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Abstract

We determine conditions under which the partial sums of the Libera integral
operator of functions of bounded turning are also of bounded turning.
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1. Introduction
LetA denote the family of functionsf which are analytic in the open unit disk
U = {z : |z| < 1} and are normalized by

(1.1) f(z) = z +
∞∑

k=2

akz
k, z ∈ U .

For 0 ≤ α < 1, let B(α) denote the class of functionsf of the form (1.1)
so that<(f ′) > α in U . The functions inB(α) are called functions of bounded
turning (c.f. [3, Vol. II]). By the Nashiro-Warschowski Theorem (see e.g. [3,
Vol. I]) the functions inB(α) are univalent and also close-to-convex inU .

Forf of the form (1.1), the Libera integral operatorF is given by

F (z) =
2

z

∫ z

0

f(ζ)dζ = z +
∞∑

k=2

2

k + 1
akz

k.

Then-th partial sumsFn(z) of the Libera integral operatorF (z) are given by

Fn(z) = z +
n∑

k=2

2

k + 1
akz

k.

In [5] it was shown that iff ∈ A is starlike of orderα, α = 0.294..., then
so is the Libera integral operatorF. We also know that (see e.g. [1]), there are
functions which are univalent or spiral-like inU so that their Libera integral
operators are not univalent or spiral-like inU . Li and Owa [4] proved that if
f ∈ A is univalent inU , thenFn(z) is starlike in|z| < 3

8
. The number3

8
is
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sharp. In this paper we make use of a result of Gasper [2] to provide a simple
proof for the following theorem.

Theorem 1.1 (Main Theorem). If 1
4
≤ α < 1 and f ∈ B(α), thenFn ∈

B
(

4α−1
3

)
.

http://jipam.vu.edu.au/
mailto:
mailto:jay@geauga.kent.edu
mailto:
mailto:
mailto:k.farahmand@ulster.ac.uk
http://jipam.vu.edu.au/


Partial Sums of Functions of
Bounded Turning

Jay M. Jahangiri and
K. Farahmand

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 9

J. Ineq. Pure and Appl. Math. 4(4) Art. 79, 2003

http://jipam.vu.edu.au

2. Preliminary Lemmas
To prove our Main Theorem, we shall need the following three lemmas. The
first lemma is due to Gasper ([2, Theorem 1]) and the third lemma is a well-
known and celebrated result (c.f. [3, Vol. I]) which can be derived from Her-
glotz’s representation for positive real part functions.

Lemma 2.1. Let θ be a real number andm andk be natural numbers. Then

(2.1)
1

3
+

m∑
k=1

cos(kθ)

k + 2
≥ 0.

Lemma 2.2. For z ∈ U we have

<

(
m∑

k=1

zk

k + 2

)
> −1

3
.

Proof. For0 ≤ r < 1 and for0 ≤ |θ| ≤ π write z = reiθ = r(cos(θ)+i sin(θ)).
By DeMoivre’s law and the minimum principle for harmonic functions, we have

(2.2) <

(
m∑

k=1

zk

k + 2

)
=

m∑
k=1

rk cos(kθ)

k + 2
>

m∑
k=1

cos(kθ)

k + 2
.

Now by Abel’s lemma (c.f. Titchmarsh [6]) and condition (2.1) of Lemma2.1

we conclude that the right hand side of (2.2) is greater than or equal to−1
3

.
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Lemma 2.3. Let P (z) be analytic inU , P (0) = 1, and<(P (z)) > 1
2

in U .
For functionsQ analytic inU the convolution functionP ∗Q takes values in the
convex hull of the image onU underQ.

The operator “∗” stands for the Hadamard product or convolution of two
power seriesf(z) =

∑∞
k=1 akz

k andg(z) =
∑∞

k=1 bkz
k denoted by(f ∗g)(z) =∑∞

k=1 akbkz
k.
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3. Proof of the Main Theorem
Let f be of the form (1.1) and belong toB(α) for 1

4
≤ α < 1. Since<(f ′(z)) >

α we have

(3.1) <

(
1 +

1

2(1− α)

∞∑
k=2

kakz
k−1

)
>

1

2
.

Applying the convolution properties of power series toF ′
n(z) we may write

F ′
n(z)(3.2)

= 1 +
n∑

k=2

2k

k + 1
akz

k−1

=

(
1 +

1

2(1− α)

∞∑
k=2

kakz
k−1

)
∗

(
1 + (1− α)

n∑
k=2

4

k + 1
zk−1

)
= P (z) ∗Q(z).

From Lemma2.2for m = n− 1 we obtain

(3.3) <

(
n∑

k=2

zk−1

k + 1

)
> −1

3
.

Applying a simple algebra to the above inequality (3.3) andQ(z) in (3.2) yields

<(Q(z)) = <

(
1 + (1− α)

n∑
k=2

4

k + 1
zk−1

)
>

4α− 1

3
.
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On the other hand, the power seriesP (z) in (3.2) in conjunction with the con-
dition (3.1) yields<(P (z)) > 1

2
. Therefore, by Lemma2.3, <(F ′

n(z)) > 4α−1
3

.
This concludes the Main Theorem.

Remark 3.1. The Main Theorem also holds forα < 1
4
. We also note thatB(α)

for α < 0 is no longer a bounded turning family.
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