Journal of Inequalities in Pure and Applied Mathematics

SOME APPLICATIONS OF THE BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION

H.M. SRIVASTAVA AND A.Y. LASHIN

Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
EMail: harimsri@math.uvic.ca
volume 6, issue 2 , article 41, 2005.

Received 14 March, 2005, accepted 19 March, 2005.

Communicated by: Th.M. Rassias

Department of Mathematics
Faculty of Science, Mansoura University
Mansoura 35516, Egypt
EMail: aylashin@yahoo.com

Abstract
Contents
Home Page
Close
Quit

Abstract
By using a method based upon the Briot-Bouquet differential subordination, weprove several subordination results involving starlike and convex functions ofcomplex order. Some special cases and consequences of the main subordina-tion results are also indicated.
2000 Mathematics Subject Classification: Primary 26D07, 30C45; Secondary 26D20.
Key words: Analytic functions, Univalent functions, Starlike functions of complex order, Convex functions of complex order, Differential subordinations, Schwarz function.
The present investigation was supported, in part, by the Natural Sciences and Engi- neering Research Council of Canada under Grant OGP0007353.
Contents Contents

1 Introduction and Definitions

1 Introduction and Definitions

1 Introduction and Definitions

1 Introduction and Definitions 3 3 3 3 6

2 Main Subordination Results

2 Main Subordination Results

2 Main Subordination Results

2 Main Subordination Results 6 6 6 6

3 Some Interesting Deductions

3 Some Interesting Deductions

3 Some Interesting Deductions

3 Some Interesting Deductions 13 13 13 13
References
References
References
References

1. Introduction and Definitions

Let \mathcal{A} denote the class of functions f normalized by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

A function $f(z)$ belonging to the class \mathcal{A} is said to be starlike of complex order $b(b \in \mathbb{C} \backslash\{0\})$ in \mathbb{U} if and only if
(1.2) $\frac{f(z)}{z} \neq 0$ and $\Re\left(1+\frac{1}{b}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\right)>0 \quad(z \in \mathbb{U} ; b \in \mathbb{C} \backslash\{0\})$.

We denote by $\mathcal{S}_{0}^{*}(b)$ the subclass of \mathcal{A} consisting of functions which are starlike of complex order b in \mathbb{U}. Further, let $\mathcal{S}_{1}^{*}(b)$ denote the class of functions $f \in \mathcal{A}$ satisfying the following inequality:

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<|b| \quad(z \in \mathbb{U} ; b \in \mathbb{C} \backslash\{0\}) \tag{1.3}
\end{equation*}
$$

We note that $\mathcal{S}_{1}^{*}(b)$ is a subclass of $\mathcal{S}_{0}^{*}(b)$.
A function $f(z)$ belonging to the class \mathcal{A} is said to be convex of complex order $b(b \in \mathbb{C} \backslash\{0\})$ in \mathbb{U} if and only if
(1.4) $\frac{f(z)}{z} \neq 0 \quad$ and $\quad \mathfrak{R}\left(1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{U} ; b \in \mathbb{C} \backslash\{0\})$.

Title Page
Contents
\square
Page 3 of 15
J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au

We denote by $\mathcal{K}_{0}(b)$ the subclass of \mathcal{A} consisting of functions which are convex of complex order b in \mathbb{U}. Furthermore, let $\mathcal{K}_{1}(b)$ denote the class of functions $f \in \mathcal{A}$ satisfying the following inequality:

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<|b| \quad(z \in \mathbb{U} ; b \in \mathbb{C} \backslash\{0\}) \tag{1.5}
\end{equation*}
$$

so that, obviously, $\mathcal{K}_{1}^{*}(b)$ is a subclass of $\mathcal{K}_{0}^{*}(b)$.
We note that

$$
\begin{equation*}
f(z) \in \mathcal{K}_{0}(b) \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}_{0}^{*}(b) \quad(b \in \mathbb{C} \backslash\{0\}) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in \mathcal{K}_{1}(b) \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}_{1}^{*}(b) \quad(b \in \mathbb{C} \backslash\{0\}) \tag{1.7}
\end{equation*}
$$

The classes $\mathcal{S}_{0}^{*}(b)$ and $\mathcal{K}_{0}(b)$ of starlike and convex functions of a complex order b in \mathbb{U} were introduced and investigated earlier by Nasr and Aouf [8] and Wiatrowski [12], respectively (see also [6], [7] and [9]). Their subclasses $\mathcal{S}_{1}^{*}(b)$ and $\mathcal{K}_{1}(b)$ were studied by (among others) Choi [1] (see also Choi and Saigo [2]), Polatoğlu and Bolcal [10] and Lashin [4].

Remark 1. Upon setting $b=1-\alpha(0 \leqq \alpha<1)$, we observe that

$$
\mathcal{S}_{0}^{*}(1-\alpha)=\mathcal{S}^{*}(\alpha) \text { and } \mathcal{K}_{0}(1-\alpha)=\mathcal{K}(\alpha)
$$

where $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ denote, respectively, the relatively more familiar classes of starlike and convex functions of a real order α in \mathbb{U} (see, for example, [11]).

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

$\langle 4$	
Go Back	
Close	
Quit	
Page 4 of 15	

J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au

Finally, for two functions f and g analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U} with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
\begin{equation*}
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) \tag{1.9}
\end{equation*}
$$

The main object of the present sequel to the aforementioned works is to apply a method based upon the Briot-Bouquet differential subordination in order to derive several subordination results involving starlike and convex functions of complex order. We also indicate some interesting special cases and consequences of our main subordination results.

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

Go Back
Close
Quit
Page 5 of 15

2. Main Subordination Results

In order to prove our main subordination results, we shall make use of the following known results.

Lemma 1 (cf. Miller and Mocanu [5, p. 17 et seq.]). Let the functions $F(z)$ and $G(z)$ be analytic in the open unit disk \mathbb{U} and let

$$
F(0)=G(0)
$$

If the function $H(z):=z G^{\prime}(z)$ is starlike in \mathbb{U} and

$$
z F^{\prime}(z) \prec z G^{\prime}(z) \quad(z \in \mathbb{U})
$$

then

$$
\begin{equation*}
F(z) \prec G(z)=G(0)+\int_{0}^{z} \frac{H(t)}{t} d t \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

The function $G(z)$ is convex and is the best dominant in (2.1).
Lemma 2 (Eenigenburg et al. [3]). Let β and γ be complex constants. Also let the function $h(z)$ be convex (univalent) in \mathbb{U} with

$$
h(0)=1 \quad \text { and } \quad \mathfrak{R}(\beta h(z)+\gamma)>0 \quad(z \in \mathbb{U})
$$

Suppose that the function

Title Page
Contents
\square

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

is analytic in \mathbb{U} and satisfies the following differential subordination:

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \quad(z \in \mathbb{U}) . \tag{2.2}
\end{equation*}
$$

If the differential equation:

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \quad(q(0):=1) \tag{2.3}
\end{equation*}
$$

has a univalent solution $q(z)$, then

$$
p(z) \prec q(z) \prec h(z) \quad(z \in \mathbb{U})
$$

and $q(z)$ is the best dominant in (2.2) (that is, $p(z) \prec q(z) \quad(z \in \mathbb{U})$ for all $p(z)$ satisfying (2.2) and if $p(z) \prec \hat{q}(z) \quad(z \in \mathbb{U})$ for all $p(z)$ satisfying (2.2), then $q(z) \prec \hat{q}(z)) \quad(z \in \mathbb{U})$.
Remark 2. The conclusion of Lemma 2 can be written in the following form:

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \Rightarrow p(z) \prec q(z) \quad(z \in \mathbb{U})
$$

Remark 3. The differential equation (2.3) has its formal solution given by

$$
q(z)=\frac{z F^{\prime}(z)}{F(z)}=\frac{\beta+\gamma}{\beta}\left(\frac{H(z)}{F(z)}\right)^{\beta}-\frac{\gamma}{\beta}
$$

where

$$
F(z)=\left(\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z}\{H(t)\}^{\beta} t^{\gamma-1} d t\right)^{\frac{1}{\beta}}
$$

Title Page
Contents

$\mathbf{4}$
Go Back
Close
Quit
Page 7 of 15

and

$$
H(z)=z \cdot \exp \left(\int_{0}^{z} \frac{h(t)-1}{t} d t\right)
$$

We now state our first subordination result given by Theorem 1 below.
Theorem 1. Let the function $h(z)$ be convex (univalent) in \mathbb{U} and let

$$
h(0)=1 \quad \text { and } \quad \mathfrak{R}(b h(z)+(1-b))>0 \quad(z \in \mathbb{U})
$$

Also let $f(z) \in \mathcal{A}$.
(a) If

$$
\begin{equation*}
1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h(z) \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin
then

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec h(z) \quad(z \in \mathbb{U}) \tag{2.5}
\end{equation*}
$$

(b) If the following differential equation:

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \quad(q(0):=1)
$$

has a univalent solution $q(z)$, then
(2.6) $1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h(z) \Rightarrow 1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec q(z) \prec h(z) \quad(z \in \mathbb{U})$ and $q(z)$ is the best dominant in (2.6).

Title Page
Contents

J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au

Proof. We begin by setting

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=: p(z) \tag{2.7}
\end{equation*}
$$

so that $p(z)$ has the following series expansion:

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots .
$$

By differentiating (2.7) logarithmically, we obtain

$$
p(z)+\frac{z p^{\prime}(z)}{b p(z)+(1-b)}=1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

and the subordination (2.4) can be written as follows:

Next we prove Theorem 2 below.

$$
p(z)+\frac{z p^{\prime}(z)}{b p(z)+(1-b)} \prec h(z) \quad(z \in \mathbb{U})
$$

Now the conclusions of the theorem would follow from Lemma 2 by taking

$$
\beta=b \quad \text { and } \quad \gamma=1-b
$$

This evidently completes the proof of Theorem 1.

Theorem 2. If $f(z) \in \mathcal{K}_{1}(b) \quad(|b| \leqq 1 ; b \neq 0)$, then

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec q(z) \quad(z \in \mathbb{U})
$$

Title Page
Contents
\square
Page 9 of 15
Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 9 of 15	

J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au
where $q(z)$ is the best dominant given by

$$
\begin{equation*}
q(z)=1-\frac{1}{b}+\frac{z e^{b z}}{e^{b z}-1} \tag{2.8}
\end{equation*}
$$

Proof. First of all, we observe that (1.5) is equivalent to the following inequality:

$$
\left|\left(1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right|<1 \quad(z \in \mathbb{U})
$$

which implies that

$$
1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec 1+z \quad(z \in \mathbb{U})
$$

Thus, in Theorem 1, we choose

$$
h(z)=1+z
$$

and note that

$$
\mathfrak{R}(b h(z)+(1-b))>0 \text { when } z \in \mathbb{U} \text { and }|b| \leqq 1(b \neq 0)
$$

and $h(z)$ satisfies the hypotheses of Lemma 2. Consequently, in the view of Lemma 2 and Remark 3, we have

$$
H(z)=z \cdot \exp \left(\int_{0}^{z} \frac{h(t)-1}{t} d t\right)
$$

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

Go Back
Close
Quit
Page 10 of 15
which, for $h(t)=1+t$, yields

$$
\begin{equation*}
H(z)=z e^{z} \tag{2.9}
\end{equation*}
$$

and

$$
F(z)=\left(\frac{1}{z^{1-b}} \int_{0}^{z}\left[\frac{H(t)}{t}\right]^{b} d t\right)^{\frac{1}{b}}
$$

that is,

$$
F(z)=\left(\frac{1}{z^{1-b}} \int_{0}^{z} e^{b t} d t\right)^{\frac{1}{b}}
$$

which readily simplifies to the following form:

$$
\begin{equation*}
F(z)=\left(\frac{1}{b z^{1-b}}\left(e^{b z}-1\right)\right)^{\frac{1}{b}} \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10), we obtain

$$
q(z)=\frac{1}{b}\left(\frac{H(z)}{F(z)}\right)^{b}-\frac{1-b}{b}
$$

which leads us easily to (2.8), thereby completing our proof of Theorem 2.
Lastly, we prove the following subordination result.
Theorem 3. Let $f(z) \in \mathcal{S}_{0}^{*}(b)(b \in \mathbb{C} \backslash\{0\})$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec \frac{1}{(1-z)^{2 b}} \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

Title Page
Contents

Page 11 of 15
J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au

Proof. Since $f(z) \in \mathcal{S}_{0}^{*}(b)(b \in \backslash\{0\})$, we have

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1+z}{1-z} \quad(z \in \mathbb{U}),
$$

that is,

$$
\begin{equation*}
\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}+1\right) \prec \frac{2 z}{1-z}+\frac{2}{b} \quad(z \in \mathbb{U}) . \tag{2.12}
\end{equation*}
$$

Now, by setting

$$
P(z):=(z f(z))^{\frac{1}{b}} \quad(z \in \mathbb{U}),
$$

we can rewrite (2.12) in the following form:

$$
z(\log P(z))^{\prime} \prec z\left(\log \left[z^{\frac{2}{b}}(1-z)^{-2}\right]\right)^{\prime} \quad(z \in \mathbb{U}) .
$$

Thus, by setting

$$
F(z)=\log P(z) \quad \text { and } \quad G(z)=\log \left[z^{\frac{2}{b}}(1-z)^{-2}\right]
$$

in Lemma 1, we find that

$$
\log P(z) \prec \log \left[z^{\frac{2}{b}}(1-z)^{-2}\right] \quad(z \in \mathbb{U}),
$$

which obviously is equivalent to the assertion (2.11) of Theorem 3.

Page 12 of 15
Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

Go Back
Close
Quit

3. Some Interesting Deductions

In view especially of the equivalence relationships exhibited by (1.6) and (1.7), each of our main results proven in the preceding section can indeed be applied to yield the corresponding subordination results involving convex functions of order $b \in \mathbb{C} \backslash\{0\}$. For example, Theorem 3 would immediately lead us to the following subordination result.

Corollary 1. Let $f(z) \in \mathcal{K}_{0}(b)(b \in \mathbb{C} \backslash\{0\})$. Then

$$
f^{\prime}(z) \prec \frac{1}{(1-z)^{2 b}} \quad(z \in \mathbb{U})
$$

and this is the best dominant.

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

```
Title Page
Contents
```

$\mathbf{4 4}$	
Go Back	
Close	
Quit	
Page 13 of 15	

Page 13 of 15
J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005 http://jipam.vu.edu.au

References

[1] J.H. CHOI, Starlike and convex function of complex order involving a certain fractional integral operator, in New Developments in Convolution (Japanese) (Kyoto, 1997), Sūrikaisekikenkyūsho Kōkyūroku, 1012 (1997), $1-13$.
[2] J.H. CHOI AND M. SAIGO, Starlike and convex functions involving a certain fractional integral operator, Fukuoka Univ. Sci. Rep., 28(2) (1998), 29-40.
[3] P. EENIGENBURG, S.S. MILLER, P.T. MOCANU AND M.O. READ, On a Briot-Bouquet differential subordination, in General Inequalities 3, pp. 339-348, International Series of Numerical Mathematics, Vol. 64, Birkhäuser Verlag, Basel, 1983; see also Rev. Roumaine Math. Pures Appl., 29 (1984), 567-573.
[4] A.Y. LASHIN, Starlike and convex functions of complex order involving a certain linear operator, Indian J. Pure Appl. Math., 34 (2003), 1101-1108.
[5] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
[6] G. MURUGUSUNDARAMOORTHY And H.M. SRIVASTAVA, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2) (2004), Art. 24, pp. 1-8. [ONLINE: http://jipam.vu.edu.au/article.php?sid=374]

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 14 of 15
[7] M.A. NASR and M.K. AOUF, On convex functions of complex order, Mansoura Sci. Bull. Egypt, 9 (1982), 565-582.
[8] M.A. NASR and M.K. AOUF, Starlike function of complex order, J. Natur. Sci. Math., 25 (1985), 1-12.
[9] S. OWA AND G.S. SǍLǍGEAN, On an open problem of S. Owa, in New Developments in Convolution (Japanese) (Kyoto, 1997), Sūrikaisekikenkyūsho Kōkyūroku 1012 (1997), 110-114; see also J. Math. Anal. Appl., 218 (1998), 453-457.
[10] Y. POLATOǦLU AND M. BOLCAL, The radius of convexity for the class of Janowski convex functions of complex order, Mat. Vesnik, 54 (2002), 9-12.
[11] H.M. SRIVASTAVA AND S. OWA (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[12] P. WIATROWSKI, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lódz Nauk. Mat.-Przyrod. (Ser. 2), 39 (1970), 75-85.

Some Applications of the Briot-Bouquet Differential Subordination
H.M. Srivastava and A.Y. Lashin

Title Page
Contents

Go Back
Close
Quit
Page 15 of 15

J. Ineq. Pure and Appl. Math. 6(2) Art. 41, 2005
http://jipam.vu.edu.au

