

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 3, Article 35, 2002

AN INEQUALITY IMPROVING THE SECOND HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS DEFINED ON LINEAR SPACES AND APPLICATIONS FOR SEMI-INNER PRODUCTS

S.S. DRAGOMIR

SCHOOL OF COMMUNICATIONS AND INFORMATICS
VICTORIA UNIVERSITY OF TECHNOLOGY
PO BOX 14428
MELBOURNE CITY MC
VICTORIA 8001, AUSTRALIA.

sever@matilda.vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 16 November, 2001; accepted 21 February, 2002 Communicated by A. Lupaş

ABSTRACT. An inequality for convex functions defined on linear spaces is obtained which contains in a particular case a refinement for the second part of the celebrated Hermite-Hadamard inequality. Applications for semi-inner products on normed linear spaces are also provided.

Key words and phrases: Hermite-Hadamard integral inequality, Convex functions, Semi-Inner products.

2000 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 46B10.

1. Introduction

Let X be a real linear space, $a, b \in X$, $a \neq b$ and let $[a, b] := \{(1 - \lambda) \, a + \lambda b, \ \lambda \in [0, 1]\}$ be the *segment* generated by a and b. We consider the function $f : [a, b] \to \mathbb{R}$ and the attached function $g(a, b) : [0, 1] \to \mathbb{R}$, $g(a, b)(t) := f[(1 - t) \, a + tb]$, $t \in [0, 1]$.

It is well known that f is convex on [a,b] iff g(a,b) is convex on [0,1], and the following lateral derivatives exist and satisfy

(i)
$$g'_{\pm}(a,b)(s) = (\nabla_{\pm}f[(1-s)a+sb])(b-a), s \in (0,1)$$

(ii)
$$g'_{+}(a,b)(0) = (\nabla_{+}f(a))(b-a)$$

(iii)
$$g'_{-}(a,b)(1) = (\nabla_{-}f(b))(b-a)$$

where $(\nabla_{\pm} f(x))(y)$ are the Gâteaux lateral derivatives, we recall that

$$(\nabla_{+} f(x))(y) := \lim_{h \to 0+} \left[\frac{f(x+hy) - f(x)}{h} \right],$$
$$(\nabla_{-} f(x))(y) := \lim_{k \to 0-} \left[\frac{f(x+ky) - f(x)}{k} \right], x, y \in X.$$

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

2 S.S. DRAGOMIR

The following inequality is the well known Hermite-Hadamard integral inequality for convex functions defined on a segment $[a, b] \subset X$:

(HH)
$$f\left(\frac{a+b}{2}\right) \le \int_0^1 f\left[\left(1-t\right)a + tb\right] dt \le \frac{f\left(a\right) + f\left(b\right)}{2},$$

which easily follows by the classical Hermite-Hadamard inequality for the convex function $g(a,b):[0,1]\to\mathbb{R}$

$$g(a,b)\left(\frac{1}{2}\right) \le \int_0^1 g(a,b)(t) dt \le \frac{g(a,b)(0) + g(a,b)(1)}{2}.$$

For other related results see the monograph on line [1].

Now, assume that $(X, \|\cdot\|)$ is a normed linear space. The function $f_0(s) = \frac{1}{2} \|x\|^2$, $x \in X$ is convex and thus the following limits exist

(iv)
$$\langle x, y \rangle_s := (\nabla_+ f_0(y))(x) = \lim_{t \to 0+} \left[\frac{\|y + tx\|^2 - \|y\|^2}{2t} \right];$$

(v) $\langle x, y \rangle_i := (\nabla_- f_0(y))(x) = \lim_{s \to 0-} \left[\frac{\|y + sx\|^2 - \|y\|^2}{2s} \right];$

(v)
$$\langle x, y \rangle_i := (\nabla_- f_0(y))(x) = \lim_{s \to 0^-} \left[\frac{\|y + sx\|^2 - \|y\|^2}{2s} \right]$$

for any $x, y \in X$. They are called the *lower* and *upper semi-inner* products associated to the norm $\|\cdot\|$.

For the sake of completeness we list here some of the main properties of these mappings that will be used in the sequel (see for example [2]), assuming that $p, q \in \{s, i\}$ and $p \neq q$:

- $\begin{array}{l} \text{(a) } \left\langle x,x\right\rangle _{p}=\left\Vert x\right\Vert ^{2}\text{ for all }x\in X;\\ \text{(aa) } \left\langle \alpha x,\beta y\right\rangle _{p}=\alpha\beta\left\langle x,y\right\rangle _{p}\text{ if }\alpha,\beta\geq0\text{ and }x,y\in X; \end{array}$
- $(\text{aaa}) \ \left| \left\langle x,y \right\rangle_p \right| \leq \|x\| \, \|y\| \text{ for all } x,y \in X;$
- $\begin{array}{l} \text{(av) } \langle \alpha x + y, x \rangle_p = \alpha \, \langle x, x \rangle_p + \langle y, x \rangle_p \text{ if } x, y \in X \text{ and } \alpha \in \mathbb{R}; \\ \text{(v) } \langle -x, y \rangle_p = \langle x, y \rangle_q \text{ for all } x, y \in X; \\ \text{(va) } \langle x + y, z \rangle_p \leq \|x\| \, \|z\| + \langle y, z \rangle_p \text{ for all } x, y, z \in X; \\ \end{array}$
- (vaa) The mapping $\langle \cdot, \cdot \rangle_p$ is continuous and subadditive (superadditive) in the first variable for p = s (or p = i);
- (vaaa) The normed linear space $(X, \|\cdot\|)$ is smooth at the point $x_0 \in X \setminus \{0\}$ if and only if $\langle y, x_0 \rangle_s = \langle y, x_0 \rangle_i$ for all $y \in X$; in general $\langle y, x \rangle_i \leq \langle y, x \rangle_s$ for all $x, y \in X$; (ax) If the norm $\|\cdot\|$ is induced by an inner product $\langle \cdot, \cdot \rangle$, then $\langle y, x \rangle_i = \langle y, x \rangle = \langle y, x \rangle_s$ for
 - all $x, y \in X$.

Applying inequality (HH) for the convex function $f_0(x) = \frac{1}{2} \|x\|^2$, one may deduce the inequality

(1.1)
$$\left\| \frac{x+y}{2} \right\|^2 \le \int_0^1 \left\| (1-t)x + ty \right\|^2 dt \le \frac{\left\| x \right\|^2 + \left\| y \right\|^2}{2}$$

for any $x, y \in X$. The same (HH) inequality applied for $f_1(x) = ||x||$, will give the following refinement of the triangle inequality:

(1.2)
$$\left\| \frac{x+y}{2} \right\| \le \int_0^1 \|(1-t)x + ty\| \, dt \le \frac{\|x\| + \|y\|}{2}, \ x, y \in X.$$

In this paper we point out an integral inequality for convex functions which is related to the first Hermite-Hadamard inequality in (HH) and investigate its applications for semi-inner products in normed linear spaces.

2. The Results

We start with the following lemma which is also of interest in itself.

Lemma 2.1. Let $h : [\alpha, \beta] \subset \mathbb{R} \to \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then for any $\gamma \in [\alpha, \beta]$ one has the inequality

(2.1)
$$\frac{1}{2} \left[(\beta - \gamma)^2 h'_{+}(\gamma) - (\gamma - \alpha)^2 h'_{-}(\gamma) \right]$$

$$\leq (\gamma - \alpha) h(\alpha) + (\beta - \gamma) h(\beta) - \int_{\alpha}^{\beta} h(t) dt$$

$$\leq \frac{1}{2} \left[(\beta - \gamma)^2 h'_{-}(\beta) - (\gamma - \alpha)^2 h'_{+}(\alpha) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities.

The second inequality also holds for $\gamma = \alpha$ or $\gamma = \beta$.

Proof. It is easy to see that for any locally absolutely continuous function $h:(\alpha,\beta)\to\mathbb{R}$, we have the identity

(2.2)
$$\int_{\alpha}^{\beta} (t - \gamma) h'(t) dt = (\gamma - \alpha) h(\alpha) + (\beta - \gamma) h(\beta) - \int_{\alpha}^{\beta} h(t) dt$$

for any $\gamma \in (\alpha, \beta)$, where h' is the derivative of h which exists a.e. on (α, β) .

Since h is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover, for any $\gamma \in (\alpha, \beta)$, we have the inequalities

$$(2.3) h'(t) \le h'_{-}(\gamma) \text{ for a.e. } t \in [\alpha, \gamma]$$

and

$$(2.4) h'(t) \ge h'_{+}(\gamma) mtext{ for a.e. } t \in [\gamma, \beta].$$

If we multiply (2.3) by $\gamma - t \ge 0$, $t \in [\alpha, \gamma]$ and integrate on $[\alpha, \gamma]$, we get

(2.5)
$$\int_{-\gamma}^{\gamma} (\gamma - t) h'(t) dt \leq \frac{1}{2} (\gamma - \alpha)^2 h'_{-}(\gamma)$$

and if we multiply (2.4) by $t-\gamma \geq 0, t \in [\gamma, \beta]$, and integrate on $[\gamma, \beta]$, we also have

(2.6)
$$\int_{\gamma}^{\beta} (t - \gamma) h'(t) dt \ge \frac{1}{2} (\beta - \gamma)^2 h'_{+}(\gamma).$$

Now, if we subtract (2.5) from (2.6) and use the representation (2.2), we deduce the first inequality in (2.1).

If we assume that the first inequality (2.1) holds with a constant C > 0 instead of $\frac{1}{2}$, i.e.,

$$(2.7) \quad C\left[\left(\beta-\gamma\right)^{2}h'_{+}\left(\gamma\right)-\left(\gamma-\alpha\right)^{2}h'_{-}\left(\gamma\right)\right] \leq \left(\gamma-\alpha\right)h\left(\alpha\right)+\left(\beta-\gamma\right)h\left(\beta\right)-\int_{\alpha}^{\beta}h\left(t\right)dt$$

and take the convex function $h_{0}\left(t\right):=k\left|t-\frac{\alpha+\beta}{2}\right|,$ k>0, $t\in\left[\alpha,\beta\right]$, then

$$h_{0^+}'\left(\frac{\alpha+\beta}{2}\right) = k,$$

$$h_{0^{-}}'\left(\frac{\alpha+\beta}{2}\right) = -k,$$

4 S.S. Dragomir

$$h_0(\alpha) = \frac{k(\beta - \alpha)}{2} = h_0(\beta),$$

$$\int_{\alpha}^{\beta} h_0(t) dt = \frac{1}{4}k(\beta - \alpha)^2,$$

and the inequality (2.7) becomes, for $\gamma = \frac{\alpha + \beta}{2}$,

$$C\left[\frac{1}{4}(\beta-\alpha)^2k + \frac{1}{4}(\beta-\alpha)^2k\right] \le \frac{1}{4}k(\beta-\alpha)^2,$$

giving $C \leq \frac{1}{2}$, which proves the sharpness of the constant $\frac{1}{2}$ in the first inequality in (2.1). If either $h'_+(\alpha) = -\infty$ or $h'_-(\beta) = -\infty$, then the second inequality in (2.1) holds true. Assume that $h'_+(\alpha)$ and $h'_-(\beta)$ are finite. Since h is convex on $[\alpha, \beta]$, we have

(2.8)
$$h'(t) \ge h'_+(\alpha)$$
 for a.e. $t \in [\alpha, \gamma]$ $(\gamma \text{ may be equal to } \beta)$

and

(2.9)
$$h'(t) \le h'_{-}(\beta)$$
 for a.e. $t \in [\gamma, \beta]$ $(\gamma \text{ may be equal to } \alpha)$.

If we multiply (2.8) by $\gamma - t \ge 0$, $t \in [\alpha, \gamma]$ and integrate on $[\alpha, \gamma]$, then we deduce

(2.10)
$$\int_{\alpha}^{\gamma} (\gamma - t) h'(t) dt \ge \frac{1}{2} (\gamma - \alpha)^2 h'_{+}(\alpha)$$

and if we multiply (2.9) by $t-\gamma \geq 0$, $t \in [\gamma, \beta]$, and integrate on $[\gamma, \beta]$, then we also have

(2.11)
$$\int_{\gamma}^{\beta} (t - \gamma) h'(t) dt \leq \frac{1}{2} (\beta - \gamma)^2 h'_{-}(\beta).$$

Finally, if we subtract (2.10) from (2.11) and use the representation (2.2), we deduce the second part of (2.1).

Now, assume that the second inequality in (2.1) holds with a constant D > 0 instead of $\frac{1}{2}$, i.e.,

(2.12)
$$(\gamma - \alpha) f(\alpha) + (\beta - \gamma) f(\beta) - \int_{\alpha}^{\beta} f(t) dt$$

$$> D \left[(\beta - \gamma)^{2} f'_{-}(\beta) - (\gamma - \alpha)^{2} f'_{+}(\alpha) \right].$$

If we consider the convex function h_0 given above, then we have $h'_{-}(\beta) = k$, $h'_{+}(\alpha) = -k$ and by (2.12) applied for h_0 and $x = \frac{\alpha + \beta}{2}$ we get

$$\frac{1}{4}k(\beta - \alpha)^{2} \le D\left[\frac{1}{4}k(\beta - \alpha)^{2} + \frac{1}{4}k(\beta - \alpha)^{2}\right],$$

giving $D \ge \frac{1}{2}$, and the sharpness of the constant $\frac{1}{2}$ is proved.

Corollary 2.2. With the assumptions of Lemma 2.1 and if $\gamma \in (\alpha, \beta)$ is a point of differentiability for h, then

$$(2.13) \qquad \left(\frac{\alpha+\beta}{2}-\gamma\right)h'\left(\gamma\right) \leq \left(\frac{\gamma-\alpha}{\beta-\alpha}\right)h\left(\alpha\right) + \left(\frac{\beta-\gamma}{\beta-\alpha}\right)h\left(\beta\right) - \frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}h\left(t\right)dt.$$

Now, recall that the following inequality, which is well known in the literature as the Hermite-Hadamard inequality for convex functions, holds

$$(2.14) h\left(\frac{\alpha+\beta}{2}\right) \le \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h\left(t\right) dt \le \frac{h\left(\alpha\right)+h\left(\beta\right)}{2}.$$

The following corollary provides some bounds for the difference

$$\frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(t) dt.$$

Corollary 2.3. Let $h : [\alpha, \beta] \to \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then we have the inequality

$$(2.15) 0 \leq \frac{1}{8} \left[h'_{+} \left(\frac{\alpha + \beta}{2} \right) - h'_{-} \left(\frac{\alpha + \beta}{2} \right) \right] (\beta - \alpha)$$

$$\leq \frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(t) dt$$

$$\leq \frac{1}{8} \left[h'_{-}(\beta) - h'_{+}(\alpha) \right] (\beta - \alpha).$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

We are now able to state the corresponding result for convex functions defined on linear spaces.

Theorem 2.4. Let X be a linear space, $a, b \in X$, $a \neq b$ and $f : [a, b] \subset X \to \mathbb{R}$ be a convex function on the segment [a, b]. Then for any $s \in (0, 1)$ one has the inequality

$$(2.16) \qquad \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_+ f \left[(1-s) \, a + sb \right] \right) (b-a) - s^2 \left(\bigtriangledown_- f \left[(1-s) \, a + sb \right] \right) (b-a) \right]$$

$$\leq (1-s) \, f \left(a \right) + s f \left(b \right) - \int_0^1 f \left[(1-t) \, a + tb \right] dt$$

$$\leq \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_- f \left(b \right) \right) (b-a) - s^2 \left(\bigtriangledown_+ f \left(a \right) \right) (b-a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities.

The second inequality also holds for s = 0 or s = 1.

Proof. Follows by Lemma 2.1 applied for the convex function

$$h(t) = g(a,b)(t) = f[(1-t)a + tb], \quad t \in [0,1],$$

and for the choices $\alpha = 0$, $\beta = 1$, and $\gamma = s$.

Corollary 2.5. If $f:[a,b] \to \mathbb{R}$ is as in Theorem 2.4 and Gâteaux differentiable in $c:=(1-\lambda)\,a+\lambda b,\,\lambda\in(0,1)$ along the direction (b-a), then we have the inequality:

$$(2.17) \qquad \left(\frac{1}{2} - \lambda\right) (\nabla f(c)) (b - a) \le (1 - \lambda) f(a) + \lambda f(b) - \int_0^1 f[(1 - t) a + tb] dt.$$

The following result related to the second Hermite-Hadamard inequality for functions defined on linear spaces also holds.

Corollary 2.6. If f is as in Theorem 2.4, then

(2.18)
$$\frac{1}{8} \left[\nabla_{+} f\left(\frac{a+b}{2}\right) (b-a) - \nabla_{-} f\left(\frac{a+b}{2}\right) (b-a) \right]$$

$$\leq \frac{f(a) + f(b)}{2} - \int_{0}^{1} f\left[(1-t) a + tb \right] dt$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f(b) \right) (b-a) - \left(\nabla_{+} f(a) \right) (b-a) \right].$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

6 S.S. Dragomir

Now, let $\Omega \subset \mathbb{R}^n$ be an open convex set in \mathbb{R}^n .

If $F:\Omega\to\mathbb{R}$ is a differentiable convex function on Ω , then, obviously, for any $\bar c\in\Omega$ we have

$$\nabla F(\bar{c})(\bar{y}) = \sum_{i=1}^{n} \frac{\partial F(\bar{c})}{\partial x_i} \cdot y_i, \ \bar{y} \in \mathbb{R}^n,$$

where $\frac{\partial F}{\partial x_i}$ are the partial derivatives of F with respect to the variable x_i $(i=1,\ldots,n)$. Using (2.16), we may state that

$$(2.19) \qquad \left(\frac{1}{2} - \lambda\right) \sum_{i=1}^{n} \frac{\partial F\left(\lambda \bar{a} + (1 - \lambda) \bar{b}\right)}{\partial x_{i}} \cdot (b_{i} - a_{i})$$

$$\leq (1 - \lambda) F(\bar{a}) + \lambda F(\bar{b}) - \int_{0}^{1} F\left[(1 - t) \bar{a} + t\bar{b}\right] dt$$

$$\leq \frac{1}{2} \left[(1 - \lambda)^{2} \sum_{i=1}^{n} \frac{\partial F(\bar{b})}{\partial x_{i}} \cdot (b_{i} - a_{i}) - \lambda^{2} \sum_{i=1}^{n} \frac{\partial F(\bar{a})}{\partial x_{i}} \cdot (b_{i} - a_{i}) \right]$$

for any $\bar{a}, \bar{b} \in \Omega$ and $\lambda \in (0, 1)$. In particular, for $\lambda = \frac{1}{2}$, we get

$$(2.20) 0 \leq \frac{F(\bar{a}) + F(\bar{b})}{2} - \int_{0}^{1} F[(1-t)\bar{a} + t\bar{b}] dt$$
$$\leq \frac{1}{8} \sum_{i=1}^{n} \left(\frac{\partial F(\bar{b})}{\partial x_{i}} - \frac{\partial F(\bar{a})}{\partial x_{i}} \right) \cdot (b_{i} - a_{i}).$$

In (2.20) the constant $\frac{1}{8}$ is sharp.

3. APPLICATIONS FOR SEMI-INNER PRODUCTS

Let $(X, \|\cdot\|)$ be a real normed linear space. We may state the following results for the semi-inner products $\langle\cdot,\cdot\rangle_i$ and $\langle\cdot,\cdot\rangle_s$.

Proposition 3.1. For any $x, y \in X$ and $\sigma \in (0, 1)$ we have the inequalities:

$$(3.1) \qquad (1-\sigma)^{2} \langle y - x, (1-\sigma) x + \sigma y \rangle_{s} - \sigma^{2} \langle y - x, (1-\sigma) x + \sigma y \rangle_{i}$$

$$\leq (1-\sigma) \|x\|^{2} + \sigma \|y\|^{2} - \int_{0}^{1} \|(1-t) x + ty\|^{2} dt$$

$$\leq (1-\sigma)^{2} \langle y - x, y \rangle_{i} - \sigma^{2} \langle y - x, y \rangle_{s}.$$

The second inequality in (3.1) also holds for $\sigma = 0$ or $\sigma = 1$.

The proof is obvious by Theorem 2.4 applied for the convex function $f(x) = \frac{1}{2} ||x||^2$, $x \in X$. If the space is *smooth*, then we may put $[x,y] = \langle x,y \rangle_i = \langle x,y \rangle_s$ for each $x,y \in X$ and the first inequality in (3.1) becomes

$$(3.2) \quad (1 - 2\sigma) \left[y - x, (1 - \sigma) x + \sigma y \right] \le (1 - \sigma) \|x\|^2 + \sigma \|y\|^2 - \int_0^1 \|(1 - t) x + ty\|^2 dt.$$

An interesting particular case one can get from (3.1) is the one for $\sigma = \frac{1}{2}$,

(3.3)
$$0 \leq \frac{1}{8} [\langle y - x, y + x \rangle_{s} - \langle y - x, y + x \rangle_{i}]$$

$$\leq \frac{\|x\|^{2} + \|y\|^{2}}{2} - \int_{0}^{1} \|(1 - t)x + ty\|^{2} dt$$

$$\leq \frac{1}{4} [\langle y - x, y \rangle_{i} - \langle y - x, x \rangle_{s}].$$

The inequality (3.3) provides a refinement and a counterpart for the second inequality in (1.1).

If we consider now two linearly independent vectors $x, y \in X$ and apply Theorem 2.4 for $f(x) = ||x||, x \in X$, then we get

Proposition 3.2. For any linearly independent vectors $x, y \in X$ and $\sigma \in (0,1)$, one has the inequalities:

(3.4)
$$\frac{1}{2} \left[(1-\sigma)^{2} \frac{\langle y-x, (1-\sigma)x + \sigma y \rangle_{s}}{\|(1-\sigma)x + \sigma y\|} - \sigma^{2} \frac{\langle y-x, (1-\sigma)x + \sigma y \rangle_{i}}{\|(1-\sigma)x + \sigma y\|} \right]$$

$$\leq (1-\sigma) \|x\| + \sigma \|y\| - \int_{0}^{1} \|(1-t)x + ty\| dt$$

$$\leq \frac{1}{2} \left[(1-\sigma)^{2} \frac{\langle y-x, y \rangle_{i}}{\|y\|} - \sigma^{2} \frac{\langle y-x, x \rangle_{s}}{\|x\|} \right].$$

The second inequality also holds for $\sigma = 0$ or $\sigma = 1$.

We note that if the space is smooth, then we have

$$(3.5) \quad \left(\frac{1}{2} - \sigma\right) \cdot \frac{[y - x, (1 - \sigma)x + \sigma y]}{\|(1 - \sigma)x + \sigma y\|} \le (1 - \sigma)\|x\| + \sigma\|y\| - \int_0^1 \|(1 - t)x + ty\| dt$$

and for $\sigma = \frac{1}{2}$, (3.4) will give the simple inequality

$$(3.6) 0 \leq \frac{1}{8} \left[\left\langle y - x, \frac{\frac{x+y}{2}}{\left\| \frac{x+y}{2} \right\|} \right\rangle_{s} - \left\langle y - x, \frac{\frac{x+y}{2}}{\left\| \frac{x+y}{2} \right\|} \right\rangle_{i} \right]$$

$$\leq \frac{\|x\| + \|y\|}{2} - \int_{0}^{1} \|(1-t)x + ty\| dt$$

$$\leq \frac{1}{8} \left[\left\langle y - x, \frac{y}{\|y\|} \right\rangle_{i} - \left\langle y - x, \frac{x}{\|x\|} \right\rangle_{s} \right].$$

The inequality (3.6) provides a refinement and a couterpart of the second inequality in (1.2). Moreover, if we assume that $(H, \langle \cdot, \cdot \rangle)$ is an inner product space, then by (3.6) we get for any $x, y \in H$ with ||x|| = ||y|| = 1 that

(3.7)
$$0 \le 1 - \int_0^1 \|(1-t)x + ty\| dt \le \frac{1}{8} \|y - x\|^2.$$

The constant $\frac{1}{8}$ is sharp.

Indeed, if we choose $H = \mathbb{R}$, $\langle a, b \rangle = a \cdot b$, x = -1, y = 1, then we get equality in (3.7). We give now some examples.

8 S.S. DRAGOMIR

(1) Let $\ell^2(\mathbb{K})$, $\mathbb{K} = \mathbb{C}$, \mathbb{R} ; be the Hilbert space of sequences $x = (x_i)_{i \in \mathbb{N}}$ with $\sum_{i=0}^{\infty} |x_i|^2 < 1$ ∞ . Then, by (3.7), we have the inequalities

(3.8)
$$0 \leq 1 - \int_0^1 \left(\sum_{i=0}^\infty |(1-t)x_i + ty_i|^2 \right)^{\frac{1}{2}} dt$$
$$\leq \frac{1}{8} \cdot \sum_{i=0}^\infty |y_i - x_i|^2,$$

for any $x,y\in\ell^2\left(\mathbb{K}\right)$ provided $\sum_{i=0}^{\infty}\left|x_i\right|^2=\sum_{i=0}^{\infty}\left|y_i\right|^2=1.$ (2) Let μ be a positive measure, $L_2\left(\Omega\right)$ the Hilbert space of $\mu-$ measurable functions on Ω with complex values that are 2-integrable on Ω , i.e., $f \in L_2(\Omega)$ iff $\int_{\Omega} |f(t)|^2 d\mu(t) < 1$ ∞ . Then, by (3.7), we have the inequalities

(3.9)
$$0 \leq 1 - \int_{0}^{1} \left(\int_{\Omega} |(1 - \lambda) f(t) + \lambda g(t)|^{2} d\mu(t) \right)^{\frac{1}{2}} d\lambda$$
$$\leq \frac{1}{8} \cdot \int_{\Omega} |f(t) - g(t)|^{2} d\mu(t)$$

for any $f, g \in L_2(\Omega)$ provided $\int_{\Omega} |f(t)|^2 d\mu(t) = \int_{\Omega} |g(t)|^2 d\mu(t) = 1$.

REFERENCES

- [1] I. CIORANESCU, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- [2] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs)