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Abstract

Integral representations for generalised Mathieu series are obtained which re-
capture the Mathieu series as a special case. Bounds are obtained through the
use of the integral representations.
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1. Introduction
The series

(1.1) S (r) =
∞∑

n=1

2n

(n2 + r2)2 , r > 0

is well known in the literature as Mathieu’s series. It has been extensively stud-
ied in the past since its introduction by Mathieu [12] in 1890, where it arose in
connection with work on elasticity of solid bodies. The reader is directed to the
references for further illustration.

One of the main questions addressed in relation (1.1) is to obtain sharp
bounds. Alzer, Brenner and Ruehr [2] showed that the best constantsa and
b in

1

x2 + a
< S (x) <

1

x2 + b
, x 6= 0

area = 1
2ζ(3)

andb = 1
6

whereζ (·) denotes the Riemann zeta function defined
by

(1.2) ζ (p) =
∞∑

n=1

1

np
.

An integral representation forS (r) as given in (1.1) was presented in [6] and
[7] as

(1.3) S (r) =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx.

http://jipam.vu.edu.au/
mailto:
mailto:pc@csm.vu.edu.au
mailto:
mailto:C.Lenard@bendigo.latrobe.edu.au
http://jipam.vu.edu.au/


On Integral Forms of
Generalised Mathieu Series

P. Cerone and C.T. Lenard

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 23

J. Ineq. Pure and Appl. Math. 4(5) Art. 100, 2003

http://jipam.vu.edu.au

Guo [10] utilised (1.3) and a lemma [3, pp. 89–90] to obtain bounds onS (r) ,
namely,

(1.4)
π

r3

∞∑
k=0

(−1)k (k + 1
2

)
e(k+ 1

2)
π
r − 1

< S (r) <
1

r2

(
1 +

π

r

∞∑
k=0

(−1)k (k + 1
2

)
e(k+ 1

2)
π
r − 1

)
.

The following results were obtained by Qi and coworkers (see [4], [15] –
[17])

4 (1 + r2)
(
e−

π
r + e−

π
2r

)
− 4r2 − 1(

e−
π
r − 1

)
(1 + r2) (1 + 4r2)

(1.5)

≤ S (r)

≤
(1 + 4r2)

(
e−

π
r − e−

π
2r

)
− 4 (1 + r2)(

e−
π
r − 1

)
(1 + r2) (1 + 4r2)

S (r) <
1

r

∫ π
r

0

x

ex − 1
sin (rx) dx <

1 + e−
π
2r

r2 + 1
4

,

and

S (r) ≥ 1

8r (1 + r2)3

[
16r

(
r2 − 3

)
+ π3

(
r2 + 1

)3
sech 2

(πr

2

)
tanh

(πr

2

)]
.

Guo in [10] poses the interesting problem as to whether there is an integral
representation of the generalised Mathieu series

(1.6) Sµ (r) =
∞∑

n=1

2n

(n2 + r2)1+µ , r > 0, µ > 0.
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This is resolved in Section2.
Recently in [18] an integral representation was obtained forSm (r) , where

m ∈ N, namely

(1.7) Sm (r) =
2

(2r)m m!

∫ ∞

0

tm

et − 1
cos
(mπ

2
− rt

)
dt

− 2
m∑

k=1

[
(k − 1) (2r)k−2m−1

k! (m− k + 1)

(
− (m + 1)

m− k

)

×
∫ ∞

0

tk cos
[

π
2

(2m− k + 1)− rt
]

et − 1
dt

]
.

Bounds were obtained by Tomovski and Trenčevski [18] using (1.3).
It is the intention of the current paper to investigate further integral represen-

tations of the generalised Mathieu series (1.6).
Bounds are obtained in Section3 for Sµ (r) . In Section4 the open problem

of obtaining an integral representation for

S (r; µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1

posed by Qi [15] is addressed.
We notice that

S (r; 1, 1) = S1 (r) = S (r) ,

the Mathieu series.
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2. Integral Representation of the Generalised
Mathieu SeriesSµ (r)

Before proceeding to obtain an integral representation forSµ (r) as given by
(1.6), it is instructive to present an alternative representation in terms of the zeta
function ζ (p) presented in (1.2). Namely, a straightforward series expansion
gives

(2.1) Sµ (r) = 2
∞∑

k=0

r2k (−1)k

(
µ + k

k

)
ζ (2µ + 2k + 1)

on using the result
(

α
k

)
= (−1)k (k−α−1

k

)
with α = − (µ + 1) .

Theorem 2.1. The generalised Mathieu seriesSµ (r) defined by (1.6) may be
represented in the integral form

(2.2) Sµ (r) = Cµ (r)

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx, µ > 0,

where

(2.3) Cµ (r) =

√
π

(2r)µ− 1
2 Γ (µ + 1)

andJν (z) is theν th order Bessel function of the first kind.

Proof (A). Consider

(2.4) Tµ (r) =

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx.
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Then using the series definition forJν (z) (Gradshtein and Ryzhik [9]),

Jν (z) =
∞∑

k=0

(−1)k ( z
2

)ν+2k

k!Γ (ν + k + 1)

in (2.4) produces after the permissible interchange of summation and integral,

(2.5) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2

k!Γ
(
µ + k + 1

2

) ∫ ∞

0

x2(µ+k)

ex − 1
dx.

Now, the well known representation [9]

(2.6)
∫ ∞

0

xp

ex − 1
dx = Γ (p + 1) ζ (p + 1)

gives from (2.5) with p = 2 (µ + k)

(2.7) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2 Γ (2µ + 2k + 1) ζ (2µ + 2k + 1)

k!Γ
(
µ + k + 1

2

) .

An application of the duplication identity for the gamma function

√
πΓ (2z) = 22z−1Γ (z) Γ

(
z +

1

2

)
,

with z = µ + k + 1
2

simplifies the expression in (2.7) to

(2.8) Tµ (r) =
(2r)µ− 1

2 2√
π

∞∑
k=0

(−1)k r2k Γ (µ + k + 1)

k!
ζ (2µ + 2k + 1) .
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Repeated use of the identityΓ (z + 1) = zΓ (z) gives

Γ (µ + k + 1)

k!
=

(
µ + k

k

)
Γ (µ + 1)

and so from (2.8)

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

2
∞∑

k=0

(−1)k r2k

(
µ + k

k

)
ζ (2µ + 2k + 1)

produces the result (2.2) on reference to (2.1), (2.3) and (2.4).
Proof (A) is now complete.

Proof (B). From (2.4) we have

Tµ (r) =

∫ ∞

0

e−x

1− e−x
xµ+ 1

2 Jµ− 1
2
(rx) dx(2.9)

=
∞∑

k=1

∫ ∞

0

e−nxxµ+ 1
2 Jµ− 1

2
(rx) dx.

Now Gradshtein and Ryzhik [9] on page 712 has the result∫ ∞

0

e−αxxν+1Jν (βx) dx =
2α (2β)ν Γ

(
ν + 3

2

)
√

π [α2 + β2]ν+ 3
2

,(2.10)

Re (ν) > −1, Re (α) > |Im β| ,

which is referred to in Watson [20] whom in turn attributes the result to an 1875
result of Gegenbauer.
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Takingα = n, ν = µ − 1
2

andβ = r, all real, in (2.10) and substituting in
(2.9) readily produces

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

∞∑
n=1

2n

[n2 + r2]µ+1 ,

giving from (1.6), (2.4) and (2.3) the result (2.2).
We note that the more restrictive condition ofµ > 0 needs to be imposed

for the convergence of the series although (2.10) requiresRe (ν) = µ − 1
2

>
−1.

Remark 2.1. If we takeµ = 1 in (1.6) and (2.2) – (2.3) thenS1 (r) ≡ S (r) ,
the Mathieu series given by (1.1) and its integral representation (1.3). This is

easily seen to be the case sinceJ 1
2
(z) =

√
2
πz

sin z and takingµ = 1 in (2.2) –

(2.3) produces (1.3).

Remark 2.2. Gradshtein and Ryzhik [9] on page 712 also quote the result∫ ∞

0

e−αxxνJν (βx) dx =
(2β)ν Γ

(
ν + 1

2

)
√

π (α2 + β2)ν+ 1
2

(2.11)

Re (ν) > −1

2
, Re (α) > |Im (β)| ,

which Watson [20] again attributes to an 1875 result by Gegenbauer.
We note that formal differentiation of (2.11) with respect toα produces the

result (2.10).
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Following a similar process as in Proof (B) above, we may show that

(2.12)
∫ ∞

0

xµ− 1
2

ex − 1
Jµ− 1

2
(rx) dx =

(2r)µ− 1
2 Γ (µ)√
π

∞∑
n=1

1

(n2 + r2)µ .

Gradshtein and Ryzhik [9] have an explicit expression which can be trans-
formed by a simple change of variables to (2.12). Namely,

(2.13)
∫ ∞

0

xνJν (bx)

eπx − 1
dx =

(2b)ν Γ
(
ν + 1

2

)
√

π

∞∑
n=1

1

(n2π2 + b2)ν+ 1
2

,

Re (ν) > 0, |Im (b)| < π, which is attributed by Watson [20] to a 1906 result
by Kapteyn.

An explicit integral expression forSµ (r) of the current form does not seem
to have been available previously.

Finally, we note that (2.10) or (2.11) may be looked upon as an integral
transform such as the Laplace or Hankel transform and the results may be found
in tables of such.

Remark 2.3. Sµ (r) as given in (2.2) – (2.3) may be written in the alternate
form

(2.14) Sµ (r) =

√
π

2µ− 1
2 r2µ−1Γ (µ + 1)

∫ ∞

0

x

ex − 1

[
(rx)µ− 1

2 Jµ− 1
2
(rx)

]
dx,

which, forµ = m, a positive integer

(2.15) Sm (r) =
1

2m−1r2m−1m!

√
π

2

∫ ∞

0

x

ex − 1
Rm (rx) dx,
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where

(2.16)

√
π

2
Rm (z) =

√
π

2
zm− 1

2 Jm− 1
2
(z) .

For m = 1, 2, 3, 4 we have√
π

2
Rm (z) = sin z, sin z − z cos z, 3 sin z − 3z cos z − z2 sin z,

and
15 sin z − 15z cos z − 6z2 sin z + z3 cos z,

respectively.
Thus, for example,

S1 (r) =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx,

S2 (r) =
1

4r3

∫ ∞

0

x

ex − 1
[sin (rx)− (rx) cos (rx)] dx,

S3 (r) =
1

24r5

∫ ∞

0

x

ex − 1

[
3 sin (rx)− 3 (rx) cos (rx)− (rx)2 sin (rx)

]
dx,

and

S4 (r) =
1

192r7

∫ ∞

0

x

ex − 1
[15 sin (rx)− 15 (rx) cos (rx)

−6 (rx)2 sin (rx) + (rx) cos (rx)
]
dx.
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The above results for integerm can also be obtained using the relationship
from (1.1) and (1.3)

(2.17) S1 (r) = S (r) =
∞∑

n=1

2n

(n2 + r2)2 =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx.

Formal differentiation with respect tor of (2.17) gives

(−4r) S2 (r) =

∫ ∞

0

x

ex − 1

[
x cos rx

r
− sin rx

r2

]
dx

= − 1

r2

∫ ∞

0

x

ex − 1
(sin rx− rx cos rx) dx

producing the result above. Continuing in this manner would produce further
representations forSm (r) .

The following theorem gives an explicit representation forSm (r) , m ∈ N.

Theorem 2.2.For m a positive integer we have

(2.18) Sm (r) =
1

2m−1
· 1

r2m−1

× 1

m

m−1∑
k=0

(−1)b
3k
2 c

k!
rk [δk evenAk (r) + δk oddBk (r)] ,

where

(2.19) Ak (r) =

∫ ∞

0

xk+1

ex − 1
sin (rx) dx, Bk (r) =

∫ ∞

0

xk+1

ex − 1
cos (rx) dx,
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with δcondition = 1 if condition holds and zero otherwise andbxc is the greatest
integer less than or equal tox.

Proof. From (2.17) we may differentiatem − 1 times with respect tor to pro-
duce

S
(m−1)
1 (r) = (−1)m−1 m! (2r)m−1 Sm (r)(2.20)

=

∫ ∞

0

x

ex − 1
· dm−1

drm−1

(
sin rx

r

)
dx.

Now,

(2.21)
dm−1

drm−1

(
sin rx

r

)
=

m−1∑
k=0

(
m− 1

k

)
dm−1−k

drm−1−k

(
r−1
)
· dk

drk
(sin rx)

and

dl

drl

(
r−1
)

= (−1)l l!r−(l+1),

dk

drk
(sin rx) = (−1)b

k
2c xk [δk evensin (rx) + δk oddcos (rx)]

whereδcondition = 1 if condition is true and zero otherwise.
Thus from (2.21)

(2.22)
dm−1

drm−1

(
sin (rx)

r

)
=

1

rm

m−1∑
k=0

(
m− 1

k

)
(−1)m−1−k+b k

2c

× (m− 1− k)!rkxk [δk evensin (rx) + δk oddcos (rx)]
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=
(−1)m−1

rm
(m− 1)!

m−1∑
k=0

(−1)b
3k
2 c

k!
rkxk [δk evensin (rx) + δk oddcos (rx)] .

Substitution of (2.22) into (2.20) and simplifying produces the stated result
(2.18).

Remark 2.4. The integral representation forSm (r) given in Theorem2.2 is
simpler than that obtained in [18] as given by (1.7). Further, the derivation
here is much more straight forward.
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3. Bounds for Sµ (r)
It was stated in the introduction that considerable effort has been expended in
determining bounds for the generalised Mathieu series. More recently, bounds
for the generalised Mathieu series (1.6) has been investigated in particular by
Qi and coworkers and by Tomovski and Trenčevski [18].

In a recent article Landau [11] obtained the best possible uniform bounds
for Bessel functions using monotonicity arguments. Of particular interest to us
here is that he showed that

(3.1) |Jν (x)| < bL

ν
1
3

uniformly in the argumentx and is best possible in the exponent1
3

and constant

(3.2) bL = 2
1
3 sup

x
Ai (x) = 0.674885 · · · ,

whereAi (x) is the Airy function satisfying

w′′ − xw = 0.

Landau also showed that

(3.3) |Jν (x)| ≤ cL

x
1
3

uniformly in the orderν > 0 and the exponent1
3

is best possible with

cL = sup
x

x
1
3 J0 (x)(3.4)

= 0.78574687 . . . .

The following theorem is based on the Landau bounds (3.1) – (3.4).
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Theorem 3.1. The generalised Mathieu seriesSµ (r) satisfies the bounds for
µ > 1

2
andr > 0

(3.5) Sµ (r) ≤ bL

√
π

(2r)µ− 1
2

· 1(
µ− 1

2

) 1
3

·
Γ
(
µ + 3

2

)
Γ (µ + 1)

ζ

(
µ +

3

2

)
,

and

(3.6) Sµ (r) ≤ cL ·
√

π

2µ− 1
2 rµ− 1

6

· Γ
(

µ +
7

6

)
ζ

(
µ +

7

6

)
,

wherebL andcL are given by (4.2) and (4.4) respectively.

Proof. From (2.2) and (2.3) we have

(3.7) Sµ (r) ≤ Cµ (r)

∫ ∞

0

xµ+ 1
2

ex − 1

∣∣∣Jµ− 1
2
(rx)

∣∣∣ dx, r > 0

and so from (3.1) we obtain, on utilising (2.6)

Sµ (r) ≤ Cµ (r) · bL(
µ− 1

2

) 1
3

Γ

(
µ +

3

2

)
ζ

(
µ +

3

2

)
,

which simplifies down to (3.5).
Further, using (3.3) into (3.7) gives

Sµ (r) ≤ Cµ (r) · cL ·
∫ ∞

0

xµ+ 1
2

ex − 1
· 1

|rx|
1
3

dx

= Cµ (r) · cL

r
1
3

∫ ∞

0

xµ+ 1
6

ex − 1
dx
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which upon using (2.6) produces

(3.8) Sµ (r) ≤ Cµ (r) · cL

r
1
3

· Γ
(

µ +
7

6

)
ζ

(
µ +

7

6

)
.

Simplifying (3.8) and using (2.3) gives the stated result (3.6).

Corollary 3.2. The Mathieu seriesS (r) satisfies the following bounds

(3.9) S (r) ≤ 3π

2
11
12

bLζ

(
5

2

)
and

(3.10) S (r) ≤ 7cL

36
·
√

π

2
· Γ
(

1

6

)
ζ

(
13

6

)
· r−

5
6 ,

wherebL andcL are given by (3.2) and (3.4) respectively.

Proof. Taking µ = 1 in (3.5) and (3.6), noting thatS (r) = S1 (r) gives the
stated results after some simplification.

The following corollary gives coarser bounds than Theorem3.1without the
presence of the zeta function.

Corollary 3.3. The generalised Mathieu seriesSµ (r) satisfies the bounds for
µ > 1

2
andr > 0

(3.11) Sµ (r) ≤ 2
√

π · bL(
µ− 1

2

) 1
3

· 1

rµ− 1
2

·
Γ
(
µ + 1

2

)
Γ (µ + 1)
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and

(3.12) Sµ (r) ≤ 2
2
3
√

π · cL

rµ− 1
6

·
Γ
(
µ + 1

6

)
Γ (µ + 1)

with bL andcL given by (3.2) and (3.4).

Proof. We use the well known inequality

e−x <
x

ex − 1
< e−

x
2

to produce from (3.7)

(3.13) Sµ (r) ≤ Cµ (r)

∫ ∞

0

e−
x
2 xµ− 1

2

∣∣∣Jµ− 1
2
(rx)

∣∣∣ dx.

We know from Laplace transforms or the definition of the gamma function that

(3.14)
∫ ∞

0

e−αxxsdx =
Γ (s + 1)

αs+1
.

Hence, placing (3.1) into (3.13) and utilising (3.14) we obtain (3.11) after sim-
plification. A similar approach produces (3.12) starting from (3.3) rather than
(3.1).
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4. Further Integral Expressions for Generalised
Mathieu Series

In [18], Tomovski and Treňcevski gave the integral representation

(4.1) Sµ (r) =
2

Γ (µ + 1)

∫ ∞

0

xµe−r2xf (x) dx,

where

(4.2) f (x) =
∞∑

n=1

ne−n2x, convergent for finitex > 0,

by effectively utilising the result (3.14).
They leave the summation of the series in (4.2) as an open problem.
If we placeν = µ− 1

2
andβ = r, all real in (2.9) then we obtain the identity

(4.3) Cµ (r)

∫ ∞

0

e−αxxµ+ 1
2 Jµ− 1

2
(rx) dx =

2α

[α2 + r2]µ+1 ,

whereCµ (r) is as given by (2.3).
Proof B of Theorem2.1 takesα = n and sums to produce the identity (2.1)

– (2.2).
If we takeα = nγ then we have from (4.3) on summing

S (r; µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1(4.4)

= Cµ (r)

∫ ∞

0

(
∞∑

n=1

e−nγx

)
xµ+ 1

2 Jµ− 1
2
(rx) dx,
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giving an integral representation that was left as an open problem by Qi [15].
As a matter of fact, if we takeα = an wherea = (a1, a2, . . . , an, . . . ) is a

positive sequence, then

S (r; µ; a) =
∞∑

n=1

2an

(a2
n + r2)µ+1(4.5)

= Cµ (r)

∫ ∞

0

(
∞∑

n=1

e−anx

)
xµ+ 1

2 Jµ− 1
2
(rx) dx.

We note that fora+ = (1γ, 2γ, . . . ) then

S
(
r; µ; a+

)
= S (r; µ, γ) .

The series
∞∑

n=1

2an

(a2
n + r2)2

has been investigated in [16].
A closed form expression for

F (a) =
∞∑

n=1

e−anx, x > 0

wherean is a positive sequence, remains an open problem.
If a∗ = (1, 2, 3, . . . , n, . . . ), then

F (a∗) =
1

ex − 1
.
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