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Abstract

Sensitivity analysis for relaxed cocoercive variational inclusions based on the
generalized resolvent operator technique is discussed The obtained results are
general in nature.

2000 Mathematics Subject Classification: 49J40, 47H10.
Key words: Sensitivity analysis, Quasivariational inclusions, Maximal relaxed mono-

tone mapping, (A, η) − monotone mapping, Generalized resolvent op-
erator technique.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 (A, η)-Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Results On Sensitivity Analysis. . . . . . . . . . . . . . . . . . . . . . . . . 8
References

http://jipam.vu.edu.au/
mailto:verma99@msn.com
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Generalized (A, η)− Resolvent
Operator Technique and

Sensitivity Analysis for Relaxed
Cocoercive Variational

Inclusions

Ram U. Verma

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 17

J. Ineq. Pure and Appl. Math. 7(3) Art. 83, 2006

http://jipam.vu.edu.au

1. Introduction
In [8] the author studied sensitivity analysis for quasivariational inclusions us-
ing the resolvent operator technique. Resolvent operator techniques have been
frequently applied to a broad range of problems arising from several fields, in-
cluding equilibria problems in economics, optimization and control theory, op-
erations research, and mathematical programming. In this paper we intend to
present the sensitivity analysis for(A, η)−monotone quasivariational inclusions
involving relaxed cocoercive mappings. The notion of(A, η)−monotonicity [8]
generalizes the notion ofA− monotonicity in [12]. The obtained results gen-
eralize a wide range of results on the sensitivity analysis for quasivariational
inclusions, including [2] – [5] and others. For more details on nonlinear varia-
tional inclusions and related resolvent operator techniques, we recommend the
reader [1] – [12].
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2. (A, η)-Monotonicity
In this section we explore some basic properties derived from the notion of
(A, η)−monotonicity.Let η : X ×X → X be(τ)−Lipschitz continuous, that
is, there exists a positive constantτ > 0 such that

‖η(u, v)‖ ≤ τ‖u− v‖ ∀u, v ∈ X.

Definition 2.1. Let η : X × X → X be a single-valued mapping, and let
M : X → 2X be a multivalued mapping onX. The mapM is said to be:

(i) (r, η)-strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ r‖u− v‖2 ∀(u, u∗), (v, v∗) ∈ Graph(M).

(ii) (r, η)-strongly pseudomonotone if

〈v∗, η(u, v)〉 ≥ 0

implies

〈u∗, η(u, v)〉 ≥ r‖u− v‖2 ∀(u, u∗), (v, v∗) ∈ Graph(M).

(iii) (η)-pseudomonotone if
〈v∗, τ(u, v)〉 ≥ 0

implies

〈u∗, η(u, v)〉 ≥ 0 ∀(u, u∗), (v, v∗) ∈ Graph(M).
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(iii) (m, η)-relaxed monotone if there exists a positive constantm such that

〈u∗ − v∗, η(u, v)〉 ≥ (−m)‖u− v‖2 ∀(u, u∗), (v, v∗) ∈ Graph(M).

Definition 2.2. A mappingM : X → 2X is said to be maximal(m, η)-relaxed
monotone if

(i) M is (m, η)-relaxed monotone,

(ii) For (u, u∗) ∈ X ×X, and

〈u∗ − v∗, η(u, v)〉 ≥ (−m)‖u− v‖2 ∀(v, v∗) ∈ Graph(M),

we haveu∗ ∈ M(u).

Definition 2.3. Let A : X → X andη : X × X → X be two single-valued
mappings. The mapM : X → 2X is said to be(A, η)-monotone if

(i) M is (m, η)-relaxed monotone

(ii) R(A + ρM) = X for ρ > 0.

Alternatively, we have

Definition 2.4. Let A : X → X andη : X × X → X be two single-valued
mappings. The mapM : X → 2X is said to be(A, η)-monotone if

(i) M is (m, η)-relaxed monotone

(ii) A + ρM is (η)-pseudomonotone forρ > 0.
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Proposition 2.1. LetA : X → X be an(r, η)-strongly monotone single-valued
mapping and letM : X → 2X be an(A), η)-monotone mapping. ThenM is
maximal(m, η)-relaxed monotone for0 < ρ < r

m
.

Proposition 2.2. LetA : X → X be an(r, η)-strongly monotone single-valued
mapping and letM : X → 2X be an(A, η)-monotone mapping. Then(A+ρM)
is maximal(η)-monotone for0 < ρ < r

m
.

Proof. SinceA is (r, η)-stronglymonotone andM is (A, η)-monotone,it im-
plies thatA + ρM is (r − ρm, η)-stronglymonotone. This in turn implies that
A + ρM is (η)-pseudomonotone,and henceA + ρM is maximal(η)-monotone
under the given conditions.

Proposition 2.3. Let A : X → X be an(r, η)-strongly monotone mapping
and letM : X → 2X be an(A, η)-monotone mapping. Then the operator
(A + ρM)−1 is single-valued.

Definition 2.5. LetA : X → X be an(r, η)-strongly monotone mapping and let
M : X → 2X be an(A, η)-monotone mapping. Then the generalized resolvent
operatorJM

ρ,A : X → X is defined by

JM
ρ,A(u) = (A + ρM)−1(u).

Furthermore, we upgrade the notions of the monotonicity as well as strong
monotonicity in the context of sensitivity analysis for nonlinear variational in-
clusion problems.

Definition 2.6. The mapT : X ×X × L → X is said to be:
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(i) Monotone with respect toA in the first argument if

〈T (x, u, λ)− T (y, u, λ), A(x)− A(y)〉 ≥ 0

∀(x, y, u, λ) ∈ X ×X ×X × L.

(ii) (r)-strongly monotone with respect toA in the first argument if there exists
a positive constantr such that

〈T (x, u, λ)− T (y, u, λ), A(x)− A(y)〉 ≥ (r)‖x− y‖2

∀(x, y, u, λ) ∈ X ×X ×X × L.

(iii) (γ, α)-relaxed cocoercive with respect toA in the first argument if there
exist positive constantsγ andα such that

〈T (x, u, λ)−T (y, u, λ), A(x)−A(y)〉 ≥ −γ‖T (x)−T (y)‖2 +α‖x−y‖2

∀(x, y, u, λ) ∈ X ×X ×X × L.

(iv) (γ)-relaxed cocoercive with respect toA in the first argument if there exists
a positive constantγ such that

〈T (x, u, λ)− T (y, u, λ), A(x)− A(y)〉 ≥ −γ‖T (x)− T (y)‖2

∀(x, y, u, λ) ∈ X ×X ×X × L.
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3. Results On Sensitivity Analysis
LetX denote a real Hilbert space with the norm‖·‖ and inner product〈·, ·〉 . Let
N : X×X×L → X be a nonlinear mapping andM : X×X×L → 2X be an
A-monotonemapping with respect to the first variable, whereL is a nonempty
open subset ofX. Furthermore, letη : X × X → X be a nonlinear mapping.
Then the problem of finding an elementu ∈ X for a given elementf ∈ X such
that

(3.1) f ∈ N(u, u, λ) + M(u, u, λ),

whereλ ∈ L is the perturbation parameter, is called a class of generalized
strongly monotone mixed quasivariational inclusion (abbreviated SMMQVI)
problems.

The solvability of theSMMQV I problem(3.1) depends on the equivalence
between(3.1) and the problem of finding the fixed point of the associated gen-
eralized resolvent operator.

Note that ifM is (A, η)-monotone,then the corresponding generalized re-
solvent operatorJM

ρ,A in first argument is defined by

(3.2) J
M(·,y)
ρ,A (u) = (A + ρM(·, y))−1(u) ∀u ∈ X,

whereρ > 0 andA is an(r, η)-stronglymonotone mapping.

Lemma 3.1. LetX be a real Hilbert space, and letη : X ×X → X be a(τ)-
Lipschitz continuous nonlinear mapping. LetA : X → X be (r, η)-strongly
monotone, and letM : X × X × L → 2X be (A, η)-monotone in the first
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variable. Then the generalized resolvent operator associated withM(·, y, λ)
for a fixedy ∈ X and defined by

J
M(·,y,λ)
ρ,A (u) = (A + ρM(·, y, λ))−1(u) ∀u ∈ X,

is ( τ
r−ρm

)-Lipschitz continuous.

Proof. By the definition of the generalized resolvent operator, we have

1

ρ

(
u− A

(
J

M(·,y,λ)
ρ,A (u)

))
∈ M

(
J

M(·,y,λ)
ρ,A (u)

)
,

and

1

ρ

(
v − A

(
J

M(·,y,λ)
ρ,A (v)

))
∈ M

(
J

M(·,y,λ)
ρ,A (v)

)
∀u, v ∈ X.

GivenM is (m, η)-relaxed monotone, we find

1

ρ

〈
u− v −

(
A

(
J

M(·,y,λ)
ρ,A (u)

)
− A

(
J

M(·,y,λ)
ρ,A (v)

))
,

η
(
J

M(·,y,λ)
ρ,A (u), J

M(·,y,λ)
ρ,A (v)

)〉
≥ (−m)

∥∥∥J
M(·,y,λ)
ρ,A (u)− J

M(·,y,λ)
ρ,A (v)

∥∥∥2

.

Therefore,

τ‖u− v‖
∥∥∥J

M(·,y,λ)
ρ,A (u)− J

M(·,y,λ)
ρ,A (v)

∥∥∥
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≥
〈
u− v, η

(
J

M(·,y,λ)
ρ,A (u), J

M(·,y,λ)
ρ,A (v)

)〉
≥

〈
A

(
J

M(·,y,λ)
ρ,A (u)

)
− A

(
J

M(·,y,λ)
ρ,A (v)

)
, η

(
J

M(·,y,λ)
ρ,A (u), J

M(·,y,λ)
ρ,A (v)

)〉
− (ρm)

∥∥∥J
M(·,y,λ)
ρ,A (u)− J

M(·,y,λ)
ρ,A (v)

∥∥∥2

≥ (r − ρm)
∥∥∥J

M(·,y,λ)
ρ,A (u)− J

M(·,y,λ)
ρ,A (v)

∥∥∥2

.

This completes the proof.

Lemma 3.2.LetX be a real Hilbert space, letA : X → X be(r, η)−strongly
monotone, and letM : X × X × L → 2X be (A), η−monotone in the first
variable. Letη : X × X → X be a (τ) − Lipschitz continuous nonlinear
mapping. Then the following statements are mutually equivalent:

(i) An elementu ∈ X is a solution to(3.1).

(ii) The mapG : X × L → X defined by

G(u, λ) = J
M(·,u,λ)
ρ,A (A(u)− ρN(u, u, λ) + ρf)

has a fixed point.

Theorem 3.3.LetX be a real Hilbert space, and letη : X ×X → X be a(τ)-
Lipschitz continuous nonlinear mapping. LetA : X → X be (r, η)-strongly
monotone and(s)-Lipschitz continuous, and letM : X × X × L → 2X be
(A, η)-monotone in the first variable. LetN : X × X × L → X be (γ, α)-
relaxed cocoercive (with respect toA) and(β)-Lipschitz continuous in the first
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variable, and letN be (µ)-Lipschitz continuous in the second variable. If, in
addition,

(3.3)
∥∥∥J

M(·,u,λ)
ρ,A (w)− J

M(·,v,λ)
ρ,A (w)

∥∥∥ ≤ δ‖u−v‖ ∀(u, v, λ) ∈ X×X×L,

then

(3.4) ‖G(u, λ)−G(v, λ)‖ ≤ θ‖u− v‖ ∀(u, v, λ) ∈ X ×X × L,

where

θ =
τ

r − ρm

[√
s2 − 2ρα + 2ρβ2γ + ρ2β2 + ρµ

]
+ δ < 1,

∣∣∣∣ρ− (α− γβ2)τ 2 − r[µτ + m(1− δ)](1− δ)

β2 − (µτ + m(1− δ))2

∣∣∣∣
<

√
[(α− γβ2)τ 2 − r(µτ + m(1− δ))(1− η)]2 −B

β2 − (µτ −m(1− δ))2
,

B = [β2 − (µτ + m(1− δ))2](s2τ 2 − r2(1− δ)2),

for

α(α− γβ2)τ 2 > r(µτ + m(1− δ))(1− δ) +
√

B,

β > µτ + m(1− δ), 0 < δ < 1.

Consequently, for eachλ ∈ L, the mappingG(u, λ) in light of (3.4) has a
unique fixed pointz(λ). Hence, in light of Lemma3.2, z(λ) is a unique solution
to (3.1). Thus, we have

G(z(λ), λ) = z(λ).
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Proof. For any element(u, v, λ) ∈ X ×X × L, we have

G(u, λ) = J
M(·,u,λ)
ρ,A (A(u)− ρN(u, u, λ) + ρf),

G(v, λ) = J
M(·,v,λ)
ρ,A (A(v)− ρN(v, v, λ) + ρf).

It follows that

‖G(u, λ)−G(v, λ)‖

=
∥∥∥J

M(·,u,λ)
ρ,A (A(u)− ρN(u, u, λ) + ρf)− J

M(·,v,λ)
ρ,A (A(v)− ρN(v, v, λ) + ρf)

∥∥∥
≤

∥∥∥J
M(·,u,λ)
ρ,A (A(u)− ρN(u, u, λ) + ρf)− J

M(·,u,λ)
ρ,A (A(v)− ρN(v, v, λ) + ρf)

∥∥∥
+

∥∥∥J
M(·,u,λ)
ρ,A (A(v)− ρN(v, v, λ) + ρf)− J

M(·,v,λ)
ρ,A (A(v)− ρN(v, v, λ) + ρf)

∥∥∥
≤ τ

r − ρm
‖A(u)− A(v)− ρ(N(u, u, λ)−N(v, v, λ))‖+ δ‖u− v‖

≤ τ

r − ρm
[‖A(u)− A(v)− ρ(N(u, u, λ)−N(v, u, λ))‖

+ ‖ρ(N(v, u, λ)−N(v, v, λ))‖] + δ‖u− v‖.

The (γ, α)-relaxed cocoercivity and(β)-Lipschitzcontinuity of N in the first
argument imply that

‖A(u)− A(v)− ρ(N(u, u, λ)−N(v, u, λ))‖2

= ‖A(u)− A(v)‖2 − 2ρ〈N(u, u, λ)−N(v, u, λ), A(u)− A(v)〉
+ ρ2‖N(u, u, λ)−N(v, u, λ)‖2

≤ (s2 − 2ρα + 2ρβ2γ + ρ2β2)‖u− v‖2.
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On the other hand, the(µ)-Lipschitz continuity ofN in the second argument
results

‖(N(v, u, λ))−N(v, v, λ))‖ ≤ µ‖u− v‖.
In light of above arguments, we infer that

(3.5) ‖G(u, λ)−G(v, λ)‖ ≤ θ‖u− v‖,

where

θ =
τ

(r − ρm)

[√
s2 − 2ρα + 2ρβ2γ + ρ2β2 + ρµ

]
+ δ < 1.

Sinceθ < 1, it concludes the proof.

Theorem 3.4.LetX be a real Hilbert space, letA : X → X be(r, η)-strongly
monotone and(s)-Lipschitz continuous, and letM : X × X × L → 2X be
(A, η)-monotone in the first variable. LetN : X×X×L → X be(γ, α)-relaxed
cocoercive (with respect toA) and(β)-Lipschitz continuous in the first variable,
and letN be(µ)-Lipschitz continuous in the second variable. Furthermore, let
η : X ×X → X be(τ)-Lipschitz continuous. In addition, if∥∥∥J

M(·,u,λ)
ρ,A (w)− J

M(·,v,λ)
ρ,A (w)

∥∥∥ ≤ δ‖u− v‖ ∀(u, v, λ) ∈ X ×X × L,

then

(3.6) ‖G(u, λ)−G(v, λ)‖ ≤ θ‖u− v‖ ∀(u, v, λ) ∈ X ×X × L,

where

θ =
τ

r − ρm

[√
s2 − 2ρα + 2ρβ2γ + ρ2β2 + ρµ

]
+ δ < 1,
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∣∣∣∣ρ− (α− γβ2)τ 2 − r[µτ + m(1− δ)](1− δ)

β2 − (µτ + m(1− δ))2

∣∣∣∣
<

√
[(α− γβ2)τ 2 − r(µτ + m(1− δ))(1− η)]2 −B

β2 − (µτ −m(1− δ))2
,

B = [β2 − (µτ + m(1− δ))2](s2τ 2 − r2(1− δ)2),

for

(α− γβ2)τ 2 > r(µτ + m(1− δ))(1− δ) +
√

B,

β > µτ + m(1− δ), 0 < δ < 1.

If the mappingsλ → N(u, v, λ) andλ → J
M(·,u,λ)
ρ,A (w) both are continu-

ous (or Lipschitz continuous) fromL to X, then the solutionz(λ) of (3.1) is
continuous (or Lipschitz continuous) fromL to X.

Proof. From the hypotheses of the theorem, for anyλ, λ∗ ∈ L, we have

‖z(λ)− z(λ∗)‖
= ‖G(z(λ), λ)−G(z(λ∗), λ∗)‖
≤ ‖G(z(λ), λ)−G(z(λ∗), λ)‖+ ‖G(z(λ∗), λ)−G(z(λ∗), λ∗)‖
≤ θ‖z(λ)− z(λ∗)‖+ ‖G(z(λ∗), λ)−G(z(λ∗), λ∗)‖.

It follows that

‖G(z(λ∗), λ)−G(z(λ∗), λ∗)‖
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=
∥∥∥J

M(·,z(λ∗),λ)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ))

−J
M(·,z(λ∗),λ∗)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥
≤

∥∥∥J
M(·,z(λ∗),λ)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ))

−
∥∥∥J

M(·,z(λ∗),λ)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥
+

∥∥∥J
M(·,z(λ∗),λ)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥
− J

M(·,z(λ∗),λ∗)
ρ,A (A(z(λ∗))− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥
≤ ρτ

r − ρm
‖N(z(λ∗), z(λ∗), λ)−N(z(λ∗), z(λ∗), λ∗)‖

+
∥∥∥J

M(·,z(λ∗),λ)
ρ,A (z(λ∗)− ρN(z(λ∗), z(λ∗), λ∗))

− J
M(·,z(λ∗),λ∗)
ρ,A (z(λ∗)− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥ .

Hence, we have

‖z(λ)−z(λ∗)‖ ≤ ρτ

(r − ρm)(1− θ)
‖N(z(λ∗), z(λ∗), λ)−N(z(λ∗), z(λ∗), λ∗)‖

+
1

1− θ

∥∥∥J
M(·,z(λ∗),λ)
ρ,A (z(λ∗)− ρN(z(λ∗), z(λ∗), λ∗))

− J
M(·,z(λ∗),λ∗)
ρ,A (z(λ∗)− ρN(z(λ∗), z(λ∗), λ∗))

∥∥∥ .

This completes the proof.
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