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Abstract

By using a method based upon the Briot-Bouquet differential subordination, we
prove several subordination results involving starlike and convex functions of
complex order. Some special cases and consequences of the main subordina-
tion results are also indicated.
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1. Introduction and Definitions
LetA denote the class of functionsf normalizedby

(1.1) f(z) = z +
∞∑

k=2

akz
k,

which are analytic in theopenunit disk

U := {z : z ∈ C and |z| < 1}.

A functionf(z) belonging to the classA is said to bestarlike of complex order
b (b ∈ C \ {0}) in U if and only if

(1.2)
f(z)

z
6= 0 and R

(
1 +

1

b

[
zf

′
(z)

f(z)
− 1

])
> 0 (z ∈ U; b ∈ C \ {0}) .

We denote byS∗0 (b) the subclass ofA consisting of functions which are starlike
of complex orderb in U. Further, letS∗1 (b) denote the class of functionsf ∈ A
satisfying the following inequality:

(1.3)

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < |b| (z ∈ U; b ∈ C \ {0}).

We note thatS∗1 (b) is a subclass ofS∗0 (b).

A function f(z) belonging to the classA is said to beconvex of complex
order b (b ∈ C \ {0}) in U if and only if

(1.4)
f(z)

z
6= 0 and R

(
1 +

1

b

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U; b ∈ C \ {0}) .
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We denote byK0(b) the subclass ofA consisting of functions which are convex
of complex orderb in U. Furthermore, letK1(b) denote the class of functions
f ∈ A satisfying the following inequality:

(1.5)

∣∣∣∣zf ′′
(z)

f ′(z)

∣∣∣∣ < |b| (z ∈ U; b ∈ C \ {0}),

so that, obviously,K∗1(b) is a subclass ofK∗0(b).
We note that

(1.6) f(z) ∈ K0(b) ⇔ zf
′
(z) ∈ S∗0 (b) (b ∈ C \ {0})

and

(1.7) f(z) ∈ K1(b) ⇔ zf
′
(z) ∈ S∗1 (b) (b ∈ C \ {0}).

The classesS∗0 (b) andK0(b) of starlike and convex functions of acomplex
orderb in U were introduced and investigated earlier by Nasr and Aouf [8] and
Wiatrowski [12], respectively (see also [6], [7] and [9]). Their subclassesS∗1 (b)
and K1(b) were studied by (among others) Choi [1] (see also Choi and Saigo
[2]), Polatǒglu and Bolcal [10] and Lashin [4].

Remark 1. Upon settingb = 1− α (0 5 α < 1), we observe that

S∗0 (1− α) = S∗(α) and K0(1− α) = K(α),

whereS∗(α) andK(α) denote, respectively, the relatively more familiar classes
of starlike and convex functions of a real orderα in U (see, for example,[11]).
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Finally, for two functionsf andg analytic inU, we say that the function
f (z) is subordinateto g (z) in U, and write

f ≺ g or f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz functionw (z), analytic inU with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that

(1.8) f (z) = g
(
w (z)

)
(z ∈ U) .

In particular, if the functiong is univalent in U, the above subordination is
equivalent to

(1.9) f(0) = g(0) and f(U) ⊂ g(U).

The main object of the present sequel to the aforementioned works is to ap-
ply a method based upon the Briot-Bouquet differential subordination in order
to derive several subordination results involving starlike and convex functions
of complex order. We also indicate some interesting special cases and conse-
quences of our main subordination results.
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2. Main Subordination Results
In order to prove our main subordination results, we shall make use of the fol-
lowing known results.

Lemma 1 (cf. Miller and Mocanu [ 5, p. 17et seq.]). Let the functionsF (z)
andG(z) be analytic in the open unit diskU and let

F (0) = G(0).

If the functionH(z) := zG′(z) is starlike inU and

zF ′(z) ≺ zG′(z) (z ∈ U),

then

(2.1) F (z) ≺ G(z) = G(0) +

∫ z

0

H(t)

t
dt (z ∈ U).

The functionG(z) is convex and is the best dominant in(2.1).

Lemma 2 (Eenigenburget al. [3]). Letβ andγ be complex constants. Also let
the functionh(z) be convex(univalent) in U with

h(0) = 1 and R
(
βh(z) + γ

)
> 0 (z ∈ U).

Suppose that the function

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · ·
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is analytic inU and satisfies the following differential subordination:

(2.2) p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ U).

If the differential equation:

(2.3) q(z) +
zq′(z)

βq(z) + γ
= h(z)

(
q(0) := 1

)
has a univalent solutionq(z), then

p(z) ≺ q(z) ≺ h(z) (z ∈ U)

and q(z) is the best dominant in(2.2)
(
that is, p(z) ≺ q(z) (z ∈ U) for all

p(z) satisfying(2.2) and if p(z) ≺ q̂(z) (z ∈ U) for all p(z) satisfying(2.2),
thenq(z) ≺ q̂(z)

)
(z ∈ U).

Remark 2. The conclusion of Lemma2 can be written in the following form:

p(z) +
zp′(z)

βp(z) + γ
≺ q(z) +

zq′(z)

βq(z) + γ
⇒ p(z) ≺ q(z) (z ∈ U).

Remark 3. The differential equation(2.3) has its formal solution given by

q(z) =
zF ′(z)

F (z)
=

β + γ

β

(
H(z)

F (z)

)β

− γ

β
,

where

F (z) =

(
β + γ

zγ

∫ z

0

{H(t)}βtγ−1 dt

) 1
β
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and

H(z) = z · exp

(∫ z

0

h(t)− 1

t
dt

)
.

We now state our first subordination result given by Theorem1 below.

Theorem 1. Let the functionh(z) be convex(univalent) in U and let

h(0) = 1 and R
(
bh(z) + (1− b)

)
> 0 (z ∈ U).

Also letf(z) ∈ A.

(a) If

(2.4) 1 +
1

b

zf ′′(z)

f ′(z)
≺ h(z) (z ∈ U),

then

(2.5) 1 +
1

b

(
zf ′(z)

f(z)
− 1

)
≺ h(z) (z ∈ U).

(b) If the following differential equation:

q(z) +
zq′(z)

βq(z) + γ
= h(z)

(
q(0) := 1

)
has a univalent solutionq(z), then

(2.6) 1 +
1

b

zf ′′(z)

f ′(z)
≺ h(z) ⇒ 1 +

1

b

(
zf ′(z)

f(z)
− 1

)
≺ q(z) ≺ h(z) (z ∈ U)

andq(z) is the best dominant in(2.6).
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Proof. We begin by setting

(2.7) 1 +
1

b

(
zf ′(z)

f(z)
− 1

)
=: p(z),

so thatp(z) has the following series expansion:

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · .

By differentiating (2.7) logarithmically, we obtain

p(z) +
zp′(z)

bp(z) + (1− b)
= 1 +

1

b

zf ′′(z)

f ′(z)

and the subordination (2.4) can be written as follows:

p(z) +
zp′(z)

bp(z) + (1− b)
≺ h(z) (z ∈ U).

Now the conclusions of the theorem would follow from Lemma2 by taking

β = b and γ = 1− b.

This evidently completes the proof of Theorem1.

Next we prove Theorem2 below.

Theorem 2. If f(z) ∈ K1(b) (|b| 5 1; b 6= 0), then

1 +
1

b

(
zf ′(z)

f(z)
− 1

)
≺ q(z) (z ∈ U),
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whereq(z) is the best dominant given by

(2.8) q(z) = 1− 1

b
+

zebz

ebz − 1
.

Proof. First of all, we observe that (1.5) is equivalent to the following inequal-
ity: ∣∣∣∣(1 +

1

b

zf ′′(z)

f ′(z)

)
− 1

∣∣∣∣ < 1 (z ∈ U),

which implies that

1 +
1

b

zf ′′(z)

f ′(z)
≺ 1 + z (z ∈ U).

Thus, in Theorem1, we choose

h(z) = 1 + z

and note that

R
(
bh(z) + (1− b)

)
> 0 whenz ∈ U and |b| 5 1 (b 6= 0),

andh(z) satisfies the hypotheses of Lemma2. Consequently, in the view of
Lemma2 and Remark3, we have

H(z) = z · exp

(∫ z

0

h(t)− 1

t
dt

)
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which, forh(t) = 1 + t, yields

(2.9) H(z) = zez

and

F (z) =

(
1

z1−b

∫ z

0

[
H(t)

t

]b

dt

) 1
b

,

that is,

F (z) =

(
1

z1−b

∫ z

0

ebtdt

) 1
b

,

which readily simplifies to the following form:

(2.10) F (z) =

(
1

bz1−b

(
ebz − 1

)) 1
b

,

From (2.9) and (2.10), we obtain

q(z) =
1

b

(
H(z)

F (z)

)b

− 1− b

b
,

which leads us easily to (2.8), thereby completing our proof of Theorem2.

Lastly, we prove the following subordination result.

Theorem 3. Letf(z) ∈ S∗0 (b) (b ∈ C \ {0}), then

(2.11)
f(z)

z
≺ 1

(1− z)2b
(z ∈ U)

and this is the best dominant.
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Proof. Sincef(z) ∈ S∗0 (b) (b ∈ \{0}), we have

1 +
1

b

(
zf ′(z)

f(z)
− 1

)
≺ 1 + z

1− z
(z ∈ U),

that is,

(2.12)
1

b

(
zf ′(z)

f(z)
+ 1

)
≺ 2z

1− z
+

2

b
(z ∈ U).

Now, by setting

P (z) :=
(
zf(z)

) 1
b (z ∈ U),

we can rewrite (2.12) in the following form:

z
(
log P (z)

)′ ≺ z
(
log
[
z

2
b (1− z)−2

])′
(z ∈ U).

Thus, by setting

F (z) = log P (z) and G(z) = log
[
z

2
b (1− z)−2

]
in Lemma1, we find that

log P (z) ≺ log
[
z

2
b (1− z)−2

]
(z ∈ U),

which obviously is equivalent to the assertion (2.11) of Theorem3.
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3. Some Interesting Deductions
In view especially of the equivalence relationships exhibited by (1.6) and (1.7),
each of our main results proven in the preceding section can indeed be applied
to yield the corresponding subordination results involving convex functions of
orderb ∈ C \ {0}. For example, Theorem3 would immediately lead us to the
following subordination result.

Corollary 1. Letf(z) ∈ K0(b) (b ∈ C \ {0}). Then

f ′(z) ≺ 1

(1− z)2b
(z ∈ U)

and this is the best dominant.
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