theorem 8.47 in
[4].

Theorem 1.1 (Integration by parts). If a, b ∈ T and f∇, g∇ are left-dense
continuous, then∫ b

a

f(t)g∇(t)∇t = (fg)(b)− (fg)(a)−
∫ b

a

f∇(t)g(ρ(t))∇t

and ∫ b

a

f(ρ(t))g∇(t)∇t = (fg)(b)− (fg)(a)−
∫ b

a

f∇(t)g(t)∇t.
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2. Taylor’s Theorem Using Nabla Polynomials
The generalized polynomials for nabla equations [2] are the functionŝhk :
T2 → R, k ∈ N0, defined recursively as follows: The functionĥ0 is

(2.1) ĥ0(t, s) ≡ 1 for all s, t ∈ T,

and, given̂hk for k ∈ N0, the function̂hk+1 is

(2.2) ĥk+1(t, s) =

∫ t

s

ĥk(τ, s)∇τ for all s, t ∈ T.

Note that the functionŝhk are all well defined, since each is ld-continuous. If for
each fixeds we let ĥ∇k (t, s) denote the nabla derivative ofĥk(t, s) with respect
to t, then

(2.3) ĥ∇k (t, s) = ĥk−1(t, s) for k ∈ N, t ∈ Tκ.

The above definition implies

ĥ1(t, s) = t− s for all s, t ∈ T.

Obtaining an expression for̂hk for k > 1 is not easy in general, but for a
particular given time scale it might be easy to find these functions; see [2] for
some examples.

Theorem 2.1 (Taylor’s Formula [2]). Let n ∈ N. Supposef is n + 1 times
nabla differentiable onTκn+1 . Let s ∈ Tκn, t ∈ T, and define the functionŝhk

by (2.1) and (2.2), i.e.,

ĥ0(t, s) ≡ 1 and ĥk+1(t, s) =

∫ t

s

ĥk(τ, s)∇τ for k ∈ N0.
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Then we have

f(t) =
n∑

k=0

ĥk(t, s)f
∇k

(s) +

∫ t

s

ĥn(t, ρ(τ))f∇
n+1

(τ)∇τ.

We may also relate the functionsĥk as introduced in (2.1) and (2.2) (which
we repeat below) to the functionshk andgk in the delta case [1, 4], and the
functionsĝk in the nabla case, defined below.

Definition 2.1. For t, s ∈ T define the functions

h0(t, s) = g0(t, s) = ĥ0(t, s) = ĝ0(t, s) ≡ 1,

and givenhn, gn, ĥn, ĝn for n ∈ N0,

hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ, gn+1(t, s) =

∫ t

s

gn(σ(τ), s)∆τ,

ĥn+1(t, s) =

∫ t

s

ĥn(τ, s)∇τ, ĝn+1(t, s) =

∫ t

s

ĝn(ρ(τ), s)∇τ.

The following theorem combines Theorem 9 of [2] and Theorem 1.112 of
[4].

Theorem 2.2.Let t ∈ Tκ
κ ands ∈ Tκn

. Then

ĥn(t, s) = gn(t, s) = (−1)nhn(s, t) = (−1)nĝn(s, t)

for all n ≥ 0.
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3. Steffensen’s inequality
For aq-difference equation version of the following result and most results in
this paper, including proof techniques, see [7]. In fact, the presentation of the
results to follow largely mirrors the organisation of [7].

Theorem 3.1 (Steffensen’s Inequality (nabla)).Let a, b ∈ Tκ
κ with a < b

and f, g : [a, b] → R be nabla-integrable functions, withf of one sign and
decreasing and0 ≤ g ≤ 1 on [a, b]. Assumè, γ ∈ [a, b] such that

b− ` ≤
∫ b

a

g(t)∇t ≤ γ − a if f ≥ 0, t ∈ [a, b],

γ − a ≤
∫ b

a

g(t)∇t ≤ b− ` if f ≤ 0, t ∈ [a, b].

Then

(3.1)
∫ b

`

f(t)∇t ≤
∫ b

a

f(t)g(t)∇t ≤
∫ γ

a

f(t)∇t.

Proof. The proof given in theq-difference case [7] can be extended to general
time scales. As in [7], we prove only the case in (3.1) wheref ≥ 0 for the left
inequality; the proofs of the other cases are similar. After subtracting within the
left inequality,∫ b

a

f(t)g(t)∇t−
∫ b

`

f(t)∇t

=

∫ `

a

f(t)g(t)∇t +

∫ b

`

f(t)g(t)∇t−
∫ b

`

f(t)∇t
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=

∫ `

a

f(t)g(t)∇t−
∫ b

`

f(t)(1− g(t))∇t

≥
∫ `

a

f(t)g(t)∇t− f(`)

∫ b

`

(1− g(t))∇t

=

∫ `

a

f(t)g(t)∇t− (b− `)f(`) + f(`)

∫ b

`

g(t)∇t

≥
∫ `

a

f(t)g(t)∇t− f(`)

∫ b

a

g(t)∇t + f(`)

∫ b

`

g(t)∇t

=

∫ `

a

f(t)g(t)∇t− f(`)

(∫ b

a

g(t)∇t−
∫ b

`

g(t)∇t

)
=

∫ `

a

f(t)g(t)∇t− f(`)

∫ `

a

g(t)∇t

=

∫ `

a

(f(t)− f(`)) g(t)∇t ≥ 0

sincef is decreasing andg is nonnegative.

Note that in the theorem above, we could easily replace the nabla integrals
with delta integrals under the same hypotheses and get a completely analogous
result. The following theorem more closely resembles the theorem in the con-
tinuous case; the proof is identical to that above and is omitted.

Theorem 3.2 (Steffensen’s Inequality II).Leta, b ∈ Tκ
κ andf, g : [a, b] → R

be nabla-integrable functions, withf decreasing and0 ≤ g ≤ 1 on [a, b].
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mailto:andersod@cord.edu
http://jipam.vu.edu.au/


Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005

http://jipam.vu.edu.au

Assumeλ :=
∫ b

a
g(t)∇t such thatb− λ, a + λ ∈ T. Then

(3.2)
∫ b

b−λ

f(t)∇t ≤
∫ b

a

f(t)g(t)∇t ≤
∫ a+λ

a

f(t)∇t.

http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/


Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005

http://jipam.vu.edu.au

4. Taylor’s Remainder
Supposef isn+1 times nabla differentiable onTκn+1 . Using Taylor’s Theorem,
Theorem2.1, we define the remainder function bŷR−1,f (·, s) := f(s), and for
n > −1,

(4.1) R̂n,f (t, s) := f(s)−
n∑

j=0

ĥj(s, t)f
∇j

(t) =

∫ s

t

ĥn(s, ρ(τ))f∇
n+1

(τ)∇τ.

Lemma 4.1. The following identity involving nabla Taylor’s remainder holds:∫ b

a

ĥn+1(t, ρ(s))f∇
n+1

(s)∇s =

∫ t

a

R̂n,f (a, s)∇s +

∫ b

t

R̂n,f (b, s)∇s.

Proof. Proceed by mathematical induction onn. Forn = −1,∫ b

a

ĥ0(t, ρ(s))f∇
0

(s)∇s =

∫ b

a

f(s)∇s =

∫ t

a

f(s)∇s +

∫ b

t

f(s)∇s.

Assume the result holds forn = k − 1:∫ b

a

ĥk(t, ρ(s))f∇
k

(s)∇s =

∫ t

a

R̂k−1,f (a, s)∇s +

∫ b

t

R̂k−1,f (b, s)∇s.

Let n = k. By Corollary 11 in [2], for fixed t ∈ T we have

(4.2) ĥ∇s
k+1(t, s) = −ĥk(t, ρ(s)).

http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/


Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005

http://jipam.vu.edu.au

Thus using the nabla integration by parts rule, Theorem1.1, we have∫ b

a

ĥk+1(t, ρ(s))f∇
k+1

(s)∇s

=

∫ b

a

ĥk(t, ρ(s))f∇
k

(s)∇s + ĥk+1(t, b)f
∇k

(b)− ĥk+1(t, a)f∇
k

(a).

By the induction assumption and the definition ofĥk+1,∫ b

a

ĥk+1(t, ρ(s))f∇
k+1

(s)∇s =

∫ t

a

R̂k−1,f (a, s)∇s +

∫ b

t

R̂k−1,f (b, s)∇s

+ ĥk+1(t, b)f
∇k

(b)− ĥk+1(t, a)f∇
k

(a)

=

∫ t

a

R̂k−1,f (a, s)∇s +

∫ b

t

R̂k−1,f (b, s)∇s

+

∫ t

b

ĥk(s, b)f
∇k

(b)∇s−
∫ t

a

ĥk(s, a)f∇
k

(a)∇s

=

∫ t

a

[
R̂k−1,f (a, s)− ĥk(s, a)f∇

k

(a)
]
∇s

+

∫ b

t

[
R̂k−1,f (b, s)− ĥk(s, b)f

∇k

(b)
]
∇s

=

∫ t

a

R̂k,f (a, s)∇s +

∫ b

t

R̂k,f (b, s)∇s.
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Corollary 4.2. For n ≥ −1,∫ b

a

ĥn+1(a, ρ(s))f∇
n+1

(s)∇s =

∫ b

a

R̂n,f (b, s)∇s,∫ b

a

ĥn+1(b, ρ(s))f∇
n+1

(s)∇s =

∫ b

a

R̂n,f (a, s)∇s.

Lemma 4.3. The following identity involving delta Taylor’s remainder holds:∫ b

a

hn+1(t, σ(s))f∆n+1

(s)∆s =

∫ t

a

Rn,f (a, s)∆s +

∫ b

t

Rn,f (b, s)∆s,

where

Rn,f (t, s) := f(s)−
n∑

j=0

hj(s, t)f
∆j

(t).
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5. Applications of Steffensen’s Inequality
In the following we generalize to arbitrary time scales some results from [7] by
applying Steffensen’s inequality, Theorem3.1.

Theorem 5.1. Let f : [a, b] → R be ann + 1 times nabla differentiable func-
tion such thatf∇

n+1
is increasing andf∇

n
is monontonic (either increasing or

decreasing) on[a, b]. Assumè, γ ∈ [a, b] such that

b− ` ≤ ĥn+2(b, a)

ĥn+1(b, ρ(a))
≤ γ − a if f∇

n

is decreasing,

γ − a ≤ ĥn+2(b, a)

ĥn+1(b, ρ(a))
≤ b− ` if f∇

n

is increasing.

Then

f∇
n

(γ)− f∇
n

(a) ≤ 1

ĥn+1(b, ρ(a))

∫ b

a

R̂n,f (a, s)∇s ≤ f∇
n

(b)− f∇
n

(`).

Proof. Assumef∇
n

is decreasing; the case wheref∇
n

is increasing is similar
and is omitted. LetF := −f∇

n+1
. Becausef∇

n
is decreasing,f∇

n+1 ≤ 0, so
thatF ≥ 0 and decreasing on[a, b]. Define

g(t) :=
ĥn+1(b, ρ(t))

ĥn+1(b, ρ(a))
∈ [0, 1], t ∈ [a, b], n ≥ −1.

Note thatF, g satisfy the assumptions of Steffensen’s inequality, Theorem3.1;
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using (4.2),∫ b

a

g(t)∇t =
1

ĥn+1(b, ρ(a))

∫ b

a

ĥn+1(b, ρ(t))∇t =
ĥn+2(b, a)

ĥn+1(b, ρ(a))
.

Thus if

b− ` ≤ ĥn+2(b, a)

ĥn+1(b, ρ(a))
≤ γ − a,

then ∫ b

`

F (t)∇t ≤
∫ b

a

F (t)g(t)∇t ≤
∫ γ

a

F (t)∇t.

By Corollary4.2and the fundamental theorem of nabla calculus, this simplifies
to

f∇
n

(t)|γt=a ≤
1

ĥn+1(b, ρ(a))

∫ b

a

R̂n,f (a, s)∇s ≤ f∇
n

(t)|bt=`.

It is evident that an analogous result can be found for the delta integral case
using the delta equivalent of Theorem3.1.

Definition 5.1. A twice nabla-differentiable functionf : [a, b] → R is convex
on [a, b] if and only iff∇

2 ≥ 0 on [a, b].

The following corollary is the first Hermite-Hadamard inequality, derived
from Theorem5.1with n = 0.
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Corollary 5.2. Let f : [a, b] → R be convex and monotonic. Assume`, γ ∈
[a, b] such that

` ≥ b− ĥ2(b, a)

b− ρ(a)
, γ ≥ ĥ2(b, a)

b− ρ(a)
+ a if f is decreasing,

` ≤ b− ĥ2(b, a)

b− ρ(a)
, γ ≤ ĥ2(b, a)

b− ρ(a)
+ a if f is increasing.

Then

f(γ) +
ρ(a)− a

b− ρ(a)
f(a) ≤ 1

b− ρ(a)

∫ b

a

f(t)∇t ≤ b− a

b− ρ(a)
f(a) + f(b)− f(`).

Another, slightly different, form of the first Hermite-Hadamard inequality is
the following; this implies that for time scales with left-scattered points there
are at least two inequalities of this type.

Theorem 5.3.Letf : [a, b] → R be convex and monotonic. Assume`, γ ∈ [a, b]
such that

` ≥ a +
ĥ2(b, a)

b− a
, γ ≥ b− ĥ2(b, a)

b− a
if f is decreasing,

` ≤ a +
ĥ2(b, a)

b− a
, γ ≤ b− ĥ2(b, a)

b− a
if f is increasing.

Then

f(γ) ≤ 1

b− a

∫ b

a

f(ρ(t))∇t ≤ f(a) + f(b)− f(`).
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Proof. Assumef is decreasing and convex. Thenf∇
2 ≥ 0, f∇ ≤ 0, andf∇ is

increasing. ThenF := −f∇ is decreasing and satisfiesF ≥ 0. ForG := b−t
b−a

,
0 ≤ G ≤ 1 andF, G satisfy the hypotheses of Theorem3.1. Now the inequality
expression

b− ` ≤
∫ b

a

G(t)∇t ≤ γ − a

takes the form

b− ` ≤ 1

b− a

∫ b

a

(b− t)∇t ≤ γ − a.

Concentrating on the left inequality,

` ≥ b− 1

b− a

∫ b

a

(b− t)∇t = b− 1

b− a

∫ b

a

(b− a + a− t)∇t,

which simplifies to

` ≥ a +
ĥ2(b, a)

b− a
;

similarly,

γ ≥ b− ĥ2(b, a)

b− a
.

Furthermore, note that
∫ s

r
F (t)∇t = f(r)−f(s), and integration by parts yields∫ b

a

F (t)G(t)∇t =
1

b− a

∫ b

a

(t− b)f∇(t)∇t = f(a)− 1

b− a

∫ b

a

f(ρ(t))∇t.
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It follows that Steffensen’s inequality takes the form

f(`)− f(b) ≤ f(a)− 1

b− a

∫ b

a

f(ρ(t))∇t ≤ f(a)− f(γ),

which can be rearranged to match the theorem’s stated conclusion.

Theorem 5.4.Letf : [a, b] → R be ann+1 times nabla differentiable function
such that

m ≤ f∇
n+1 ≤ M

on [a, b] for some real numbersm < M . Also, let`, γ ∈ [a, b] such that

b− ` ≤ 1

M −m

[
f∇

n

(b)− f∇
n

(a)−m(b− a)
]
≤ γ − a.

Then

mĥn+2(b, a) + (M −m)ĥn+2(b, `) ≤
∫ b

a

R̂n,f (a, t)∇t

≤ Mĥn+2(b, a) + (m−M)ĥn+2(b, γ).

Proof. Let

k(t) :=
1

M −m

[
f(t)−mĥn+1(t, a)

]
, F (t) := ĥn+1(b, ρ(t)),

G(t) := k∇
n+1

(t) =
1

M −m

[
f∇

n+1

(t)−m
]
∈ [0, 1].
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Observe thatF is nonnegative and decreasing, and∫ b

a

G(t)∇t =
1

M −m

[
f∇

n

(b)− f∇
n

(a)−m(b− a)
]
.

SinceF, G satisfy the hypotheses of Theorem3.1, we compute the various in-
tegrals given in (3.1). First, by (4.2),∫ b

`

F (t)∇t =

∫ b

`

ĥn+1(b, ρ(t))∇t = −ĥn+2(b, t)
∣∣b
t=`

= ĥn+2(b, `),

and ∫ γ

a

F (t)∇t = −ĥn+2(b, t)
∣∣γ
a

= ĥn+2(b, a)− ĥn+2(b, γ).

Moreover, using Corollary4.2, we have∫ b

a

F (t)G(t)∇t =
1

M −m

∫ b

a

ĥn+1(b, ρ(t))
(
f∇

n+1

(t)−m
)
∇t

=
1

M −m

∫ b

a

R̂n,f (a, t)∇t +
m

M −m
ĥn+2(b, t)

∣∣b
a

=
1

M −m

∫ b

a

R̂n,f (a, t)∇t− m

M −m
ĥn+2(b, a).

Using Steffensen’s inequality (3.1), we obtain

ĥn+2(b, `) ≤
1

M −m

[∫ b

a

R̂n,f (a, t)∇t−mĥn+2(b, a)

]
≤ ĥn+2(b, a)−ĥn+2(b, γ),

which yields the conclusion of the theorem.
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Theorem 5.5. Let f : [a, b] → R be a nabla and delta differentiable function
such that

m ≤ f∇, f∆ ≤ M

on [a, b] for some real numbersm < M .

(i) If there exist̀ , γ ∈ [a, b] such that

b− ` ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ γ − a,

then

mĥ2(b, a) + (M −m)ĥ2(b, `) ≤
∫ b

a

f(t)∇t− (b− a)f(a)

≤ Mĥ2(b, a) + (m−M)ĥ2(b, γ).

(ii) If there exist̀ , γ ∈ [a, b] such that

γ − a ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ b− `,

then

mh2(a, b) + (M −m)h2(a, γ) ≤ (b− a)f(b)−
∫ b

a

f(t)∆t

≤ Mh2(a, b) + (m−M)h2(a, `).
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Proof. The first part is just Theorem5.4with n = 0. For the second part, let

k(t) :=
1

M −m
[f(t)−m(t− b)] , F (t) := h1(a, σ(t)),

G(t) := k∆(t) =
1

M −m

[
f∆(t)−m

]
∈ [0, 1].

ClearlyF is decreasing and nonpositive, and∫ b

a

G(t)∆t =
1

M −m
[f(b)− f(a)−m(b− a)] ∈ [γ − a, b− `].

SinceF, G satisfy the hypotheses of Steffensen’s inequality for delta integrals,
we determine the corresponding integrals. First,∫ b

`

F (t)∆t =

∫ b

`

h1(a, σ(t))∆t = −h2(a, t)
∣∣b
t=`

= −h2(a, b) + h2(a, `),

and ∫ γ

a

F (t)∆t = −h2(a, t)
∣∣γ
a

= −h2(a, γ).

Moreover, using the formula for integration by parts for delta integrals,∫ b

a

F (t)G(t)∆t =

∫ b

a

h1(a, σ(t))k∆(t)∆t

= h1(a, t)k(t)
∣∣b
a
−

∫ b

a

h∆
1 (a, t)k(t)∆t

=
1

M −m

[
−(b− a)f(b) +

∫ b

a

f(t)∆t + mh2(a, b)

]
.

http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/


Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005

http://jipam.vu.edu.au

Using Steffensen’s inequality for delta integrals, we obtain

−h2(a, b) + h2(a, `) ≤ 1

M −m

[
−(b− a)f(b) +

∫ b

a

f(t)∆t + mh2(a, b)

]
≤ −h2(a, γ),

which yields the conclusion of(ii).

In [7], part (ii) of the above theorem also involved the equivalent of nabla
derivatives forq-difference equations with0 < q < 1. However, the function
used there,F (t) = a− qt = a− ρ(t), is not of one sign on[a, b], sinceF (a) =
a(1− q) > 0, F (a/q) = 0, andF (a/q2) = a(1− 1/q) < 0. For this reason we
introduced a delta-derivative perspective in(ii) above and in the following.

Corollary 5.6. Let f : [a, b] → R be a nabla and delta differentiable function
such that

m ≤ f∇, f∆ ≤ M

on [a, b] for some real numbersm < M . Assume there exist`, γ ∈ [a, ρ(b)] such
that

ρ(γ)− a ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ γ − a,(5.1)

b− ` ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ b− ρ(`).(5.2)
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Then

2mh2(a, b) + (M −m) [h2(`, b) + h2(a, ρ(γ))]

≤
∫ b

a

f(t)∇t−
∫ b

a

f(t)∆t + (b− a)(f(b)− f(a))

≤ 2Mh2(a, b)− (M −m) [h2(γ, b) + h2(a, ρ(`))] .

Proof. By the previous theorem, Theorem5.5,

mĥ2(b, a) + (M −m)ĥ2(b, `) ≤
∫ b

a

f(t)∇t− (b− a)f(a)

≤ Mĥ2(b, a) + (m−M)ĥ2(b, γ)(5.3)

using(i) and the fact that

b− ` ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ γ − a;

in like manner

mh2(a, b) + (M −m)h2(a, ρ(γ)) ≤ (b− a)f(b)−
∫ b

a

f(t)∆t

≤ Mh2(a, b) + (m−M)h2(a, ρ(`))(5.4)

using(ii) and the fact that

ρ(γ)− a ≤ 1

M −m
[f(b)− f(a)−m(b− a)] ≤ b− ρ(`).

Add (5.3) to (5.4) and use Theorem2.2to arrive at the conclusion.
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Remark 1. If T = R, setλ := b − ` = γ − a, so thatb − γ = ` − a =
b − a − λ. Here the nabla and delta integrals off on [a, b] are identical, and
h2(s, t) = (t−s)2/2, so the conclusion of the previous corollary, Corollary5.6,
is the known [7] inequality

m +
(M −m)λ2

(b− a)2
≤ f(b)− f(a)

b− a
≤ M − (M −m)(b− a− λ)2

(b− a)2
.

If T = Z, thenh2(s, t) = (t− s)(t− s + 1)/2 = (t− s)2/2 and∫ b

a

f(t)∇t−
∫ b

a

f(t)∆t =
b∑

t=a+1

f(t)−
b−1∑
t=a

f(t) = f(b)− f(a).

This time takeλ = b− ` = γ − 1− a. The discrete conclusion of Corollary5.6
is thus

m +
(M −m)λ2

(b− a)2
≤ f(b)− f(a)

b− a
≤ M − (M −m)(b− a− λ− 1)2

(b− a)2
.

Corollary 5.7 (Iyengar’s Inequality). Let f : [a, b] → R be a nabla and delta
differentiable function such that

m ≤ f∇, f∆ ≤ M

on [a, b] for some real numbersm < M . Assume there exist`, γ ∈ [a, ρ(b)] such
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that (5.1), (5.2) are satisfied. Then

(M −m) [h2(`, b) + h2(a, ρ(`))− h2(a, b)]

≤
∫ b

a

f(t)∇t +

∫ b

a

f(t)∆t− (b− a)(f(b) + f(a))

≤ (M −m) [h2(a, b)− h2(γ, b)− h2(a, ρ(γ))] .

Proof. Subtract (5.4) from (5.3) and use Theorem2.2to arrive at the conclusion.

Remark 2. Again if T = R, then
∫ b

a
f(t)∇t =

∫ b

a
f(t)∆t =

∫ b

a
f(t)dt and

h2(t, s) = (t− s)2/2. Moreover,ρ(`) = ` andρ(γ) = γ; set

λ = b− ` = γ − a =
1

M −m
[f(b)− f(a)−m(b− a)] .

This transforms the conclusion of Corollary5.7 into a continuous calculus ver-
sion,∣∣∣∣∫ b

a

f(t)dt− f(a) + f(b)

2
(b− a)

∣∣∣∣
≤ [f(b)− f(a)−m(b− a)] [M(b− a) + f(a)− f(b)]

2(M −m)
.
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6. Applications of Čebyšev’s Inequality
Recently,Čebyšev’s inequality on time scales for delta integrals was proven [9].
We repeat the statement of it here in the case of nabla integrals for completeness.

Theorem 6.1 (̌Cebyšev’s inequality).Let f andg be both increasing or both
decreasing in[a, b]. Then∫ b

a

f(t)g(t)∇t ≥ 1

b− a

∫ b

a

f(t)∇t

∫ b

a

g(t)∇t.

If one of the functions is increasing and the other is decreasing, then the above
inequality is reversed.

The following is an application of̌Cebyšev’s inequality, which extends a
similar result in [7] to general time scales.

Theorem 6.2.Assume thatf∇
n+1

is monotonic on[a, b].

(i) If f∇
n+1

is increasing, then

0 ≥
∫ b

a

R̂n,f (a, t)∇t−
[
f∇

n
(b)− f∇

n
(a)

b− a

]
ĥn+2(b, a)

≥
[
f∇

n+1

(a)− f∇
n+1

(b)
]
ĥn+2(b, a).

(ii) If f∇
n+1

is decreasing, then

0 ≤
∫ b

a

R̂n,f (a, t)∇t−
[
f∇

n
(b)− f∇

n
(a)

b− a

]
ĥn+2(b, a)

≤
[
f∇

n+1

(a)− f∇
n+1

(b)
]
ĥn+2(b, a).
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Proof. The situation for(ii) is analogous to that of(i). Assume(i), and set
F (t) := f∇

n+1
(t), G(t) := ĥn+1(b, ρ(t)). ThenF is increasing by assumption,

andG is decreasing, so that by̌Cebyšev’s nabla inequality,∫ b

a

F (t)G(t)∇t ≤ 1

b− a

∫ b

a

F (t)∇t

∫ b

a

G(t)∇t.

By Corollary4.2,∫ b

a

F (t)G(t)∇t =

∫ b

a

f∇
n+1

(t)ĥn+1(b, ρ(t))∇t =

∫ b

a

R̂n,f (a, t)∇t.

We also have∫ b

a

F (t)∇t = f∇
n

(b)−f∇
n

(a),

∫ b

a

G(t)∇t =

∫ b

a

ĥn+1(b, ρ(t)) = ĥn+2(b, a).

ThusČebyšev’s inequality implies∫ b

a

R̂n,f (a, t)∇t ≤ 1

b− a

[
f∇

n

(b)− f∇
n

(a)
]
ĥn+2(b, a),

which subtracts to the left side of the inequality. Sincef∇
n+1

is increasing on
[a, b],

f∇
n+1

(a)ĥn+2(b, a) ≤
[
f∇

n
(b)− f∇

n
(a)

b− a

]
ĥn+2(b, a) ≤ f∇

n+1

(b)ĥn+2(b, a),
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and we have∫ b

a

R̂n,f (a, t)∇t−
[
f∇

n
(b)− f∇

n
(a)

b− a

]
ĥn+2(b, a)

≥
∫ b

a

R̂n,f (a, t)∇t− f∇
n+1

(b)ĥn+2(b, a).

Now Corollary4.2andf∇
n+1

is increasing imply that

f∇
n+1

(b)

∫ b

a

ĥn+1(b, ρ(t))∇t ≥
∫ b

a

R̂n,f (a, t)∇t ≥ f∇
n+1

(a)

∫ b

a

ĥn+1(b, ρ(t))∇t,

which simplifies to

f∇
n+1

(b)ĥn+2(b, a) ≥
∫ b

a

R̂n,f (a, t)∇t ≥ f∇
n+1

(a)ĥn+2(b, a).

This, together with the earlier lines give the right side of the inequality.

Theorem 6.3. Assume thatf∆n+1
is monotonic on[a, b] and the functiongk is

as defined in Definition2.1.

(i) If f∆n+1
is increasing, then

0 ≤ (−1)n+1

∫ b

a

Rn,f (b, t)∆t−
[
f∆n

(b)− f∆n
(a)

b− a

]
gn+2(b, a)

≤
[
f∆n+1

(b)− f∆n+1

(a)
]
gn+2(b, a).
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(ii) If f∆n+1
is decreasing, then

0 ≥ (−1)n+1

∫ b

a

Rn,f (b, t)∆t−
[
f∆n

(b)− f∆n
(a)

b− a

]
gn+2(b, a)

≥
[
f∆n+1

(b)− f∆n+1

(a)
]
gn+2(b, a).

Proof. The situation for(ii) is analogous to that of(i). Assume(i), and set
F (t) := f∆n+1

(t), G(t) := (−1)n+1hn+1(a, σ(t)). ThenF andG are increas-
ing, so that byČebyšev’s delta inequality,∫ b

a

F (t)G(t)∆t ≥ 1

b− a

∫ b

a

F (t)∆t

∫ b

a

G(t)∆t.

By Lemma4.3with t = a,∫ b

a

F (t)G(t)∆t = (−1)n+1

∫ b

a

f∆n+1

(t)hn+1(a, σ(t))∆t

= (−1)n+1

∫ b

a

Rn,f (b, t)∆t.

We also have
∫ b

a
F (t)∆t = f∆n

(b)− f∆n
(a), and, using Theorem2.2,∫ b

a

G(t)∆t = (−1)n+1

∫ b

a

hn+1(a, σ(t))∆t = gn+2(b, a).

ThusČebyšev’s inequality implies

(−1)n+1

∫ b

a

Rn,f (b, t)∆t ≥ 1

b− a

[
f∆n

(b)− f∆n

(a)
]
gn+2(b, a),
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which subtracts to the left side of the inequality. Sincef∆n+1
is increasing on

[a, b],

f∆n+1

(a)gn+2(b, a) ≤
[
f∆n

(b)− f∆n
(a)

b− a

]
gn+2(b, a) ≤ f∆n+1

(b)gn+2(b, a),

and we have

(−1)n+1

∫ b

a

Rn,f (b, t)∆t− f∆n+1

(a)gn+2(b, a)

≥ (−1)n+1

∫ b

a

Rn,f (b, t)∆t−
[
f∆n

(b)− f∆n
(a)

b− a

]
gn+2(b, a).

Now Theorem2.2and Lemma4.3again witht = a yield

(−1)n+1

∫ b

a

Rn,f (b, t)∆t =

∫ b

a

gn+1(σ(t), a)f∆n+1

(t)∆t.

Sincef∆n+1
is increasing,

f∆n+1

(b)

∫ b

a

gn+1(σ(t), a)∆t ≥ (−1)n+1

∫ b

a

Rn,f (b, t)∆t

≥ f∆n+1

(a)

∫ b

a

gn+1(σ(t), a)∆t,

which simplifies to

f∆n+1

(b)gn+2(b, a) ≥ (−1)n+1

∫ b

a

Rn,f (b, t)∆t ≥ f∆n+1

(a)gn+2(b, a).

This, together with the earlier lines give the right side of the inequality.
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Remark 3. If T = R, then combining Theorem6.2 and Theorem6.3 yields
Theorem 3.1 in [6].

Remark 4. In Theorem6.2(i), if n = 0, we obtain

(6.1)
∫ b

a

f(t)∇t ≤ (b− a)f(a) +
ĥ2(b, a)

b− a
(f(b)− f(a)).

Compare that with the following result.

Theorem 6.4.Assume thatf is nabla convex on[a, b]; that is,f∇
2 ≥ 0 on [a, b].

Then

(6.2)
∫ b

a

f(ρ(t))∇t ≤ (b− a)f(b)− ĥ2(b, a)

b− a
(f(b)− f(a)).

Proof. If F := f∇ and G(t) := t − a = ĥ1(t, a), then bothF and G are
increasing functions. By̌Cebyšev’s inequality on time scales, and the definition
of ĥ in (2.2),∫ b

a

f∇(t)(t− a)∇t ≥ 1

b− a

∫ b

a

f∇(t)∇t

∫ b

a

ĥ1(t, a)∇t.

Using nabla integration by parts on the left, and calculating the right yields the
result.

The following result is a Hermite-Hadamard-type inequality for time scales;
compare with Corollary5.2.
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Corollary 6.5. Letf be nabla convex on[a, b]. Then

1

b− a

∫ b

a

f(ρ(t)) + f(t)

2
∇t ≤ f(b) + f(a)

2
.

Proof. Use (6.1), (6.2) and rearrange accordingly.
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