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ABSTRACT. In this paper, by proving a combinatorial identity and an algebraic identity and by

using Cauchy’s inequality, two new algebraic inequalities involh2ngpositive variables are
established.
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1. MAIN RESULTS

When solving Question CIQ-103 inl[2] and Question CIQ-142(in [5], the following two
algebraic inequalities involvingn variables were posed.

Theorem 1.1.Letn > 2 andz; for 1 < i < 2n be positive real numbers. Then

2n Zl}znil n
1.1 L > .
- ; o (i 4 )2t T 2202 (20 — 1)

Equality in(TL.T) holds if and only ift; = x; forall 1 < i,j < 2n.
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Theorem 1.2.Letn > 2 andy; for 1 < i < 2n be positive real numbers. Then

2n )

(L.2) > & >

+n—2 12
Y dnl; Yken M1

wherem/|2n meansn mod 2n for all nonnegative integers:. Equality in(T.2) holds if and
onlyify, =y, forall 1 <<¢,5 <2n.

The notatioanjz”f2 Ygj2n IN Theore could be illustrated with an example to clarify the
meaning: Ifn = 5 then",2 Yo = Yo + Y10 + 41 + 1o

In this article, by proving a combinatorial identity and an algebraic identity and by using
Cauchy’s inequality, these two algebraic inequalities| (1.1) (1.2) involvringpsitive vari-
ables are proved.

Moreover, as a by-product of Theorém]|1.1, the following inequality is deduced.

Theorem 1.3.Forn > 2andl <k <n —1,

k n 2(n—1)
(1.3) Zp(p+1)( 2 )<2 kk+1)

= k—p n

2. Two LEMMAS
In order to prove inequalitie§ (1.1) and (1.2), the following two lemmas are necessary.
Lemma 2.1. Letn and % be natural numbers such that> k. Then

(2.1) nz_l(n —k)? (2:) = 4n1p,

k=0

Proof. It is well known that

(1) =02+ =G0

k
n—1 n—1 n—1
2n 2n 2n
=n? —(2n—1 —1
k=0 k=0 k=0
2 /2on o —1 o —2
= n? - -1 a -1 a
nZ(k) 2n(2n )Z(k_l)—l—Qn(Qn ) <k—2)
k=0 k=1 k=2
2 /om 2 o -1 2 o —2
2 -
=n (k —2n(2n—1)2< " )+2n(2n—1) < 3 )
k=0 k=0 k=0
4n — 2n 22n—1 _ 9 2n—1 gn—1 _ 2n—2\ 2 2n—2
— n2 2(n) o 2n(2n o 1) 5 (nfl) + 2n(2n . 1) (nl2) (n72)
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An(2n = 1) (") = n*(7) = 2020 = D[ +2(05)]

_ 4qn—1
=4""n+ 5
n—1 2 2n — 2
=4"""n+ [22n—1)> —=n(2n — 1) —=n(2n — 1) = 2(2n — 1)(n — 1)] L
= 4" 1,
The proof of Lemma 2]1 is complete. O

Lemma 2.2. Letn > 2 andy; for 1 < ¢ < 2n be positive numbers. Denate = y; + y,,,; for
1<i<nand

2n n—1+41
=1 k=i+1
wherem|2n meansn mod 2n for all nonnegative integers:. Then
1<i<j<n

Proof. Formula[(2.2) can be written as

(2.4) Av=y1(Y2+ +Yn) TY2(ys + -+ Yng1) + -+ Y2y + - + Y1)
From this, it is obtained readily that

Z Yiy; — Z YilYn+i

1<i<j<2n

by induction om. Since

Z Ty = Z (Vi + Yirn) (Yj + Yjn),

1<i<j<n 1<i<j<n
then
Z YiYj — Z YilYi+n = Z (yz + yi-l—n)(yj + yj-i—n) = Z XTiZj,
1<i<5<2n 1<i<j<n 1<i<j<n
which means that |dent|t[@.3) holds. The proof of Lenima 2.2 is complete. O

3. PROOFS OF THE M AIN RESULTS

Proof of Theorer 1}1By Cauchy’s inequality [1,14], it follows that
2n 2n 1

TR - SO a4 (Zx> .

i=1 Zk#z(x1+xk =1 j#i
Consequently, it suffices to show

2n 2n  2n
(2n — 1)4™! (fo‘) > nZle z; + ;)" 7!

1=1 ]751
4n lzx2n+ )22n 1 Z l’?l’?
1<i<5<2n
() Gl
i=1 j#i
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— (2n-—1)(2"° - E z"
2n —1
2n—1 n,.n
+{(2n—1)2 —2n< . )} E ;7]

1<i<j<2n

203Gy R E]bw v

n—1

Since(?) = (,",) and(}) = (".") + (Z}), the above inequality becomes

(3.2) |(2n —1)2*! —n(n)} Z i
1<i<j<2n

n—1 2n  2n
+(2n—1 22” 2 _ Zx%—nZ(Qn)ZZx% k

k=1 =1 j#i

Utilization of 37" (") = 22 and (%) = (3") = 1 yields

2

2027 =n) + (20— 12" — ”(2: > - 221 (2: )

k=1,k#n
2n m
=2""n—2n—n -2/ =0
=)

Substituting this into[(3]2) gives

2n n-1 om In—2¢—2
(3.3) Z { [22” 2 n_nZ( )] 2l ;1 Z x?n—2q—k—2x§;}

i=1,j=1,i#j \ ¢=0 k=0

where>?_, (%) = 0 for ¢ = 0. Employing [2.1) in the above inequality leads to

ni2n—2p—1 [22"2 kgp:( )] 9222 _ n{ni o —2p— 1) Zp:(%)}

p= 0

n—1
= 227 2p? nz < >:0.

=0

This implies that inequality (3] 3) is equivalent to

(3.4) QZH (; — ;) {i [W"? “n S(’f _ ) (2:)] 2kl g

i=1,j=1,i#j k=1 q=0
2n 2n 277,
+ 2n—k+1)2""2?—nd (2n—q+1 ( ) pinhph=2 % >0,
> [< 0 YRR | R
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i=1,j=1,i#; k=1 p=1
2n—2k—2
xxf‘le_l x?" P 4:1:?} (x; — a:j)4 >0
p=0
In order to prove[(3]4), it is sufficient to show
n—1
(n =Dl =1 +1] 5, » pip+1) [ 2n

3.5 25072 — > 0.
(3.5) 5 ny >\ po1

Considering[(2]1), it is sufficient to show

(n—k ( )>22”2.

By virtue of (}}) = (,",) and> 2" (2 ) = 22, inequality [3-6) can be rearranged as
n—1
- (”) )=
k=0 k= n+1

(3.7) nzl on — 2k — 1) (2”> (2k —2n — 1) (2]:‘) > (2:)

=0 k=n+1
Sincen > 2and(*") + (,2,) > (*') is equivalent t@ > ™., then inequalities (3}7) (3.6)

and [3.5) are valid. The proof of Theor¢m]|1.1 is complete. O

(3.6)

gl
o —

Proof of Theorem 1]2By Lemm' itis easy to see tHa", y; = >, x;. From Cauchy’s
inequality [1/4], it follows that

2n 2 2n 2
y.
An ; n— Z yZ Y
Z-Zl Yi—1)2n Z;;Z ? Yk|2n (ZZI )

whereA,, is defined by[(2.2) of (2]3) in Lemna 2.2. Therefore, it is sufficient to prove

(n—1) <Zyz> > 2nA, <= (n—1) <le> > 2n Z ;T

1<i<j<n
— (n—1) Zx > 2 Z T
1<i<j<2n
= > 2> 0.
1<i<j<2n

The proof of Theorerp 112 is complete. O
Proof of Theorer 1]3Let
(3.8) B, = 22" Vk(k + 1) —anp+ ( )
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Then
k
2n + 2
_ 2n—262
Bpi1 = k(k+1)2 2—(n+1);p(p+1)<k_p>
k
2n 2n + 2
_ = 4B, 1) |4 - 1
(3.9) +;p(p+ ){n(,{_p) (n+ )(/c—p)]
k
24B,+ Y plp+1)Cryp
p=1
and

e[ (2)- (] () ()
) () ) - )

2n\ 2g — 2 1 2 2\ 2g — 2n — 1
:4n(n) qg—2n+ _(n+1)(n+ ) qg—2n

q qg+1 q qg+1
2g—2n+1
g+1  °
for0 < ¢ <k — 1. Hence,
2n
A

(3.10) q+10 > Cyt1-
From the above inequality and the facts that

2(2n —1 1) /2
(3.11) ¢, = 22n=Dn+ )(”)>o

n+2 n

and% > 0, it follows easily thatC;, > 0. Consequently, we havB, ., > 4B, and then

Byi2 > 4By, 1. As aresult, utilization of (3]5) gives

Bk:—i—l > 0, Bk+2 > 0, B].H_g > 0, Bk+4 >0, -, BkJr(n,k) =B, > 0.
The proof of inequality] (113) is complete. O
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