Journal of Inequalities in Pure and Applied Mathematics

AN INEQUALITY IMPROVING THE SECOND HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS DEFINED ON LINEAR SPACES AND APPLICATIONS FOR SEMI-INNER PRODUCTS

S.S. DRAGOMIR
School of Communications and Informatics
Victoria University of Technology PO Box 14428
Melbourne City MC
Victoria 8001, Australia.
sever@matilda.vu.edu.au
URL:http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 16 November, 2001; accepted 21 February, 2002
Communicated by A. Lupaş

Abstract

An inequality for convex functions defined on linear spaces is obtained which contains in a particular case a refinement for the second part of the celebrated Hermite-Hadamard inequality. Applications for semi-inner products on normed linear spaces are also provided.

Key words and phrases: Hermite-Hadamard integral inequality, Convex functions, Semi-Inner products.
2000 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 46B10.

1. Introduction

Let X be a real linear space, $a, b \in X, a \neq b$ and let $[a, b]:=\{(1-\lambda) a+\lambda b, \lambda \in[0,1]\}$ be the segment generated by a and b. We consider the function $f:[a, b] \rightarrow \mathbb{R}$ and the attached function $g(a, b):[0,1] \rightarrow \mathbb{R}, g(a, b)(t):=f[(1-t) a+t b], t \in[0,1]$.

It is well known that f is convex on $[a, b]$ iff $g(a, b)$ is convex on $[0,1]$, and the following lateral derivatives exist and satisfy
(i) $g_{ \pm}^{\prime}(a, b)(s)=(\nabla \pm f[(1-s) a+s b])(b-a), s \in(0,1)$
(ii) $g_{+}^{\prime}(a, b)(0)=\left(\nabla_{+} f(a)\right)(b-a)$
(iii) $g_{-}^{\prime}(a, b)(1)=\left(\nabla_{-} f(b)\right)(b-a)$
where $\left(\nabla_{ \pm} f(x)\right)(y)$ are the Gâteaux lateral derivatives, we recall that

$$
\begin{aligned}
& \left(\nabla_{+} f(x)\right)(y):=\lim _{h \rightarrow 0+}\left[\frac{f(x+h y)-f(x)}{h}\right], \\
& \left(\nabla_{-} f(x)\right)(y):=\lim _{k \rightarrow 0-}\left[\frac{f(x+k y)-f(x)}{k}\right], x, y \in X .
\end{aligned}
$$

[^0]The following inequality is the well known Hermite-Hadamard integral inequality for convex functions defined on a segment $[a, b] \subset X$:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \int_{0}^{1} f[(1-t) a+t b] d t \leq \frac{f(a)+f(b)}{2} \tag{HH}
\end{equation*}
$$

which easily follows by the classical Hermite-Hadamard inequality for the convex function $g(a, b):[0,1] \rightarrow \mathbb{R}$

$$
g(a, b)\left(\frac{1}{2}\right) \leq \int_{0}^{1} g(a, b)(t) d t \leq \frac{g(a, b)(0)+g(a, b)(1)}{2}
$$

For other related results see the monograph on line [1].
Now, assume that $(X,\|\cdot\|)$ is a normed linear space. The function $f_{0}(s)=\frac{1}{2}\|x\|^{2}, x \in X$ is convex and thus the following limits exist
(iv) $\langle x, y\rangle_{s}:=\left(\nabla+f_{0}(y)\right)(x)=\lim _{t \rightarrow 0+}\left[\frac{\|y+t x\|^{2}-\|y\|^{2}}{2 t}\right]$;
(v) $\langle x, y\rangle_{i}:=\left(\nabla-f_{0}(y)\right)(x)=\lim _{s \rightarrow 0-}\left[\frac{\|y+s x\|^{2}-\|y\|^{2}}{2 s}\right] ;$
for any $x, y \in X$. They are called the lower and upper semi-inner products associated to the norm $\|\cdot\|$.

For the sake of completeness we list here some of the main properties of these mappings that will be used in the sequel (see for example [2]), assuming that $p, q \in\{s, i\}$ and $p \neq q$:
(a) $\langle x, x\rangle_{p}=\|x\|^{2}$ for all $x \in X$;
(aa) $\langle\alpha x, \beta y\rangle_{p}=\alpha \beta\langle x, y\rangle_{p}$ if $\alpha, \beta \geq 0$ and $x, y \in X$;
(aaa) $\left|\langle x, y\rangle_{p}\right| \leq\|x\|\|y\|$ for all $x, y \in X$;
(av) $\langle\alpha x+y, x\rangle_{p}=\alpha\langle x, x\rangle_{p}+\langle y, x\rangle_{p}$ if $x, y \in X$ and $\alpha \in \mathbb{R}$;
(v) $\langle-x, y\rangle_{p}=-\langle x, y\rangle_{q}$ for all $x, y \in X$;
(va) $\langle x+y, z\rangle_{p} \leq\|x\|\|z\|+\langle y, z\rangle_{p}$ for all $x, y, z \in X$;
(vaa) The mapping $\langle\cdot, \cdot\rangle_{p}$ is continuous and subadditive (superadditive) in the first variable for $p=s$ (or $p=i$);
(vaaa) The normed linear space $(X,\|\cdot\|)$ is smooth at the point $x_{0} \in X \backslash\{0\}$ if and only if $\left\langle y, x_{0}\right\rangle_{s}=\left\langle y, x_{0}\right\rangle_{i}$ for all $y \in X$; in general $\langle y, x\rangle_{i} \leq\langle y, x\rangle_{s}$ for all $x, y \in X$;
(ax) If the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot, \cdot\rangle$, then $\langle y, x\rangle_{i}=\langle y, x\rangle=\langle y, x\rangle_{s}$ for all $x, y \in X$.
Applying inequality $\sqrt{\mathrm{HH}}$ for the convex function $f_{0}(x)=\frac{1}{2}\|x\|^{2}$, one may deduce the inequality

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\|^{2} \leq \int_{0}^{1}\|(1-t) x+t y\|^{2} d t \leq \frac{\|x\|^{2}+\|y\|^{2}}{2} \tag{1.1}
\end{equation*}
$$

for any $x, y \in X$. The same $(\overline{\mathrm{HH}})$ inequality applied for $f_{1}(x)=\|x\|$, will give the following refinement of the triangle inequality:

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\| \leq \int_{0}^{1}\|(1-t) x+t y\| d t \leq \frac{\|x\|+\|y\|}{2}, \quad x, y \in X . \tag{1.2}
\end{equation*}
$$

In this paper we point out an integral inequality for convex functions which is related to the first Hermite-Hadamard inequality in (HH) and investigate its applications for semi-inner products in normed linear spaces.

2. The Results

We start with the following lemma which is also of interest in itself.
Lemma 2.1. Let $h:[\alpha, \beta] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then for any $\gamma \in[\alpha, \beta]$ one has the inequality

$$
\begin{align*}
\frac{1}{2}\left[(\beta-\gamma)^{2} h_{+}^{\prime}(\gamma)-\right. & \left.(\gamma-\alpha)^{2} h_{-}^{\prime}(\gamma)\right] \tag{2.1}\\
& \leq(\gamma-\alpha) h(\alpha)+(\beta-\gamma) h(\beta)-\int_{\alpha}^{\beta} h(t) d t \\
& \leq \frac{1}{2}\left[(\beta-\gamma)^{2} h_{-}^{\prime}(\beta)-(\gamma-\alpha)^{2} h_{+}^{\prime}(\alpha)\right]
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp in both inequalities.
The second inequality also holds for $\gamma=\alpha$ or $\gamma=\beta$.
Proof. It is easy to see that for any locally absolutely continuous function $h:(\alpha, \beta) \rightarrow \mathbb{R}$, we have the identity

$$
\begin{equation*}
\int_{\alpha}^{\beta}(t-\gamma) h^{\prime}(t) d t=(\gamma-\alpha) h(\alpha)+(\beta-\gamma) h(\beta)-\int_{\alpha}^{\beta} h(t) d t \tag{2.2}
\end{equation*}
$$

for any $\gamma \in(\alpha, \beta)$, where h^{\prime} is the derivative of h which exists a.e. on (α, β).
Since h is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover, for any $\gamma \in(\alpha, \beta)$, we have the inequalities

$$
\begin{equation*}
h^{\prime}(t) \leq h_{-}^{\prime}(\gamma) \text { for a.e. } t \in[\alpha, \gamma] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime}(t) \geq h_{+}^{\prime}(\gamma) \text { for a.e. } t \in[\gamma, \beta] \tag{2.4}
\end{equation*}
$$

If we multiply (2.3) by $\gamma-t \geq 0, t \in[\alpha, \gamma]$ and integrate on $[\alpha, \gamma]$, we get

$$
\begin{equation*}
\int_{\alpha}^{\gamma}(\gamma-t) h^{\prime}(t) d t \leq \frac{1}{2}(\gamma-\alpha)^{2} h_{-}^{\prime}(\gamma) \tag{2.5}
\end{equation*}
$$

and if we multiply (2.4) by $t-\gamma \geq 0, t \in[\gamma, \beta]$, and integrate on $[\gamma, \beta]$, we also have

$$
\begin{equation*}
\int_{\gamma}^{\beta}(t-\gamma) h^{\prime}(t) d t \geq \frac{1}{2}(\beta-\gamma)^{2} h_{+}^{\prime}(\gamma) . \tag{2.6}
\end{equation*}
$$

Now, if we subtract (2.5) from (2.6) and use the representation (2.2), we deduce the first inequality in (2.1).

If we assume that the first inequality 2.1 holds with a constant $C>0$ instead of $\frac{1}{2}$, i.e.,

$$
\begin{equation*}
C\left[(\beta-\gamma)^{2} h_{+}^{\prime}(\gamma)-(\gamma-\alpha)^{2} h_{-}^{\prime}(\gamma)\right] \leq(\gamma-\alpha) h(\alpha)+(\beta-\gamma) h(\beta)-\int_{\alpha}^{\beta} h(t) d t \tag{2.7}
\end{equation*}
$$ and take the convex function $h_{0}(t):=k\left|t-\frac{\alpha+\beta}{2}\right|, k>0, t \in[\alpha, \beta]$, then

$$
\begin{aligned}
h_{0^{+}}^{\prime}\left(\frac{\alpha+\beta}{2}\right) & =k \\
h_{0^{-}}^{\prime}\left(\frac{\alpha+\beta}{2}\right) & =-k
\end{aligned}
$$

$$
\begin{aligned}
h_{0}(\alpha) & =\frac{k(\beta-\alpha)}{2}=h_{0}(\beta) \\
\int_{\alpha}^{\beta} h_{0}(t) d t & =\frac{1}{4} k(\beta-\alpha)^{2}
\end{aligned}
$$

and the inequality 2.7 becomes, for $\gamma=\frac{\alpha+\beta}{2}$,

$$
C\left[\frac{1}{4}(\beta-\alpha)^{2} k+\frac{1}{4}(\beta-\alpha)^{2} k\right] \leq \frac{1}{4} k(\beta-\alpha)^{2}
$$

giving $C \leq \frac{1}{2}$, which proves the sharpness of the constant $\frac{1}{2}$ in the first inequality in (2.1).
If either $h_{+}^{\prime}(\alpha)=-\infty$ or $h_{-}^{\prime}(\beta)=-\infty$, then the second inequality in 2.1$)$ holds true.
Assume that $h_{+}^{\prime}(\alpha)$ and $h_{-}^{\prime}(\beta)$ are finite. Since h is convex on $[\alpha, \beta]$, we have

$$
\begin{equation*}
h^{\prime}(t) \geq h_{+}^{\prime}(\alpha) \text { for a.e. } t \in[\alpha, \gamma] \quad(\gamma \text { may be equal to } \beta) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime}(t) \leq h_{-}^{\prime}(\beta) \text { for a.e. } t \in[\gamma, \beta] \quad(\gamma \text { may be equal to } \alpha) . \tag{2.9}
\end{equation*}
$$

If we multiply 2.8 by $\gamma-t \geq 0, t \in[\alpha, \gamma]$ and integrate on $[\alpha, \gamma]$, then we deduce

$$
\begin{equation*}
\int_{\alpha}^{\gamma}(\gamma-t) h^{\prime}(t) d t \geq \frac{1}{2}(\gamma-\alpha)^{2} h_{+}^{\prime}(\alpha) \tag{2.10}
\end{equation*}
$$

and if we multiply 2.9 by $t-\gamma \geq 0, t \in[\gamma, \beta]$, and integrate on $[\gamma, \beta]$, then we also have

$$
\begin{equation*}
\int_{\gamma}^{\beta}(t-\gamma) h^{\prime}(t) d t \leq \frac{1}{2}(\beta-\gamma)^{2} h_{-}^{\prime}(\beta) \tag{2.11}
\end{equation*}
$$

Finally, if we subtract (2.10) from (2.11) and use the representation (2.2), we deduce the second part of (2.1).

Now, assume that the second inequality in 2.1 holds with a constant $D>0$ instead of $\frac{1}{2}$, i.e.,

$$
\begin{align*}
(\gamma-\alpha) f(\alpha)+(\beta-\gamma) f(\beta)-\int_{\alpha}^{\beta} f(t) d t & \tag{2.12}\\
& \geq D\left[(\beta-\gamma)^{2} f_{-}^{\prime}(\beta)-(\gamma-\alpha)^{2} f_{+}^{\prime}(\alpha)\right]
\end{align*}
$$

If we consider the convex function h_{0} given above, then we have $h_{-}^{\prime}(\beta)=k, h_{+}^{\prime}(\alpha)=-k$ and by 2.12 applied for h_{0} and $x=\frac{\alpha+\beta}{2}$ we get

$$
\frac{1}{4} k(\beta-\alpha)^{2} \leq D\left[\frac{1}{4} k(\beta-\alpha)^{2}+\frac{1}{4} k(\beta-\alpha)^{2}\right]
$$

giving $D \geq \frac{1}{2}$, and the sharpness of the constant $\frac{1}{2}$ is proved.
Corollary 2.2. With the assumptions of Lemma 2.1 and if $\gamma \in(\alpha, \beta)$ is a point of differentiability for h, then

$$
\begin{equation*}
\left(\frac{\alpha+\beta}{2}-\gamma\right) h^{\prime}(\gamma) \leq\left(\frac{\gamma-\alpha}{\beta-\alpha}\right) h(\alpha)+\left(\frac{\beta-\gamma}{\beta-\alpha}\right) h(\beta)-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t \tag{2.13}
\end{equation*}
$$

Now, recall that the following inequality, which is well known in the literature as the HermiteHadamard inequality for convex functions, holds

$$
\begin{equation*}
h\left(\frac{\alpha+\beta}{2}\right) \leq \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t \leq \frac{h(\alpha)+h(\beta)}{2} \tag{2.14}
\end{equation*}
$$

The following corollary provides some bounds for the difference

$$
\frac{h(\alpha)+h(\beta)}{2}-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t
$$

Corollary 2.3. Let $h:[\alpha, \beta] \rightarrow \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[h_{+}^{\prime}\left(\frac{\alpha+\beta}{2}\right)-h_{-}^{\prime}\left(\frac{\alpha+\beta}{2}\right)\right](\beta-\alpha) \tag{2.15}\\
& \leq \frac{h(\alpha)+h(\beta)}{2}-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t \\
& \leq \frac{1}{8}\left[h_{-}^{\prime}(\beta)-h_{+}^{\prime}(\alpha)\right](\beta-\alpha)
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp in both inequalities.
We are now able to state the corresponding result for convex functions defined on linear spaces.
Theorem 2.4. Let X be a linear space, $a, b \in X, a \neq b$ and $f:[a, b] \subset X \rightarrow \mathbb{R}$ be a convex function on the segment $[a, b]$. Then for any $s \in(0,1)$ one has the inequality

$$
\begin{align*}
& \frac{1}{2}\left[(1-s)^{2}(\nabla+f[(1-s) a+s b])(b-a)-s^{2}(\nabla-f[(1-s) a+s b])(b-a)\right] \tag{2.16}\\
& \leq(1-s) f(a)+s f(b)-\int_{0}^{1} f[(1-t) a+t b] d t \\
& \leq \frac{1}{2}\left[(1-s)^{2}(\nabla-f(b))(b-a)-s^{2}(\nabla+f(a))(b-a)\right]
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp in both inequalities.
The second inequality also holds for $s=0$ or $s=1$.
Proof. Follows by Lemma 2.1 applied for the convex function

$$
h(t)=g(a, b)(t)=f[(1-t) a+t b], \quad t \in[0,1]
$$

and for the choices $\alpha=0, \beta=1$, and $\gamma=s$.
Corollary 2.5. If $f:[a, b] \rightarrow \mathbb{R}$ is as in Theorem 2.4 and Gâteaux differentiable in $c:=$ $(1-\lambda) a+\lambda b, \lambda \in(0,1)$ along the direction $(b-a)$, then we have the inequality:

$$
\begin{equation*}
\left(\frac{1}{2}-\lambda\right)(\nabla f(c))(b-a) \leq(1-\lambda) f(a)+\lambda f(b)-\int_{0}^{1} f[(1-t) a+t b] d t \tag{2.17}
\end{equation*}
$$

The following result related to the second Hermite-Hadamard inequality for functions defined on linear spaces also holds.
Corollary 2.6. If f is as in Theorem 2.4. then

$$
\begin{align*}
\frac{1}{8}\left[\nabla_{+} f\left(\frac{a+b}{2}\right)\right. & \left.(b-a)-\nabla_{-} f\left(\frac{a+b}{2}\right)(b-a)\right] \tag{2.18}\\
& \leq \frac{f(a)+f(b)}{2}-\int_{0}^{1} f[(1-t) a+t b] d t \\
& \leq \frac{1}{8}\left[(\nabla-f(b))(b-a)-\left(\nabla_{+} f(a)\right)(b-a)\right] .
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

Now, let $\Omega \subset \mathbb{R}^{n}$ be an open convex set in \mathbb{R}^{n}.
If $F: \Omega \rightarrow \mathbb{R}$ is a differentiable convex function on Ω, then, obviously, for any $\bar{c} \in \Omega$ we have

$$
\nabla F(\bar{c})(\bar{y})=\sum_{i=1}^{n} \frac{\partial F(\bar{c})}{\partial x_{i}} \cdot y_{i}, \quad \bar{y} \in \mathbb{R}^{n}
$$

where $\frac{\partial F}{\partial x_{i}}$ are the partial derivatives of F with respect to the variable $x_{i}(i=1, \ldots, n)$.
Using (2.16, we may state that

$$
\begin{align*}
\left(\frac{1}{2}-\lambda\right) \sum_{i=1}^{n} & \frac{\partial F(\lambda \bar{a}+(1-\lambda) \bar{b})}{\partial x_{i}} \cdot\left(b_{i}-a_{i}\right) \tag{2.19}\\
& \leq(1-\lambda) F(\bar{a})+\lambda F(\bar{b})-\int_{0}^{1} F[(1-t) \bar{a}+t \bar{b}] d t \\
& \leq \frac{1}{2}\left[(1-\lambda)^{2} \sum_{i=1}^{n} \frac{\partial F(\bar{b})}{\partial x_{i}} \cdot\left(b_{i}-a_{i}\right)-\lambda^{2} \sum_{i=1}^{n} \frac{\partial F(\bar{a})}{\partial x_{i}} \cdot\left(b_{i}-a_{i}\right)\right]
\end{align*}
$$

for any $\bar{a}, \bar{b} \in \Omega$ and $\lambda \in(0,1)$.
In particular, for $\lambda=\frac{1}{2}$, we get

$$
\begin{align*}
0 & \leq \frac{F(\bar{a})+F(\bar{b})}{2}-\int_{0}^{1} F[(1-t) \bar{a}+t \bar{b}] d t \tag{2.20}\\
& \leq \frac{1}{8} \sum_{i=1}^{n}\left(\frac{\partial F(\bar{b})}{\partial x_{i}}-\frac{\partial F(\bar{a})}{\partial x_{i}}\right) \cdot\left(b_{i}-a_{i}\right) .
\end{align*}
$$

In 2.20 the constant $\frac{1}{8}$ is sharp.

3. Applications for Semi-Inner Products

Let $(X,\|\cdot\|)$ be a real normed linear space. We may state the following results for the semiinner products $\langle\cdot, \cdot\rangle_{i}$ and $\langle\cdot, \cdot\rangle_{s}$.
Proposition 3.1. For any $x, y \in X$ and $\sigma \in(0,1)$ we have the inequalities:

$$
\begin{align*}
&(1-\sigma)^{2}\langle y-x,(1-\sigma) x+\sigma y\rangle_{s}-\sigma^{2}\langle y-x,(1-\sigma) x+\sigma y\rangle_{i} \tag{3.1}\\
& \leq(1-\sigma)\|x\|^{2}+\sigma\|y\|^{2}-\int_{0}^{1}\|(1-t) x+t y\|^{2} d t \\
& \leq(1-\sigma)^{2}\langle y-x, y\rangle_{i}-\sigma^{2}\langle y-x, y\rangle_{s}
\end{align*}
$$

The second inequality in (3.1) also holds for $\sigma=0$ or $\sigma=1$.
The proof is obvious by Theorem 2.4 applied for the convex function $f(x)=\frac{1}{2}\|x\|^{2}, x \in X$.
If the space is smooth, then we may put $[x, y]=\langle x, y\rangle_{i}=\langle x, y\rangle_{s}$ for each $x, y \in X$ and the first inequality in (3.1) becomes

$$
\begin{equation*}
(1-2 \sigma)[y-x,(1-\sigma) x+\sigma y] \leq(1-\sigma)\|x\|^{2}+\sigma\|y\|^{2}-\int_{0}^{1}\|(1-t) x+t y\|^{2} d t \tag{3.2}
\end{equation*}
$$

An interesting particular case one can get from 3.1 is the one for $\sigma=\frac{1}{2}$,

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[\langle y-x, y+x\rangle_{s}-\langle y-x, y+x\rangle_{i}\right] \tag{3.3}\\
& \leq \frac{\|x\|^{2}+\|y\|^{2}}{2}-\int_{0}^{1}\|(1-t) x+t y\|^{2} d t \\
& \leq \frac{1}{4}\left[\langle y-x, y\rangle_{i}-\langle y-x, x\rangle_{s}\right] .
\end{align*}
$$

The inequality (3.3) provides a refinement and a counterpart for the second inequality in (1.1).

If we consider now two linearly independent vectors $x, y \in X$ and apply Theorem 2.4 for $f(x)=\|x\|, x \in X$, then we get
Proposition 3.2. For any linearly independent vectors $x, y \in X$ and $\sigma \in(0,1)$, one has the inequalities:

$$
\begin{gather*}
\frac{1}{2}\left[(1-\sigma)^{2} \frac{\langle y-x,(1-\sigma) x+\sigma y\rangle_{s}}{\|(1-\sigma) x+\sigma y\|}-\sigma^{2} \frac{\langle y-x,(1-\sigma) x+\sigma y\rangle_{i}}{\|(1-\sigma) x+\sigma y\|}\right] \tag{3.4}\\
\leq(1-\sigma)\|x\|+\sigma\|y\|-\int_{0}^{1}\|(1-t) x+t y\| d t \\
\leq \frac{1}{2}\left[(1-\sigma)^{2} \frac{\langle y-x, y\rangle_{i}}{\|y\|}-\sigma^{2} \frac{\langle y-x, x\rangle_{s}}{\|x\|}\right] .
\end{gather*}
$$

The second inequality also holds for $\sigma=0$ or $\sigma=1$.
We note that if the space is smooth, then we have

$$
\begin{equation*}
\left(\frac{1}{2}-\sigma\right) \cdot \frac{[y-x,(1-\sigma) x+\sigma y]}{\|(1-\sigma) x+\sigma y\|} \leq(1-\sigma)\|x\|+\sigma\|y\|-\int_{0}^{1}\|(1-t) x+t y\| d t \tag{3.5}
\end{equation*}
$$ and for $\sigma=\frac{1}{2}$, 3.4 will give the simple inequality

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[\left\langle y-x, \frac{\frac{x+y}{2}}{\left\|\frac{x+y}{2}\right\|}\right\rangle_{s}-\left\langle y-x, \frac{\frac{x+y}{2}}{\left\|\frac{x+y}{2}\right\|}\right\rangle_{i}\right] \tag{3.6}\\
& \leq \frac{\|x\|+\|y\|}{2}-\int_{0}^{1}\|(1-t) x+t y\| d t \\
& \leq \frac{1}{8}\left[\left\langle y-x, \frac{y}{\|y\|}\right\rangle_{i}-\left\langle y-x, \frac{x}{\|x\|}\right\rangle_{s}\right] .
\end{align*}
$$

The inequality (3.6) provides a refinement and a couterpart of the second inequality in (1.2).
Moreover, if we assume that $(H,\langle\cdot, \cdot\rangle)$ is an inner product space, then by (3.6) we get for any $x, y \in H$ with $\|x\|=\|y\|=1$ that

$$
\begin{equation*}
0 \leq 1-\int_{0}^{1}\|(1-t) x+t y\| d t \leq \frac{1}{8}\|y-x\|^{2} \tag{3.7}
\end{equation*}
$$

The constant $\frac{1}{8}$ is sharp.
Indeed, if we choose $H=\mathbb{R},\langle a, b\rangle=a \cdot b, x=-1, y=1$, then we get equality in (3.7).
We give now some examples.
(1) Let $\ell^{2}(\mathbb{K}), \mathbb{K}=\mathbb{C}, \mathbb{R}$; be the Hilbert space of sequences $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ with $\sum_{i=0}^{\infty}\left|x_{i}\right|^{2}<$ ∞. Then, by (3.7), we have the inequalities

$$
\begin{align*}
0 & \leq 1-\int_{0}^{1}\left(\sum_{i=0}^{\infty}\left|(1-t) x_{i}+t y_{i}\right|^{2}\right)^{\frac{1}{2}} d t \tag{3.8}\\
& \leq \frac{1}{8} \cdot \sum_{i=0}^{\infty}\left|y_{i}-x_{i}\right|^{2},
\end{align*}
$$

for any $x, y \in \ell^{2}(\mathbb{K})$ provided $\sum_{i=0}^{\infty}\left|x_{i}\right|^{2}=\sum_{i=0}^{\infty}\left|y_{i}\right|^{2}=1$.
(2) Let μ be a positive measure, $L_{2}(\Omega)$ the Hilbert space of μ-measurable functions on Ω with complex values that are $2-$ integrable on Ω, i.e., $f \in L_{2}(\Omega)$ iff $\int_{\Omega}|f(t)|^{2} d \mu(t)<$ ∞. Then, by (3.7), we have the inequalities

$$
\begin{align*}
0 & \leq 1-\int_{0}^{1}\left(\int_{\Omega}|(1-\lambda) f(t)+\lambda g(t)|^{2} d \mu(t)\right)^{\frac{1}{2}} d \lambda \tag{3.9}\\
& \leq \frac{1}{8} \cdot \int_{\Omega}|f(t)-g(t)|^{2} d \mu(t)
\end{align*}
$$

for any $f, g \in L_{2}(\Omega)$ provided $\int_{\Omega}|f(t)|^{2} d \mu(t)=\int_{\Omega}|g(t)|^{2} d \mu(t)=1$.

References

[1] I. CIORANESCU, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[2] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs)

[^0]: ISSN (electronic): 1443-5756
 (C) 2002 Victoria University. All rights reserved.

 080-01

