# TIME-SCALE INTEGRAL INEQUALITIES <br> DOUGLAS R. ANDERSON Concordia College <br> Department of Mathematics and Computer Science <br> Moorhead, MN 56562 USA <br> andersod@cord.edu 

Received 16 March, 2005; accepted 02 June, 2005
Communicated by H. Gauchman

Abstract. Some recent and classical integral inequalities are extended to the general timescale calculus, including the inequalities of Steffensen, Iyengar, Čebyšev, and Hermite-Hadamard.

Key words and phrases: Taylor's Formula, Nabla integral, Delta integral.
2000 Mathematics Subject Classification. 34B10, 39A10.

## 1. Preliminaries on Time Scales

The unification and extension of continuous calculus, discrete calculus, $q$-calculus, and indeed arbitrary real-number calculus to time-scale calculus was first accomplished by Hilger in his Ph.D. thesis [8]. Since then, time-scale calculus has made steady inroads in explaining the interconnections that exist among the various calculi, and in extending our understanding to a new, more general and overarching theory. The purpose of this work is to illustrate this new understanding by extending some continuous and $q$-calculus inequalities and some of their applications, such as those by Steffensen, Hermite-Hadamard, Iyengar, and Čebyšev, to arbitrary time scales.

The following definitions will serve as a short primer on the time-scale calculus; they can be found in Agarwal and Bohner [1], Atici and Guseinov [3], and Bohner and Peterson [4]. A time scale $\mathbb{T}$ is any nonempty closed subset of $\mathbb{R}$. Within that set, define the jump operators $\rho, \sigma: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\rho(t)=\sup \{s \in \mathbb{T}: s<t\} \quad \text { and } \quad \sigma(t)=\inf \{s \in \mathbb{T}: s>t\},
$$

where $\inf \emptyset:=\sup \mathbb{T}$ and $\sup \emptyset:=\inf \mathbb{T}$. The point $t \in \mathbb{T}$ is left-dense, left-scattered, rightdense, right-scattered if $\rho(t)=t, \rho(t)<t, \sigma(t)=t, \sigma(t)>t$, respectively. If $\mathbb{T}$ has a right-scattered minimum $m$, define $\mathbb{T}_{\kappa}:=\mathbb{T}-\{m\}$; otherwise, set $\mathbb{T}_{\kappa}=\mathbb{T}$. If $\mathbb{T}$ has a leftscattered maximum $M$, define $\mathbb{T}^{\kappa}:=\mathbb{T}-\{M\}$; otherwise, set $\mathbb{T}^{\kappa}=\mathbb{T}$. The so-called graininess functions are $\mu(t):=\sigma(t)-t$ and $\nu(t):=t-\rho(t)$.

[^0]For $f: \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}_{\kappa}$, the nabla derivative [3] of $f$ at $t$, denoted $f^{\nabla}(t)$, is the number (provided it exists) with the property that given any $\varepsilon>0$, there is a neighborhood $U$ of $t$ such that

$$
\left|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]\right| \leq \varepsilon|\rho(t)-s|
$$

for all $s \in U$. Common special cases again include $\mathbb{T}=\mathbb{R}$, where $f^{\nabla}=f^{\prime}$, the usual derivative; $\mathbb{T}=\mathbb{Z}$, where the nabla derivative is the backward difference operator, $f^{\nabla}(t)=f(t)-f(t-1)$; $q$-difference equations with $0<q<1$ and $t>0$,

$$
f^{\nabla}(t)=\frac{f(t)-f(q t)}{(1-q) t}
$$

For $f: \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}^{\kappa}$, the delta derivative [4] of $f$ at $t$, denoted $f^{\Delta}(t)$, is the number (provided it exists) with the property that given any $\varepsilon>0$, there is a neighborhood $U$ of $t$ such that

$$
\left|f(\sigma(t))-f(s)-f^{\Delta}(t)[\sigma(t)-s]\right| \leq \varepsilon|\sigma(t)-s|
$$

for all $s \in U$. For $\mathbb{T}=\mathbb{R}, f^{\Delta}=f^{\prime}$, the usual derivative; for $\mathbb{T}=\mathbb{Z}$ the delta derivative is the forward difference operator, $f^{\Delta}(t)=f(t+1)-f(t)$; in the case of $q$-difference equations with $q>1$,

$$
f^{\Delta}(t)=\frac{f(q t)-f(t)}{(q-1) t}, \quad f^{\Delta}(0)=\lim _{s \rightarrow 0} \frac{f(s)-f(0)}{s} .
$$

A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is left-dense continuous or ld-continuous provided it is continuous at left-dense points in $\mathbb{T}$ and its right-sided limits exist (finite) at right-dense points in $\mathbb{T}$. If $\mathbb{T}=\mathbb{R}$, then $f$ is ld-continuous if and only if $f$ is continuous. It is known from [3] or Theorem 8.45 in [4] that if $f$ is ld-continuous, then there is a function $F$ such that $F^{\nabla}(t)=f(t)$. In this case, we define

$$
\int_{a}^{b} f(t) \nabla t=F(b)-F(a)
$$

In the same way, from Theorem 1.74 in [4] we have that if $g$ is right-dense continuous, there is a function $G$ such that $G^{\Delta}(t)=g(t)$ and

$$
\int_{a}^{b} g(t) \Delta t=G(b)-G(a) .
$$

The following theorem is part of Theorem 2.7 in [3] and Theorem 8.47 in [4].
Theorem 1.1 (Integration by parts). If $a, b \in \mathbb{T}$ and $f^{\nabla}, g^{\nabla}$ are left-dense continuous, then

$$
\int_{a}^{b} f(t) g^{\nabla}(t) \nabla t=(f g)(b)-(f g)(a)-\int_{a}^{b} f^{\nabla}(t) g(\rho(t)) \nabla t
$$

and

$$
\int_{a}^{b} f(\rho(t)) g^{\nabla}(t) \nabla t=(f g)(b)-(f g)(a)-\int_{a}^{b} f^{\nabla}(t) g(t) \nabla t
$$

## 2. TAylor's Theorem Using Nabla Polynomials

The generalized polynomials for nabla equations [2] are the functions $\hat{h}_{k}: \mathbb{T}^{2} \rightarrow \mathbb{R}, k \in \mathbb{N}_{0}$, defined recursively as follows: The function $\hat{h}_{0}$ is

$$
\begin{equation*}
\hat{h}_{0}(t, s) \equiv 1 \quad \text { for all } \quad s, t \in \mathbb{T} \tag{2.1}
\end{equation*}
$$

and, given $\hat{h}_{k}$ for $k \in \mathbb{N}_{0}$, the function $\hat{h}_{k+1}$ is

$$
\begin{equation*}
\hat{h}_{k+1}(t, s)=\int_{s}^{t} \hat{h}_{k}(\tau, s) \nabla \tau \quad \text { for all } \quad s, t \in \mathbb{T} \tag{2.2}
\end{equation*}
$$

Note that the functions $\hat{h}_{k}$ are all well defined, since each is ld-continuous. If for each fixed $s$ we let $\hat{h}_{k}^{\nabla}(t, s)$ denote the nabla derivative of $\hat{h}_{k}(t, s)$ with respect to $t$, then

$$
\begin{equation*}
\hat{h}_{k}^{\nabla}(t, s)=\hat{h}_{k-1}(t, s) \quad \text { for } \quad k \in \mathbb{N}, t \in \mathbb{T}_{\kappa} . \tag{2.3}
\end{equation*}
$$

The above definition implies

$$
\hat{h}_{1}(t, s)=t-s \quad \text { for all } \quad s, t \in \mathbb{T} \text {. }
$$

Obtaining an expression for $\hat{h}_{k}$ for $k>1$ is not easy in general, but for a particular given time scale it might be easy to find these functions; see [2] for some examples.

Theorem 2.1 (Taylor's Formula [2]). Let $n \in \mathbb{N}$. Suppose $f$ is $n+1$ times nabla differentiable on $\mathbb{T}_{\kappa^{n+1}}$. Let $s \in \mathbb{T}_{\kappa^{n}}, t \in \mathbb{T}$, and define the functions $\hat{h}_{k}$ by (2.1) and (2.2), i.e.,

$$
\hat{h}_{0}(t, s) \equiv 1 \quad \text { and } \quad \hat{h}_{k+1}(t, s)=\int_{s}^{t} \hat{h}_{k}(\tau, s) \nabla \tau \text { for } k \in \mathbb{N}_{0}
$$

Then we have

$$
f(t)=\sum_{k=0}^{n} \hat{h}_{k}(t, s) f^{\nabla^{k}}(s)+\int_{s}^{t} \hat{h}_{n}(t, \rho(\tau)) f^{\nabla^{n+1}}(\tau) \nabla \tau .
$$

We may also relate the functions $\hat{h}_{k}$ as introduced in (2.1) and (2.2) (which we repeat below) to the functions $h_{k}$ and $g_{k}$ in the delta case [1, 4], and the functions $\hat{g}_{k}$ in the nabla case, defined below.

Definition 2.1. For $t, s \in \mathbb{T}$ define the functions

$$
h_{0}(t, s)=g_{0}(t, s)=\hat{h}_{0}(t, s)=\hat{g}_{0}(t, s) \equiv 1,
$$

and given $h_{n}, g_{n}, \hat{h}_{n}, \hat{g}_{n}$ for $n \in \mathbb{N}_{0}$,

$$
\begin{aligned}
& h_{n+1}(t, s)=\int_{s}^{t} h_{n}(\tau, s) \Delta \tau, g_{n+1}(t, s)=\int_{s}^{t} g_{n}(\sigma(\tau), s) \Delta \tau \\
& \hat{h}_{n+1}(t, s)=\int_{s}^{t} \hat{h}_{n}(\tau, s) \nabla \tau, \hat{g}_{n+1}(t, s)=\int_{s}^{t} \hat{g}_{n}(\rho(\tau), s) \nabla \tau
\end{aligned}
$$

The following theorem combines Theorem 9 of [2] and Theorem 1.112 of [4].
Theorem 2.2. Let $t \in \mathbb{T}_{\kappa}^{\kappa}$ and $s \in \mathbb{T}^{\kappa^{n}}$. Then

$$
\hat{h}_{n}(t, s)=g_{n}(t, s)=(-1)^{n} h_{n}(s, t)=(-1)^{n} \hat{g}_{n}(s, t)
$$

for all $n \geq 0$.

## 3. Steffensen's inequality

For a $q$-difference equation version of the following result and most results in this paper, including proof techniques, see [7]. In fact, the presentation of the results to follow largely mirrors the organisation of [7].
Theorem 3.1 (Steffensen's Inequality (nabla)). Let $a, b \in \mathbb{T}_{\kappa}^{\kappa}$ with $a<b$ and $f, g:[a, b] \rightarrow \mathbb{R}$ be nabla-integrable functions, with $f$ of one sign and decreasing and $0 \leq g \leq 1$ on $[a, b]$. Assume $\ell, \gamma \in[a, b]$ such that

$$
b-\ell \leq \int_{a}^{b} g(t) \nabla t \leq \gamma-a \quad \text { if } f \geq 0, \quad t \in[a, b]
$$

$$
\gamma-a \leq \int_{a}^{b} g(t) \nabla t \leq b-\ell \quad \text { if } f \leq 0, \quad t \in[a, b] .
$$

Then

$$
\begin{equation*}
\int_{\ell}^{b} f(t) \nabla t \leq \int_{a}^{b} f(t) g(t) \nabla t \leq \int_{a}^{\gamma} f(t) \nabla t \tag{3.1}
\end{equation*}
$$

Proof. The proof given in the $q$-difference case [7] can be extended to general time scales. As in [7], we prove only the case in (3.1) where $f \geq 0$ for the left inequality; the proofs of the other cases are similar. After subtracting within the left inequality,

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) \nabla t & -\int_{\ell}^{b} f(t) \nabla t \\
& =\int_{a}^{\ell} f(t) g(t) \nabla t+\int_{\ell}^{b} f(t) g(t) \nabla t-\int_{\ell}^{b} f(t) \nabla t \\
& =\int_{a}^{\ell} f(t) g(t) \nabla t-\int_{\ell}^{b} f(t)(1-g(t)) \nabla t \\
& \geq \int_{a}^{\ell} f(t) g(t) \nabla t-f(\ell) \int_{\ell}^{b}(1-g(t)) \nabla t \\
& =\int_{a}^{\ell} f(t) g(t) \nabla t-(b-\ell) f(\ell)+f(\ell) \int_{\ell}^{b} g(t) \nabla t \\
& \geq \int_{a}^{\ell} f(t) g(t) \nabla t-f(\ell) \int_{a}^{b} g(t) \nabla t+f(\ell) \int_{\ell}^{b} g(t) \nabla t \\
& =\int_{a}^{\ell} f(t) g(t) \nabla t-f(\ell)\left(\int_{a}^{b} g(t) \nabla t-\int_{\ell}^{b} g(t) \nabla t\right) \\
& =\int_{a}^{\ell} f(t) g(t) \nabla t-f(\ell) \int_{a}^{\ell} g(t) \nabla t \\
& =\int_{a}^{\ell}(f(t)-f(\ell)) g(t) \nabla t \geq 0
\end{aligned}
$$

since $f$ is decreasing and $g$ is nonnegative.

Note that in the theorem above, we could easily replace the nabla integrals with delta integrals under the same hypotheses and get a completely analogous result. The following theorem more closely resembles the theorem in the continuous case; the proof is identical to that above and is omitted.

Theorem 3.2 (Steffensen's Inequality II). Let $a, b \in \mathbb{T}_{\kappa}^{\kappa}$ and $f, g:[a, b] \rightarrow \mathbb{R}$ be nablaintegrable functions, with $f$ decreasing and $0 \leq g \leq 1$ on $[a, b]$. Assume $\lambda:=\int_{a}^{b} g(t) \nabla t$ such that $b-\lambda, a+\lambda \in \mathbb{T}$. Then

$$
\begin{equation*}
\int_{b-\lambda}^{b} f(t) \nabla t \leq \int_{a}^{b} f(t) g(t) \nabla t \leq \int_{a}^{a+\lambda} f(t) \nabla t \tag{3.2}
\end{equation*}
$$

## 4. TAYLOR'S REMAINDER

Suppose $f$ is $n+1$ times nabla differentiable on $\mathbb{T}_{\kappa^{n+1}}$. Using Taylor's Theorem, Theorem 2.1. we define the remainder function by $\hat{R}_{-1, f}(\cdot, s):=f(s)$, and for $n>-1$,

$$
\begin{equation*}
\hat{R}_{n, f}(t, s):=f(s)-\sum_{j=0}^{n} \hat{h}_{j}(s, t) f^{\nabla^{j}}(t)=\int_{t}^{s} \hat{h}_{n}(s, \rho(\tau)) f^{\nabla^{n+1}}(\tau) \nabla \tau \tag{4.1}
\end{equation*}
$$

Lemma 4.1. The following identity involving nabla Taylor's remainder holds:

$$
\int_{a}^{b} \hat{h}_{n+1}(t, \rho(s)) f^{\nabla^{n+1}}(s) \nabla s=\int_{a}^{t} \hat{R}_{n, f}(a, s) \nabla s+\int_{t}^{b} \hat{R}_{n, f}(b, s) \nabla s
$$

Proof. Proceed by mathematical induction on $n$. For $n=-1$,

$$
\int_{a}^{b} \hat{h}_{0}(t, \rho(s)) f^{\nabla^{0}}(s) \nabla s=\int_{a}^{b} f(s) \nabla s=\int_{a}^{t} f(s) \nabla s+\int_{t}^{b} f(s) \nabla s
$$

Assume the result holds for $n=k-1$ :

$$
\int_{a}^{b} \hat{h}_{k}(t, \rho(s)) f^{\nabla^{k}}(s) \nabla s=\int_{a}^{t} \hat{R}_{k-1, f}(a, s) \nabla s+\int_{t}^{b} \hat{R}_{k-1, f}(b, s) \nabla s
$$

Let $n=k$. By Corollary 11 in [2], for fixed $t \in \mathbb{T}$ we have

$$
\begin{equation*}
\hat{h}_{k+1}^{\nabla_{s}}(t, s)=-\hat{h}_{k}(t, \rho(s)) \tag{4.2}
\end{equation*}
$$

Thus using the nabla integration by parts rule, Theorem 1.1, we have

$$
\begin{aligned}
& \int_{a}^{b} \hat{h}_{k+1}(t, \rho(s)) f^{\nabla^{k+1}}(s) \nabla s \\
&=\int_{a}^{b} \hat{h}_{k}(t, \rho(s)) f^{\nabla^{k}}(s) \nabla s+\hat{h}_{k+1}(t, b) f^{\nabla^{k}}(b)-\hat{h}_{k+1}(t, a) f^{\nabla^{k}}(a) .
\end{aligned}
$$

By the induction assumption and the definition of $\hat{h}_{k+1}$,

$$
\begin{aligned}
& \int_{a}^{b} \hat{h}_{k+1}(t, \rho(s)) f^{\nabla^{k+1}}(s) \nabla s=\int_{a}^{t} \hat{R}_{k-1, f}(a, s) \nabla s+\int_{t}^{b} \hat{R}_{k-1, f}(b, s) \nabla s \\
& +\hat{h}_{k+1}(t, b) f^{\nabla^{k}}(b)-\hat{h}_{k+1}(t, a) f^{\nabla^{k}}(a) \\
& =\int_{a}^{t} \hat{R}_{k-1, f}(a, s) \nabla s+\int_{t}^{b} \hat{R}_{k-1, f}(b, s) \nabla s \\
& +\int_{b}^{t} \hat{h}_{k}(s, b) f^{\nabla^{k}}(b) \nabla s-\int_{a}^{t} \hat{h}_{k}(s, a) f^{\nabla^{k}}(a) \nabla s \\
& =\int_{a}^{t}\left[\hat{R}_{k-1, f}(a, s)-\hat{h}_{k}(s, a) f^{\nabla^{k}}(a)\right] \nabla s \\
& +\int_{t}^{b}\left[\hat{R}_{k-1, f}(b, s)-\hat{h}_{k}(s, b) f^{\nabla^{k}}(b)\right] \nabla s \\
& =\int_{a}^{t} \hat{R}_{k, f}(a, s) \nabla s+\int_{t}^{b} \hat{R}_{k, f}(b, s) \nabla s .
\end{aligned}
$$

Corollary 4.2. For $n \geq-1$,

$$
\begin{aligned}
\int_{a}^{b} \hat{h}_{n+1}(a, \rho(s)) f^{\nabla^{n+1}}(s) \nabla s & =\int_{a}^{b} \hat{R}_{n, f}(b, s) \nabla s, \\
\int_{a}^{b} \hat{h}_{n+1}(b, \rho(s)) f^{\nabla^{n+1}}(s) \nabla s & =\int_{a}^{b} \hat{R}_{n, f}(a, s) \nabla s .
\end{aligned}
$$

Lemma 4.3. The following identity involving delta Taylor's remainder holds:

$$
\int_{a}^{b} h_{n+1}(t, \sigma(s)) f^{\Delta^{n+1}}(s) \Delta s=\int_{a}^{t} R_{n, f}(a, s) \Delta s+\int_{t}^{b} R_{n, f}(b, s) \Delta s
$$

where

$$
R_{n, f}(t, s):=f(s)-\sum_{j=0}^{n} h_{j}(s, t) f^{\Delta^{j}}(t)
$$

## 5. Applications of Steffensen's Inequality

In the following we generalize to arbitrary time scales some results from [7] by applying Steffensen's inequality, Theorem 3.1.

Theorem 5.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be an $n+1$ times nabla differentiable function such that $f^{\nabla^{n+1}}$ is increasing and $f^{\nabla^{n}}$ is monontonic (either increasing or decreasing) on $[a, b]$. Assume $\ell, \gamma \in[a, b]$ such that

$$
\begin{aligned}
& b-\ell \leq \frac{\hat{h}_{n+2}(b, a)}{\hat{h}_{n+1}(b, \rho(a))} \leq \gamma-a \quad \text { if } f^{\nabla^{n}} \text { is decreasing, } \\
& \gamma-a \leq \frac{\hat{h}_{n+2}(b, a)}{\hat{h}_{n+1}(b, \rho(a))} \leq b-\ell \quad \text { if } f^{\nabla^{n} \text { is increasing. }}
\end{aligned}
$$

Then

$$
f^{\nabla^{n}}(\gamma)-f^{\nabla^{n}}(a) \leq \frac{1}{\hat{h}_{n+1}(b, \rho(a))} \int_{a}^{b} \hat{R}_{n, f}(a, s) \nabla s \leq f^{\nabla^{n}}(b)-f^{\nabla^{n}}(\ell)
$$

Proof. Assume $f^{\nabla^{n}}$ is decreasing; the case where $f^{\nabla^{n}}$ is increasing is similar and is omitted. Let $F:=-f^{\nabla^{n+1}}$. Because $f^{\nabla^{n}}$ is decreasing, $f^{\nabla^{n+1}} \leq 0$, so that $F \geq 0$ and decreasing on $[a, b]$. Define

$$
g(t):=\frac{\hat{h}_{n+1}(b, \rho(t))}{\hat{h}_{n+1}(b, \rho(a))} \in[0,1], \quad t \in[a, b], \quad n \geq-1 .
$$

Note that $F, g$ satisfy the assumptions of Steffensen's inequality, Theorem 3.1, using (4.2),

$$
\int_{a}^{b} g(t) \nabla t=\frac{1}{\hat{h}_{n+1}(b, \rho(a))} \int_{a}^{b} \hat{h}_{n+1}(b, \rho(t)) \nabla t=\frac{\hat{h}_{n+2}(b, a)}{\hat{h}_{n+1}(b, \rho(a))} .
$$

Thus if

$$
b-\ell \leq \frac{\hat{h}_{n+2}(b, a)}{\hat{h}_{n+1}(b, \rho(a))} \leq \gamma-a
$$

then

$$
\int_{\ell}^{b} F(t) \nabla t \leq \int_{a}^{b} F(t) g(t) \nabla t \leq \int_{a}^{\gamma} F(t) \nabla t
$$

By Corollary 4.2 and the fundamental theorem of nabla calculus, this simplifies to

$$
\left.f^{\nabla^{n}}(t)\right|_{t=a} ^{\gamma} \leq \frac{1}{\hat{h}_{n+1}(b, \rho(a))} \int_{a}^{b} \hat{R}_{n, f}(a, s) \nabla s \leq\left. f^{\nabla^{n}}(t)\right|_{t=\ell} ^{b} .
$$

It is evident that an analogous result can be found for the delta integral case using the delta equivalent of Theorem 3.1.

Definition 5.1. A twice nabla-differentiable function $f:[a, b] \rightarrow \mathbb{R}$ is convex on $[a, b]$ if and only if $f^{\nabla^{2}} \geq 0$ on $[a, b]$.

The following corollary is the first Hermite-Hadamard inequality, derived from Theorem 5.1 with $n=0$.

Corollary 5.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and monotonic. Assume $\ell, \gamma \in[a, b]$ such that

$$
\begin{array}{ll}
\ell \geq b-\frac{\hat{h}_{2}(b, a)}{b-\rho(a)}, & \gamma \geq \frac{\hat{h}_{2}(b, a)}{b-\rho(a)}+a \quad \text { if } f \text { is decreasing } \\
\ell \leq b-\frac{\hat{h}_{2}(b, a)}{b-\rho(a)}, & \gamma \leq \frac{\hat{h}_{2}(b, a)}{b-\rho(a)}+a \quad \text { if fis increasing. }
\end{array}
$$

Then

$$
f(\gamma)+\frac{\rho(a)-a}{b-\rho(a)} f(a) \leq \frac{1}{b-\rho(a)} \int_{a}^{b} f(t) \nabla t \leq \frac{b-a}{b-\rho(a)} f(a)+f(b)-f(\ell) .
$$

Another, slightly different, form of the first Hermite-Hadamard inequality is the following; this implies that for time scales with left-scattered points there are at least two inequalities of this type.

Theorem 5.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and monotonic. Assume $\ell, \gamma \in[a, b]$ such that

$$
\begin{array}{ll}
\ell \geq a+\frac{\hat{h}_{2}(b, a)}{b-a}, & \gamma \geq b-\frac{\hat{h}_{2}(b, a)}{b-a} \quad \text { if } f \text { is decreasing } \\
\ell \leq a+\frac{\hat{h}_{2}(b, a)}{b-a}, & \gamma \leq b-\frac{\hat{h}_{2}(b, a)}{b-a} \quad \text { if } f \text { is increasing }
\end{array}
$$

Then

$$
f(\gamma) \leq \frac{1}{b-a} \int_{a}^{b} f(\rho(t)) \nabla t \leq f(a)+f(b)-f(\ell)
$$

Proof. Assume $f$ is decreasing and convex. Then $f^{\nabla^{2}} \geq 0, f^{\nabla} \leq 0$, and $f^{\nabla}$ is increasing. Then $F:=-f^{\nabla}$ is decreasing and satisfies $F \geq 0$. For $G:=\frac{b-t}{b-a}, 0 \leq G \leq 1$ and $F, G$ satisfy the hypotheses of Theorem 3.1. Now the inequality expression

$$
b-\ell \leq \int_{a}^{b} G(t) \nabla t \leq \gamma-a
$$

takes the form

$$
b-\ell \leq \frac{1}{b-a} \int_{a}^{b}(b-t) \nabla t \leq \gamma-a .
$$

Concentrating on the left inequality,

$$
\ell \geq b-\frac{1}{b-a} \int_{a}^{b}(b-t) \nabla t=b-\frac{1}{b-a} \int_{a}^{b}(b-a+a-t) \nabla t
$$

which simplifies to

$$
\ell \geq a+\frac{\hat{h}_{2}(b, a)}{b-a}
$$

similarly,

$$
\gamma \geq b-\frac{\hat{h}_{2}(b, a)}{b-a}
$$

Furthermore, note that $\int_{r}^{s} F(t) \nabla t=f(r)-f(s)$, and integration by parts yields

$$
\int_{a}^{b} F(t) G(t) \nabla t=\frac{1}{b-a} \int_{a}^{b}(t-b) f^{\nabla}(t) \nabla t=f(a)-\frac{1}{b-a} \int_{a}^{b} f(\rho(t)) \nabla t
$$

It follows that Steffensen's inequality takes the form

$$
f(\ell)-f(b) \leq f(a)-\frac{1}{b-a} \int_{a}^{b} f(\rho(t)) \nabla t \leq f(a)-f(\gamma)
$$

which can be rearranged to match the theorem's stated conclusion.
Theorem 5.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an $n+1$ times nabla differentiable function such that

$$
m \leq f^{\nabla^{n+1}} \leq M
$$

on $[a, b]$ for some real numbers $m<M$. Also, let $\ell, \gamma \in[a, b]$ such that

$$
b-\ell \leq \frac{1}{M-m}\left[f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)-m(b-a)\right] \leq \gamma-a .
$$

Then

$$
\begin{aligned}
m \hat{h}_{n+2}(b, a)+(M-m) \hat{h}_{n+2}(b, \ell) & \leq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t \\
& \leq M \hat{h}_{n+2}(b, a)+(m-M) \hat{h}_{n+2}(b, \gamma)
\end{aligned}
$$

Proof. Let

$$
\begin{gathered}
k(t):=\frac{1}{M-m}\left[f(t)-m \hat{h}_{n+1}(t, a)\right], \quad F(t):=\hat{h}_{n+1}(b, \rho(t)), \\
G(t):=k^{\nabla^{n+1}}(t)=\frac{1}{M-m}\left[f^{\nabla^{n+1}}(t)-m\right] \in[0,1] .
\end{gathered}
$$

Observe that $F$ is nonnegative and decreasing, and

$$
\int_{a}^{b} G(t) \nabla t=\frac{1}{M-m}\left[f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)-m(b-a)\right]
$$

Since $F, G$ satisfy the hypotheses of Theorem 3.1, we compute the various integrals given in (3.1). First, by (4.2),

$$
\int_{\ell}^{b} F(t) \nabla t=\int_{\ell}^{b} \hat{h}_{n+1}(b, \rho(t)) \nabla t=-\left.\hat{h}_{n+2}(b, t)\right|_{t=\ell} ^{b}=\hat{h}_{n+2}(b, \ell)
$$

and

$$
\int_{a}^{\gamma} F(t) \nabla t=-\left.\hat{h}_{n+2}(b, t)\right|_{a} ^{\gamma}=\hat{h}_{n+2}(b, a)-\hat{h}_{n+2}(b, \gamma)
$$

Moreover, using Corollary 4.2, we have

$$
\begin{aligned}
\int_{a}^{b} F(t) G(t) \nabla t & =\frac{1}{M-m} \int_{a}^{b} \hat{h}_{n+1}(b, \rho(t))\left(f^{\nabla^{n+1}}(t)-m\right) \nabla t \\
& =\frac{1}{M-m} \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t+\left.\frac{m}{M-m} \hat{h}_{n+2}(b, t)\right|_{a} ^{b} \\
& =\frac{1}{M-m} \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-\frac{m}{M-m} \hat{h}_{n+2}(b, a) .
\end{aligned}
$$

Using Steffensen's inequality (3.1), we obtain

$$
\hat{h}_{n+2}(b, \ell) \leq \frac{1}{M-m}\left[\int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-m \hat{h}_{n+2}(b, a)\right] \leq \hat{h}_{n+2}(b, a)-\hat{h}_{n+2}(b, \gamma),
$$

which yields the conclusion of the theorem.
Theorem 5.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a nabla and delta differentiable function such that

$$
m \leq f^{\nabla}, f^{\Delta} \leq M
$$

on $[a, b]$ for some real numbers $m<M$.
(i) If there exist $\ell, \gamma \in[a, b]$ such that

$$
b-\ell \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq \gamma-a
$$

then

$$
\begin{aligned}
m \hat{h}_{2}(b, a)+(M-m) \hat{h}_{2}(b, \ell) & \leq \int_{a}^{b} f(t) \nabla t-(b-a) f(a) \\
& \leq M \hat{h}_{2}(b, a)+(m-M) \hat{h}_{2}(b, \gamma) .
\end{aligned}
$$

(ii) If there exist $\ell, \gamma \in[a, b]$ such that

$$
\gamma-a \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq b-\ell,
$$

then

$$
\begin{aligned}
m h_{2}(a, b)+(M-m) h_{2}(a, \gamma) & \leq(b-a) f(b)-\int_{a}^{b} f(t) \Delta t \\
& \leq M h_{2}(a, b)+(m-M) h_{2}(a, \ell) .
\end{aligned}
$$

Proof. The first part is just Theorem 5.4 with $n=0$. For the second part, let

$$
\begin{gathered}
k(t):=\frac{1}{M-m}[f(t)-m(t-b)], \quad F(t):=h_{1}(a, \sigma(t)), \\
G(t):=k^{\Delta}(t)=\frac{1}{M-m}\left[f^{\Delta}(t)-m\right] \in[0,1] .
\end{gathered}
$$

Clearly $F$ is decreasing and nonpositive, and

$$
\int_{a}^{b} G(t) \Delta t=\frac{1}{M-m}[f(b)-f(a)-m(b-a)] \in[\gamma-a, b-\ell] .
$$

Since $F, G$ satisfy the hypotheses of Steffensen's inequality for delta integrals, we determine the corresponding integrals. First,

$$
\int_{\ell}^{b} F(t) \Delta t=\int_{\ell}^{b} h_{1}(a, \sigma(t)) \Delta t=-\left.h_{2}(a, t)\right|_{t=\ell} ^{b}=-h_{2}(a, b)+h_{2}(a, \ell),
$$

and

$$
\int_{a}^{\gamma} F(t) \Delta t=-\left.h_{2}(a, t)\right|_{a} ^{\gamma}=-h_{2}(a, \gamma) .
$$

Moreover, using the formula for integration by parts for delta integrals,

$$
\begin{aligned}
\int_{a}^{b} F(t) G(t) \Delta t & =\int_{a}^{b} h_{1}(a, \sigma(t)) k^{\Delta}(t) \Delta t \\
& =\left.h_{1}(a, t) k(t)\right|_{a} ^{b}-\int_{a}^{b} h_{1}^{\Delta}(a, t) k(t) \Delta t \\
& =\frac{1}{M-m}\left[-(b-a) f(b)+\int_{a}^{b} f(t) \Delta t+m h_{2}(a, b)\right] .
\end{aligned}
$$

Using Steffensen's inequality for delta integrals, we obtain

$$
\begin{aligned}
-h_{2}(a, b)+h_{2}(a, \ell) & \leq \frac{1}{M-m}\left[-(b-a) f(b)+\int_{a}^{b} f(t) \Delta t+m h_{2}(a, b)\right] \\
& \leq-h_{2}(a, \gamma)
\end{aligned}
$$

which yields the conclusion of $(i i)$.
In [7], part (ii) of the above theorem also involved the equivalent of nabla derivatives for $q$-difference equations with $0<q<1$. However, the function used there, $F(t)=a-q t=$ $a-\rho(t)$, is not of one sign on $[a, b]$, since $F(a)=a(1-q)>0, F(a / q)=0$, and $F\left(a / q^{2}\right)=$ $a(1-1 / q)<0$. For this reason we introduced a delta-derivative perspective in (ii) above and in the following.

Corollary 5.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a nabla and delta differentiable function such that

$$
m \leq f^{\nabla}, f^{\Delta} \leq M
$$

on $[a, b]$ for some real numbers $m<M$. Assume there exist $\ell, \gamma \in[a, \rho(b)]$ such that

$$
\begin{align*}
\rho(\gamma)-a & \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq \gamma-a,  \tag{5.1}\\
b-\ell & \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq b-\rho(\ell) . \tag{5.2}
\end{align*}
$$

Then

$$
\begin{aligned}
2 m h_{2}(a, b) & +(M-m)\left[h_{2}(\ell, b)+h_{2}(a, \rho(\gamma))\right] \\
& \leq \int_{a}^{b} f(t) \nabla t-\int_{a}^{b} f(t) \Delta t+(b-a)(f(b)-f(a)) \\
& \leq 2 M h_{2}(a, b)-(M-m)\left[h_{2}(\gamma, b)+h_{2}(a, \rho(\ell))\right] .
\end{aligned}
$$

Proof. By the previous theorem, Theorem 5.5 ,

$$
\begin{align*}
m \hat{h}_{2}(b, a)+(M-m) \hat{h}_{2}(b, \ell) & \leq \int_{a}^{b} f(t) \nabla t-(b-a) f(a) \\
& \leq M \hat{h}_{2}(b, a)+(m-M) \hat{h}_{2}(b, \gamma) \tag{5.3}
\end{align*}
$$

using $(i)$ and the fact that

$$
b-\ell \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq \gamma-a ;
$$

in like manner

$$
\begin{align*}
m h_{2}(a, b)+(M-m) h_{2}(a, \rho(\gamma)) & \leq(b-a) f(b)-\int_{a}^{b} f(t) \Delta t \\
& \leq M h_{2}(a, b)+(m-M) h_{2}(a, \rho(\ell)) \tag{5.4}
\end{align*}
$$

using (ii) and the fact that

$$
\rho(\gamma)-a \leq \frac{1}{M-m}[f(b)-f(a)-m(b-a)] \leq b-\rho(\ell) .
$$

Add (5.3) to (5.4) and use Theorem 2.2 to arrive at the conclusion.
Remark 5.7. If $\mathbb{T}=\mathbb{R}$, set $\lambda:=b-\ell=\gamma-a$, so that $b-\gamma=\ell-a=b-a-\lambda$. Here the nabla and delta integrals of $f$ on $[a, b]$ are identical, and $h_{2}(s, t)=(t-s)^{2} / 2$, so the conclusion of the previous corollary, Corollary 5.6, is the known [7] inequality

$$
m+\frac{(M-m) \lambda^{2}}{(b-a)^{2}} \leq \frac{f(b)-f(a)}{b-a} \leq M-\frac{(M-m)(b-a-\lambda)^{2}}{(b-a)^{2}}
$$

If $\mathbb{T}=\mathbb{Z}$, then $h_{2}(s, t)=(t-s)(t-s+1) / 2=(t-s)^{\overline{2}} / 2$ and

$$
\int_{a}^{b} f(t) \nabla t-\int_{a}^{b} f(t) \Delta t=\sum_{t=a+1}^{b} f(t)-\sum_{t=a}^{b-1} f(t)=f(b)-f(a) .
$$

This time take $\lambda=b-\ell=\gamma-1-a$. The discrete conclusion of Corollary 5.6 is thus

$$
m+\frac{(M-m) \lambda^{\overline{2}}}{(b-a)^{\overline{2}}} \leq \frac{f(b)-f(a)}{b-a} \leq M-\frac{(M-m)(b-a-\lambda-1)^{\overline{2}}}{(b-a)^{\overline{2}}}
$$

Corollary 5.8 (Iyengar's Inequality). Let $f:[a, b] \rightarrow \mathbb{R}$ be a nabla and delta differentiable function such that

$$
m \leq f^{\nabla}, f^{\Delta} \leq M
$$

on $[a, b]$ for some real numbers $m<M$. Assume there exist $\ell, \gamma \in[a, \rho(b)]$ such that (5.1), (5.2) are satisfied. Then

$$
\begin{aligned}
(M-m) & {\left[h_{2}(\ell, b)+h_{2}(a, \rho(\ell))-h_{2}(a, b)\right] } \\
& \leq \int_{a}^{b} f(t) \nabla t+\int_{a}^{b} f(t) \Delta t-(b-a)(f(b)+f(a)) \\
& \leq(M-m)\left[h_{2}(a, b)-h_{2}(\gamma, b)-h_{2}(a, \rho(\gamma))\right] .
\end{aligned}
$$

Proof. Subtract (5.4) from (5.3) and use Theorem 2.2 to arrive at the conclusion.
Remark 5.9. Again if $\mathbb{T}=\mathbb{R}$, then $\int_{a}^{b} f(t) \nabla t=\int_{a}^{b} f(t) \Delta t=\int_{a}^{b} f(t) d t$ and $h_{2}(t, s)=$ $(t-s)^{2} / 2$. Moreover, $\rho(\ell)=\ell$ and $\rho(\gamma)=\gamma$; set

$$
\lambda=b-\ell=\gamma-a=\frac{1}{M-m}[f(b)-f(a)-m(b-a)] .
$$

This transforms the conclusion of Corollary 5.8 into a continuous calculus version,

$$
\left|\int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}(b-a)\right| \leq \frac{[f(b)-f(a)-m(b-a)][M(b-a)+f(a)-f(b)]}{2(M-m)}
$$

## 6. APPLICATIONS OF ČEBYŠEV'S INEQUALITY

Recently, Čebyšev's inequality on time scales for delta integrals was proven [9]. We repeat the statement of it here in the case of nabla integrals for completeness.

Theorem 6.1 (Čebyšev's inequality). Let $f$ and $g$ be both increasing or both decreasing in $[a, b]$. Then

$$
\int_{a}^{b} f(t) g(t) \nabla t \geq \frac{1}{b-a} \int_{a}^{b} f(t) \nabla t \int_{a}^{b} g(t) \nabla t
$$

If one of the functions is increasing and the other is decreasing, then the above inequality is reversed.

The following is an application of Čebyšev's inequality, which extends a similar result in [7] to general time scales.

Theorem 6.2. Assume that $f^{\nabla^{n+1}}$ is monotonic on $[a, b]$.
(i) If $f^{\nabla^{n+1}}$ is increasing, then

$$
\begin{aligned}
0 & \geq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-\left[\frac{f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)}{b-a}\right] \hat{h}_{n+2}(b, a) \\
& \geq\left[f^{\nabla^{n+1}}(a)-f^{\nabla^{n+1}}(b)\right] \hat{h}_{n+2}(b, a) .
\end{aligned}
$$

(ii) If $f^{\nabla^{n+1}}$ is decreasing, then

$$
\begin{aligned}
0 & \leq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-\left[\frac{f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)}{b-a}\right] \hat{h}_{n+2}(b, a) \\
& \leq\left[f^{\nabla^{n+1}}(a)-f^{\nabla^{n+1}}(b)\right] \hat{h}_{n+2}(b, a) .
\end{aligned}
$$

Proof. The situation for (ii) is analogous to that of $(i)$. Assume $(i)$, and set $F(t):=f^{\nabla^{n+1}}(t)$, $G(t):=\hat{h}_{n+1}(b, \rho(t))$. Then $F$ is increasing by assumption, and $G$ is decreasing, so that by Čebyšev's nabla inequality,

$$
\int_{a}^{b} F(t) G(t) \nabla t \leq \frac{1}{b-a} \int_{a}^{b} F(t) \nabla t \int_{a}^{b} G(t) \nabla t
$$

By Corollary 4.2,

$$
\int_{a}^{b} F(t) G(t) \nabla t=\int_{a}^{b} f^{\nabla^{n+1}}(t) \hat{h}_{n+1}(b, \rho(t)) \nabla t=\int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t
$$

We also have

$$
\int_{a}^{b} F(t) \nabla t=f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a), \quad \int_{a}^{b} G(t) \nabla t=\int_{a}^{b} \hat{h}_{n+1}(b, \rho(t))=\hat{h}_{n+2}(b, a) .
$$

Thus Čebyšev's inequality implies

$$
\int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t \leq \frac{1}{b-a}\left[f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)\right] \hat{h}_{n+2}(b, a),
$$

which subtracts to the left side of the inequality. Since $f^{\nabla^{n+1}}$ is increasing on $[a, b]$,

$$
f^{\nabla^{n+1}}(a) \hat{h}_{n+2}(b, a) \leq\left[\frac{f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)}{b-a}\right] \hat{h}_{n+2}(b, a) \leq f^{\nabla^{n+1}}(b) \hat{h}_{n+2}(b, a),
$$

and we have

$$
\int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-\left[\frac{f^{\nabla^{n}}(b)-f^{\nabla^{n}}(a)}{b-a}\right] \hat{h}_{n+2}(b, a) \geq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t-f^{\nabla^{n+1}}(b) \hat{h}_{n+2}(b, a) .
$$

Now Corollary 4.2 and $f^{\nabla^{n+1}}$ is increasing imply that

$$
f^{\nabla^{n+1}}(b) \int_{a}^{b} \hat{h}_{n+1}(b, \rho(t)) \nabla t \geq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t \geq f^{\nabla^{n+1}}(a) \int_{a}^{b} \hat{h}_{n+1}(b, \rho(t)) \nabla t
$$

which simplifies to

$$
f^{\nabla^{n+1}}(b) \hat{h}_{n+2}(b, a) \geq \int_{a}^{b} \hat{R}_{n, f}(a, t) \nabla t \geq f^{\nabla^{n+1}}(a) \hat{h}_{n+2}(b, a)
$$

This, together with the earlier lines give the right side of the inequality.
Theorem 6.3. Assume that $f^{\Delta^{n+1}}$ is monotonic on $[a, b]$ and the function $g_{k}$ is as defined in Definition 2.1
(i) If $f^{\Delta^{n+1}}$ is increasing, then

$$
\begin{aligned}
0 & \leq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t-\left[\frac{f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)}{b-a}\right] g_{n+2}(b, a) \\
& \leq\left[f^{\Delta^{n+1}}(b)-f^{\Delta^{n+1}}(a)\right] g_{n+2}(b, a)
\end{aligned}
$$

(ii) If $f^{\Delta^{n+1}}$ is decreasing, then

$$
\begin{aligned}
0 & \geq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t-\left[\frac{f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)}{b-a}\right] g_{n+2}(b, a) \\
& \geq\left[f^{\Delta^{n+1}}(b)-f^{\Delta^{n+1}}(a)\right] g_{n+2}(b, a)
\end{aligned}
$$

Proof. The situation for $(i i)$ is analogous to that of $(i)$. Assume $(i)$, and set $F(t):=f^{\Delta^{n+1}}(t)$, $G(t):=(-1)^{n+1} h_{n+1}(a, \sigma(t))$. Then $F$ and $G$ are increasing, so that by Čebyšev's delta inequality,

$$
\int_{a}^{b} F(t) G(t) \Delta t \geq \frac{1}{b-a} \int_{a}^{b} F(t) \Delta t \int_{a}^{b} G(t) \Delta t
$$

By Lemma 4.3 with $t=a$,

$$
\int_{a}^{b} F(t) G(t) \Delta t=(-1)^{n+1} \int_{a}^{b} f^{\Delta^{n+1}}(t) h_{n+1}(a, \sigma(t)) \Delta t=(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t
$$

We also have $\int_{a}^{b} F(t) \Delta t=f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)$, and, using Theorem 2.2,

$$
\int_{a}^{b} G(t) \Delta t=(-1)^{n+1} \int_{a}^{b} h_{n+1}(a, \sigma(t)) \Delta t=g_{n+2}(b, a) .
$$

Thus Čebyšev's inequality implies

$$
(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t \geq \frac{1}{b-a}\left[f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)\right] g_{n+2}(b, a)
$$

which subtracts to the left side of the inequality. Since $f^{\Delta^{n+1}}$ is increasing on $[a, b]$,

$$
f^{\Delta^{n+1}}(a) g_{n+2}(b, a) \leq\left[\frac{f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)}{b-a}\right] g_{n+2}(b, a) \leq f^{\Delta^{n+1}}(b) g_{n+2}(b, a)
$$

and we have

$$
\begin{aligned}
(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t- & f^{\Delta^{n+1}}(a) g_{n+2}(b, a) \\
& \geq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t-\left[\frac{f^{\Delta^{n}}(b)-f^{\Delta^{n}}(a)}{b-a}\right] g_{n+2}(b, a) .
\end{aligned}
$$

Now Theorem 2.2 and Lemma 4.3 again with $t=a$ yield

$$
(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t=\int_{a}^{b} g_{n+1}(\sigma(t), a) f^{\Delta^{n+1}}(t) \Delta t
$$

Since $f^{\Delta^{n+1}}$ is increasing,

$$
f^{\Delta^{n+1}}(b) \int_{a}^{b} g_{n+1}(\sigma(t), a) \Delta t \geq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t \geq f^{\Delta^{n+1}}(a) \int_{a}^{b} g_{n+1}(\sigma(t), a) \Delta t,
$$

which simplifies to

$$
f^{\Delta^{n+1}}(b) g_{n+2}(b, a) \geq(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, t) \Delta t \geq f^{\Delta^{n+1}}(a) g_{n+2}(b, a) .
$$

This, together with the earlier lines give the right side of the inequality.
Remark 6.4. If $\mathbb{T}=\mathbb{R}$, then combining Theorem 6.2 and Theorem 6.3 yields Theorem 3.1 in [6].

Remark 6.5. In Theorem $6.2(i)$, if $n=0$, we obtain

$$
\begin{equation*}
\int_{a}^{b} f(t) \nabla t \leq(b-a) f(a)+\frac{\hat{h}_{2}(b, a)}{b-a}(f(b)-f(a)) . \tag{6.1}
\end{equation*}
$$

Compare that with the following result.
Theorem 6.6. Assume that $f$ is nabla convex on $[a, b]$; that is, $f^{\nabla^{2}} \geq 0$ on $[a, b]$. Then

$$
\begin{equation*}
\int_{a}^{b} f(\rho(t)) \nabla t \leq(b-a) f(b)-\frac{\hat{h}_{2}(b, a)}{b-a}(f(b)-f(a)) . \tag{6.2}
\end{equation*}
$$

Proof. If $F:=f^{\nabla}$ and $G(t):=t-a=\hat{h}_{1}(t, a)$, then both $F$ and $G$ are increasing functions. By Čebyšev's inequality on time scales, and the definition of $\hat{h}$ in (2.2),

$$
\int_{a}^{b} f^{\nabla}(t)(t-a) \nabla t \geq \frac{1}{b-a} \int_{a}^{b} f^{\nabla}(t) \nabla t \int_{a}^{b} \hat{h}_{1}(t, a) \nabla t
$$

Using nabla integration by parts on the left, and calculating the right yields the result.
The following result is a Hermite-Hadamard-type inequality for time scales; compare with Corollary 5.2.

Corollary 6.7. Let $f$ be nabla convex on $[a, b]$. Then

$$
\frac{1}{b-a} \int_{a}^{b} \frac{f(\rho(t))+f(t)}{2} \nabla t \leq \frac{f(b)+f(a)}{2} .
$$

Proof. Use (6.1), (6.2) and rearrange accordingly.

## References

[1] R.P. AGARWAL AND M. BOHNER, Basic calculus on time scales and some of its applications, Results Math., 35(1-2) (1999), 3-22.
[2] D.R. ANDERSON, Taylor polynomials for nabla dynamic equations on time scales, PanAmerican Math. J., 12(4) (2002), 17-27.
[3] F.M. ATICI AND G.Sh. GUSEINOV, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141 (2002) 75-99.
[4] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001).
[5] M. BOHNER AND A. PETERSON (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).
[6] H. GAUCHMAN, Some Integral Inequalities Involving Taylor's Remainder II, J. Inequal. in Pure \& Appl. Math., 4(1) (2003), Art. 1. [ONLINE: http://jipam.vu.edu.au/article.php? sid=237]
[7] H. GAUCHMAN, Integral Inequalities in $q$-Calculus, Comp. \& Math. with Applics., 47 (2004), 281300.
[8] S. HILGER, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg (1988).
[9] C.C. YEH, F.H. WONG AND H.J. LI, Čebyšev's inequality on time scales, J. Inequal. in Pure \& Appl. Math., 6(1) (2005), Art. 7. [ONLINE: http://jipam.vu.edu.au/article.php? sid=476


[^0]:    ISSN (electronic): 1443-5756
    (C) 2005 Victoria University. All rights reserved.

    081-05

