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1. Main results

When solving Question CIQ-103 in [2] and Question CIQ-142 in [5], the following
two algebraic inequalities involving2n variables were posed.

Theorem 1.1.Letn ≥ 2 andxi for 1 ≤ i ≤ 2n be positive real numbers. Then

(1.1)
2n∑
i=1

x2n−1
i∑2n

k 6=i(xi + xk)2n−1
≥ n

22n−2(2n− 1)
.

Equality in(1.1) holds if and only ifxi = xj for all 1 ≤ i, j ≤ 2n.

Theorem 1.2.Letn ≥ 2 andyi for 1 ≤ i ≤ 2n be positive real numbers. Then

(1.2)
2n∑
i=1

y2
i

yi−1|2n

∑i+n−2
k=i yk|2n

≥ 2n

n− 1
,

wherem|2n meansm mod 2n for all nonnegative integersm. Equality in (1.2)
holds if and only ifyi = yj for all 1 ≤ i, j ≤ 2n.

The notation
∑i+n−2

k=i yk|2n in Theorem1.2 could be illustrated with an example
to clarify the meaning: Ifn = 5 then

∑12
k=9 yk|10 = y9 + y10 + y1 + y2.

In this article, by proving a combinatorial identity and an algebraic identity and by
using Cauchy’s inequality, these two algebraic inequalities (1.1) and (1.2) involving
2n positive variables are proved.

Moreover, as a by-product of Theorem1.1, the following inequality is deduced.

Theorem 1.3.For n ≥ 2 and1 ≤ k ≤ n− 1,

(1.3)
k∑

p=1

p(p + 1)

(
2n

k − p

)
<

22(n−1)k(k + 1)

n
.
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2. Two Lemmas

In order to prove inequalities (1.1) and (1.2), the following two lemmas are neces-
sary.

Lemma 2.1. Letn andk be natural numbers such thatn > k. Then

(2.1)
n−1∑
k=0

(n− k)2

(
2n

k

)
= 4n−1n.

Proof. It is well known that(
n

k

)
=

(
n

n− k

)
, k

(
n

k

)
= n

(
n− 1

k − 1

)
,

k(k − 1)

(
n

k

)
= n(n− 1)

(
n− 2

k − 2

)
,

2n∑
i=0

(
2n

i

)
= 4n.

Then

n−1∑
k=0

(n− k)2

(
2n

k

)

= n2

n−1∑
k=0

(
2n

k

)
− (2n− 1)

n−1∑
k=0

k

(
2n

k

)
+

n−1∑
k=0

k(k − 1)

(
2n

k

)

= n2

n−1∑
k=0

(
2n

k

)
− 2n(2n− 1)

n−1∑
k=1

(
2n− 1

k − 1

)
+ 2n(2n− 1)

n−1∑
k=2

(
2n− 2

k − 2

)

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Algebraic Inequalities with 2n

Variables
Xiao-Guang Chu, Cheng-En Zhang

and Feng Qi

vol. 8, iss. 4, art. 102, 2007

Title Page

Contents

JJ II

J I

Page 5 of 13

Go Back

Full Screen

Close

= n2

n−1∑
k=0

(
2n

k

)
− 2n(2n− 1)

n−2∑
k=0

(
2n− 1

k

)
+ 2n(2n− 1)

n−3∑
k=0

(
2n− 2

k

)

= n2 4n −
(
2n
n

)
2

− 2n(2n− 1)
22n−1 − 2

(
2n−1
n−1

)
2

+ 2n(2n− 1)
4n−1 −

(
2n−2
n−1

)
− 2
(
2n−2
n−2

)
2

= 4n−1n +
4n(2n− 1)

(
2n−1

n

)
− n2

(
2n
n

)
− 2n(2n− 1)

[(
2n−2
n−1

)
+ 2
(
2n−2
n−2

)]
2

= 4n−1n +
[
2(2n− 1)2 − n(2n− 1)− n(2n− 1)− 2(2n− 1)(n− 1)

](2n− 2

n− 1

)
= 4n−1n.

The proof of Lemma2.1 is complete.

Lemma 2.2. Let n ≥ 2 and yi for 1 ≤ i ≤ 2n be positive numbers. Denote
xi = yi + yn+i for 1 ≤ i ≤ n and

(2.2) An =
2n∑
i=1

yi

n−1+i∑
k=i+1

yk|2n,

wherem|2n meansm mod 2n for all nonnegative integersm. Then

(2.3) An =
∑

1≤i<j≤n

xixj.

Proof. Formula (2.2) can be written as

(2.4) An = y1(y2 + · · ·+ yn) + y2(y3 + · · ·+ yn+1) + · · ·+ y2n(y1 + · · ·+ yn−1).
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From this, it is obtained readily that

An =
∑

1≤i<j≤2n

yiyj −
n∑

i=1

yiyn+i

by induction onn. Since∑
1≤i<j≤n

xixj =
∑

1≤i<j≤n

(yi + yi+n)(yj + yj+n),

then

An =
∑

1≤i<j≤2n

yiyj −
n∑

i=1

yiyi+n =
∑

1≤i<j≤n

(yi + yi+n)(yj + yj+n) =
∑

1≤i<j≤n

xixj,

which means that identity (2.3) holds. The proof of Lemma2.2 is complete.
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3. Proofs of the Main Results

Proof of Theorem1.1. By Cauchy’s inequality [1, 4], it follows that

(3.1)
2n∑
i=1

x2n−1
i∑2n

k 6=i(xi + xk)2n−1

2n∑
i=1

2n∑
j 6=i

xi(xi + xj)
2n−1 ≥

(
2n∑
i=1

xn
i

)2

.

Consequently, it suffices to show

(2n− 1)4n−1

(
2n∑
i=1

xn
i

)2

≥ n
2n∑
i=1

2n∑
j 6=i

xi(xi + xj)
2n−1

⇐⇒ (2n− 1)4n−1

2n∑
i=1

x2n
i + (2n− 1)22n−1

∑
1≤i<j≤2n

xn
i x

n
j

≥ n
n∑

k=0

[(
2n− 1

k

)
+

(
2n− 1

2n− k

)] 2n∑
i=1

2n∑
j 6=i

x2n−k
i xk

j

⇐⇒ (2n− 1)
(
22n−2 − n

) 2n∑
i=1

x2n
i

+

[
(2n− 1)22n−1 − 2n

(
2n− 1

n

)] ∑
1≤i<j≤2n

xn
i x

n
j

≥ n
n−1∑
k=1

[(
2n− 1

k

)
+

(
2n− 1

2n− k

)] 2n∑
i=1

2n∑
j 6=i

x2n−k
i xk

j .
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Since
(

n
k

)
=
(

n
n−k

)
and

(
n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)
, the above inequality becomes

(3.2)

[
(2n− 1)22n−1 − n

(
2n

n

)] ∑
1≤i<j≤2n

xn
i x

n
j

+ (2n− 1)
(
22n−2 − n

) 2n∑
i=1

x2n
i − n

n−1∑
k=1

(
2n

k

) 2n∑
i=1

2n∑
j 6=i

x2n−k
i xk

j ≥ 0.

Utilization of
∑2n

k=0

(
2n
k

)
= 22n and

(
2n
0

)
=
(
2n
2n

)
= 1 yields

2
(
22n−2 − n

)
+ (2n− 1)22n−1 − n

(
2n

n

)
− n

2n−1∑
k=1,k 6=n

(
2n

k

)

= 22nn− 2n− n

[
2n∑

k=0

(
2n

k

)
− 2

]
= 0.

Substituting this into (3.2) gives

(3.3)
2n∑

i=1,j=1,i6=j

{
n−1∑
q=0

[
22n−2 − n− n

q∑
k=1

(
2n

k

)]
xq

i x
q
j

2n−2q−2∑
k=0

x2n−2q−k−2
i xk

j

}
× (xi − xj)

2 ≥ 0,

where
∑q

k=1

(
2n
k

)
= 0 for q = 0. Employing (2.1) in the above inequality leads to

n−1∑
p=0

(2n− 2p− 1)

[
22n−2 − n

p∑
k=0

(
2n

k

)]
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= 22n−2n2 − n

{
n−1∑
p=0

(2n− 2p− 1)

p∑
k=0

(
2n

k

)}

= 22n−2n2 − n
n−1∑
k=0

(n− k)2

(
2n

k

)
= 0.

This implies that inequality (3.3) is equivalent to

(3.4)
2n∑

i=1,j=1,i6=j

(xi − xj)
2

{
n∑

k=1

[
k22n−2 − n

k−1∑
q=0

(k − q)

(
2n

q

)]
x2n−k−1

i xk−1
j

+
2n∑

k=n+1

[
(2n− k + 1)22n−2 − n

2n∑
q=k

(2n− q + 1)

(
2n

q − k

)]
x2n−k

i xk−2
j

}
≥ 0,

2n∑
i=1,j=1,i6=j

{
n−1∑
k=1

[
k(k + 1)

2
22n−2 − n

k∑
p=1

p(p + 1)

2

(
2n

k − p

)]

×xk−1
i xk−1

j

2n−2k−2∑
p=0

x2n−p−4
i xp

j

}
(xi − xj)

4 ≥ 0.

In order to prove (3.4), it is sufficient to show

(3.5)
(n− 1)[(n− 1) + 1]

2
22n−2 − n

n−1∑
p=1

p(p + 1)

2

(
2n

n− p− 1

)
> 0.
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Considering (2.1), it is sufficient to show

(3.6)
n−1∑
k=0

(n− k)

(
2n

k

)
> 22n−2.

By virtue of
(

n
k

)
=
(

n
n−k

)
and

∑2n
k=0

(
2n
k

)
= 22n, inequality (3.6) can be rearranged

as

n−1∑
k=0

(n− k)

(
2n

k

)
+

2n∑
k=n+1

(k − n)

(
2n

k

)
> 22n−1,

n−1∑
k=0

(2n− 2k − 1)

(
2n

k

)
+

2n∑
k=n+1

(2k − 2n− 1)

(
2n

k

)
>

(
2n

n

)
.(3.7)

Sincen ≥ 2 and
(

2n
n−1

)
+
(

2n
n+1

)
>
(
2n
n

)
is equivalent to2 > n+1

n
, then inequalities

(3.7), (3.6) and (3.5) are valid. The proof of Theorem1.1 is complete.

Proof of Theorem1.2. By Lemma2.2, it is easy to see that
∑2n

i=1 yi =
∑n

i=1 xi.
From Cauchy’s inequality [1, 4], it follows that

An

2n∑
i=1

y2
i

yi−1|2n

∑i+n−2
k=i yk|2n

≥

(
2n∑
i=1

yi

)2

,

whereAn is defined by (2.2) or (2.3) in Lemma2.2. Therefore, it is sufficient to
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prove

(n− 1)

(
2n∑
i=1

yi

)2

≥ 2nAn ⇐⇒ (n− 1)

(
n∑

i=1

xi

)2

≥ 2n
∑

1≤i<j≤n

xixj

⇐⇒ (n− 1)
n∑

i=1

x2
i ≥ 2

∑
1≤i<j≤2n

xixj

⇐⇒
∑

1≤i<j≤2n

(xi − xj)
2 ≥ 0.

The proof of Theorem1.2 is complete.

Proof of Theorem1.3. Let

(3.8) Bn = 22(n−1)k(k + 1)− n
k∑

p=1

p(p + 1)

(
2n

k − p

)
.

Then

Bn+1 = k(k + 1)22n−222 − (n + 1)
k∑

p=1

p(p + 1)

(
2n + 2

k − p

)

= 4Bn +
k∑

p=1

p(p + 1)

[
4n

(
2n

k − p

)
− (n + 1)

(
2n + 2

k − p

)]

, 4Bn +
k∑

p=1

p(p + 1)Ck−p

(3.9)
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and

Cq − Cq+1 = 4n

[(
2n

q

)
−
(

2n

q + 1

)]
− (n + 1)

[(
2n + 2

q

)
−
(

2n + 2

q + 1

)]
= 4n

(
2n

q

)(
1− 2n− q

q + 1

)
− (n + 1)

(
2n + 2

q

)(
1− 2n + 2− q

q + 1

)
= 4n

(
2n

q

)
2q − 2n + 1

q + 1
− (n + 1)

(
2n + 2

q

)
2q − 2n− 1

q + 1

>
2q − 2n + 1

q + 1
Cq

for 0 ≤ q ≤ k − 1. Hence,

(3.10)
2n− q

q + 1
Cq > Cq+1.

From the above inequality and the facts that

(3.11) Cn =
2(2n− 1)(n + 1)

n + 2

(
2n

n

)
> 0

and 2n−q
q+1

> 0, it follows easily thatCq > 0. Consequently, we haveBn+1 > 4Bn,
and thenBk+2 > 4Bk+1. As a result, utilization of (3.5) gives

Bk+1 > 0, Bk+2 > 0, Bk+3 > 0, Bk+4 > 0, · · · , Bk+(n−k) = Bn > 0.

The proof of inequality (1.3) is complete.
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