DIFFERENTIAL ESTIMATE FOR n-ARY FORMS ON CLOSED ORTHANTS

VLAD TIMOFTE

École Polytechnique Fédérale de Lausanne Département de Mathématiques 1015 Lausanne, Switzerland. vlad.timofte@epfl.ch

Received 09 April, 2004; accepted 03 December, 2004
Communicated by A. Lupaş

Abstract

We prove a differential inequality for real forms of arbitrary degree, the problem being considered on closed orthants $H \subset \mathbb{R}^{n}$. A sufficient positivity criterion is derived. Our results allow computer implementation and contain enough information to imply the fundamental $A M-G M$ inequality.

Key words and phrases: Homogeneous polynomial, Symmetric polynomial, Estimate, Positivity.
2000 Mathematics Subject Classification 26D15, 26D05.

1. Introduction and Notations

Positivity criteria for real n-ary d-forms (d-homogeneous polynomials $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$) are of practical significance, but effective results exist for lower degree only.

- For quadratic forms, Sylvester's criterion characterizes strict positivity on $\mathbb{R}^{n} \backslash\left\{0_{n}\right\}$.
- For symmetric cubics $(d=3)$, positivity on the first orthant \mathbb{R}_{+}^{n} is reduced in [2] to a finite number of tests (see Theorem 1.1 below), which are the same for all cubics.
- For symmetric quartics $(d=4)$ on \mathbb{R}_{+}^{n} or \mathbb{R}^{n}, and for symmetric quintics $(d=5)$ on \mathbb{R}_{+}^{n}, positivity is expressed in [11] in terms of finite test-sets depending on the symmetric form. For quartics, explicit discriminants and effective related algorithms (Maple worksheets) are derived in [12].
All mentioned results provide equivalent conditions and allow computer implementation. For arbitrary degree, it is of interest to find "reasonable" sufficient conditions for positivity on closed orthants in \mathbb{R}^{n}. In our entire discussion we require that $n \in \mathbb{N}, n \geq 2$.

For every $k \in\{1, \ldots, n\}$, write $0_{k}:=(0, \ldots, 0) \in \mathbb{R}^{k}, 1_{k}:=(1, \ldots, 1) \in \mathbb{R}^{k}$, and set $\epsilon_{k}:=\left(1_{k}, 0_{n-k}\right) \in \mathbb{R}^{n}, \bar{\epsilon}_{k}:=k^{-1} \epsilon_{k}$. For $x \in \mathbb{R}^{n}$, it is convenient to write x_{k} for its k th component. Therefore, we avoid denoting vectors with symbols with lower indexes (upper indexes will be allowed) and $0_{k}, 1_{k}, \epsilon_{k}, \bar{\epsilon}_{k}$ are the only exceptions to this rule.

[^0]For every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, set

$$
\operatorname{supp}(x):=\left\{j \in\{1, \ldots, n\} \mid x_{j} \neq 0\right\}, \quad\|x\|:=\sum_{j=1}^{n}\left|x_{j}\right|
$$

We need the following theorem, which is known in the context of even symmetric sextics (for the original statement see [2, Th. 3.7, p. 567]).
Theorem 1.1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a symmetric cubic. Then

$$
g \geq 0 \text { on } \mathbb{R}_{+}^{n} \Longleftrightarrow g\left(\epsilon_{k}\right) \geq 0 \text { for every } k \in\{1, \ldots, n\}
$$

2. Main Results

Let us consider an arbitrary d-form $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $d \in \mathbb{N}^{*}$.
For ease of exposition, let us define the order relation " $<$ " on \mathbb{R}^{n} by

$$
\begin{aligned}
u \ll v & \stackrel{\text { def. }}{\Longleftrightarrow} u_{j} \in\left\{0, v_{j}\right\} \text { for every } j \in\{1, \ldots, n\} \\
& \Longleftrightarrow u_{j}=v_{j} \text { for every } j \in \operatorname{supp}(u) .
\end{aligned}
$$

Remark 2.1. The following properties of " \ll " are immediate.
1): $0_{n} \ll u$ for every $u \in \mathbb{R}^{n}$.
2): $u \ll 1_{n} \Longleftrightarrow u \in\{0,1\}^{n}$.
3): For every $u \in \mathbb{R}^{n}$, the set $\left\{x \in \mathbb{R}^{n} \mid x \ll u\right\}$ is finite.
4): If H is a closed orthant in \mathbb{R}^{n} and if $u \ll v \in H$, then $u \in H$.
5): If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diagonal linear isomorphism or a permutation of coordinates or a composition of finitely many such operators, then

$$
u \ll v \Longleftrightarrow T u \ll T v
$$

The following result provides a lower estimate ${ }^{1} \|$ for f in terms of its d-th differential $f^{(d)}$. As we shall see, its symmetric variant (Theorem 2.3) contains enough information to imply the fundamental $A M-G M$ inequality.
Theorem 2.2. Let $H \subset \mathbb{R}^{n}$ be a closed orthant. There exist $u^{1}, \ldots, u^{d} \in\{-1,0,1\}^{n} \cap H$, such that $0_{n} \neq u^{1} \ll \cdots \ll u^{d}$ and

$$
\begin{equation*}
f(x) \geq \frac{\|x\|^{d}}{d!} \cdot \frac{f^{(d)}\left(0_{n}\right)\left(u^{1}, \ldots, u^{d}\right)}{\left\|u^{1}\right\| \cdots\left\|u^{d}\right\|} \text { for every } x \in H \tag{2.1}
\end{equation*}
$$

In particular, if $f^{(d)}$ satisfies the inequality

$$
\begin{equation*}
f^{(d)}\left(0_{n}\right)\left(u^{1}, \ldots, u^{d}\right) \geq 0 \tag{2.2}
\end{equation*}
$$

for all $0_{n} \neq u^{1} \ll \cdots \ll u^{d} \in\{-1,0,1\}^{n} \cap H$, then $f \geq 0$ on H.
Theorem 2.3. Assume f to be symmetric, with $d \geq 4$. Then there exist in $\{1, \ldots, n\}$ integers $k_{1} \geq \cdots \geq k_{d-3} \geq k$, such that

$$
\begin{align*}
f(x) & \geq \frac{6\|x\|^{d}}{d!} f^{(d-3)}\left(\bar{\epsilon}_{k}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) \tag{2.3}\\
& =\frac{\|x\|^{d}}{d!} f^{(d)}\left(0_{n}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}, \bar{\epsilon}_{k}, \bar{\epsilon}_{k}, \bar{\epsilon}_{k}\right) \text { for every } x \in \mathbb{R}_{+}^{n} \tag{2.4}
\end{align*}
$$

In particular, we have $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$, where:
(a): $f^{(d)}\left(0_{n}\right)\left(\epsilon_{k_{1}}, \ldots, \epsilon_{k_{d}}\right) \geq 0$ for all $k_{1} \geq \cdots \geq k_{d}$,

[^1](b): $f^{(d-3)}\left(\epsilon_{k}\right)\left(\epsilon_{k_{1}}, \ldots, \epsilon_{k_{d-3}}\right) \geq 0$ for all $k_{1} \geq \cdots \geq k_{d-3} \geq k$,
(c): $f \geq 0$ on \mathbb{R}_{+}^{n}.

Computer implementation of Theorems 2.2 and 2.3 is possible. The presence of $f^{(d)}$ in the above statements poses no serious computation problem, since we have the identity

$$
f^{(d)}\left(0_{n}\right)\left(u^{1}, \ldots, u^{d}\right)=\sum_{J \subset\{1, \ldots, d\}}(-1)^{\operatorname{card}(J)} f\left(-\sum_{j \in J} u^{j}\right) \text { for all } u^{1}, \ldots, u^{d} \in \mathbb{R}^{n}
$$

3. Proofs

3.1. The Non-symmetric Case. We first need the following lemma:

Lemma 3.1. There exist $u \in\{0,1\}^{n}$ and $y \in \mathbb{R}_{+}^{n}$, such that $\|y\|=1, \operatorname{supp}(y)=\operatorname{supp}(u)$, and

$$
\begin{equation*}
f(x) \geq \frac{f^{\prime}(y)(u)}{d\|u\|} \cdot\|x\|^{d} \text { for every } x \in \mathbb{R}_{+}^{n} . \tag{3.1}
\end{equation*}
$$

If f is symmetric, we can find y such that $y_{1} \geq \cdots \geq y_{n}$. In this case, we have $u=\epsilon_{k}$ for some $k \in\{1, \ldots, n\}$.

Proof. Let us first observe that inequality (3.1) is d-homogeneous in x. Consider the compact set $K:=\left\{x \in \mathbb{R}_{+}^{n} \mid\|x\|=1\right\}$ and choose $y \in K$, such that $f(y)=\min \left(\left.f\right|_{K}\right)$. Assume for simplicity that $y_{1} \geq \cdots \geq y_{n}$ (if f is symmetric, we can find y with this property). It follows that $\operatorname{supp}(y)=\{1, \ldots, k\}$ for some $k \leq n$. We claim that

$$
\begin{equation*}
k d f(y)=f^{\prime}(y)\left(\epsilon_{k}\right) . \tag{3.2}
\end{equation*}
$$

By Euler's theorem on homogeneous functions we get

$$
\begin{equation*}
d f(y)=\sum_{j=1}^{k} y_{j} \frac{\partial f}{\partial x_{j}}(y)=f^{\prime}(y)(y) \tag{3.3}
\end{equation*}
$$

We need to consider two cases:
i) If $k=1$, then $y=\epsilon_{1}$ and (3.3) obviously reduces to (3.2).
ii) If $k \geq 2$, then $y^{\prime}:=\left(y_{1}, \ldots, y_{k}\right)$ is a global minimum for the restriction of the map $] 0, \infty{ }^{k} \ni z \mapsto f\left(z, 0_{n-k}\right) \in \mathbb{R}$ to the subset $\{z \in] 0, \infty\left[{ }^{k} \mid\|z\|=1\right\}$. Thus, applying the method of Lagrange multipliers shows that

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}(y)=\frac{\partial f}{\partial x_{2}}(y)=\cdots=\frac{\partial f}{\partial x_{k}}(y)=\lambda \tag{3.4}
\end{equation*}
$$

for some $\lambda \in \mathbb{R}$. Now (3.3) and (3.4) yield $\lambda=d f(y)$. Using this in (3.4) leads to

$$
f^{\prime}(y)\left(\epsilon_{k}\right)=\sum_{j=1}^{k} \frac{\partial f}{\partial x_{j}}(y)=k \lambda=k d f(y) .
$$

Our claim is proved. For every $x \in \mathbb{R}_{+}^{n} \backslash\left\{0_{n}\right\}$ we have $\|x\|^{-1} x \in K$, and so

$$
\frac{f(x)}{\|x\|^{d}}=f\left(\|x\|^{-1} x\right) \geq f(y)=\frac{f^{\prime}(y)\left(\epsilon_{k}\right)}{k d}=\frac{f^{\prime}(y)\left(\epsilon_{k}\right)}{d\left\|\epsilon_{k}\right\|}
$$

which proves (3.1) for $u=\epsilon_{k}$.

Proof of Theorem 2.2 .
Step 1. We first consider the particular case $H=\mathbb{R}_{+}^{n}$. Let us show by induction that for every $i \in\{1, \ldots, d\}$, there exist $y^{i} \in \mathbb{R}_{+}^{n}$ and $u^{1}, \ldots, u^{i} \in\{0,1\}^{n}$, such that $\left\|y^{i}\right\|=1, \operatorname{supp}\left(y^{i}\right)=$ $\operatorname{supp}\left(u^{i}\right), u^{i} \ll \cdots \ll u^{1}$, and

$$
\begin{equation*}
f(x) \geq \frac{(d-i)!\|x\|^{d}}{d!\left\|u^{1}\right\| \cdots\left\|u^{i}\right\|} \cdot f^{(i)}\left(y^{i}\right)\left(u^{1}, \ldots, u^{i}\right) \text { for every } x \in \mathbb{R}_{+}^{n} \tag{3.5}
\end{equation*}
$$

For $i=1$ this is clear, by Lemma 3.1. Assuming the statement to hold for some $i<d$, we will prove it for $i+1$. For simplicity, we shall assume that $y_{1}^{i} \geq \cdots \geq y_{n}^{i}$ (if f is symmetric, we can find such y^{i} at each step of our induction). Consequently, we have $\operatorname{supp}\left(y^{i}\right)=$ $\{1, \ldots, k\}$ and $u^{i}=\epsilon_{k}$ for some $k \in\{1, \ldots, n\}$. Let us observe that the map $\mathbb{R}^{k} \ni z \mapsto$ $f^{(i)}\left(z, 0_{n-k}\right)\left(u^{1}, \ldots, u^{i}\right) \in \mathbb{R}$ is a $(d-i)$-form. According to Lemma 3.1, there exist $y^{i+1}=$ $\left(\zeta, 0_{n-k}\right) \in \mathbb{R}_{+}^{k} \times \mathbb{R}_{+}^{n-k}$ and $u^{i+1}=\left(v, 0_{n-k}\right) \in\{0,1\}^{n}$, such that $\left\|y^{i+1}\right\|=1, \operatorname{supp}\left(y^{i+1}\right)=$ $\operatorname{supp}\left(u^{i+1}\right)$, and

$$
f^{(i)}\left(z, 0_{n-k}\right)\left(u^{1}, \ldots, u^{i}\right) \geq \frac{f^{(i+1)}\left(y^{i+1}\right)\left(u^{1}, \ldots, u^{i}, u^{i+1}\right)}{(d-i)\left\|u^{i+1}\right\|} \cdot\|z\|^{d-i} \text { for every } z \in \mathbb{R}_{+}^{k}
$$

For $z=\left(y_{1}^{i}, \ldots, y_{k}^{i}\right)$ we have $\left(z, 0_{n-k}\right)=y^{i},\|z\|=\left\|y^{i}\right\|=1$, and consequently

$$
\begin{equation*}
f^{(i)}\left(y^{i}\right)\left(u^{1}, \ldots, u^{i}\right) \geq \frac{f^{(i+1)}\left(y^{i+1}\right)\left(u^{1}, \ldots, u^{i+1}\right)}{(d-i)\left\|u^{i+1}\right\|} \tag{3.6}
\end{equation*}
$$

We also have $0_{n} \neq u^{i+1} \ll \epsilon_{k}=u^{i}$. Now combining (3.5) with (3.6) completes our induction, as well as the proof for $H=\mathbb{R}_{+}^{n}$, since $f^{(d)}$ is constant, $f^{(d)}\left(y^{d}\right)=f^{(d)}\left(0_{n}\right)$.
Step 2. We next turn to the general case. Clearly, we can find $\delta_{1}, \ldots, \delta_{n} \in\{-1,1\}$, such that the linear isomorphism $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, T x=\left(\delta_{1} x_{1}, \ldots, \delta_{n} x_{n}\right)$, maps \mathbb{R}_{+}^{n} onto H, that is, $T\left(\mathbb{R}_{+}^{n}\right)=H$. Applying the conclusion of Step 1 to the d-form $f \circ T$ yields the existence of d vectors $v^{1}, \ldots, v^{d} \in \mathbb{R}_{+}^{n}$, such that $0_{n} \neq v^{d} \ll \cdots \ll v^{1} \ll 1_{n}$ and

$$
f(T x) \geq \frac{\|x\|^{d}}{d!} \cdot \frac{(f \circ T)^{(d)}\left(0_{n}\right)\left(v^{1}, \ldots, v^{d}\right)}{\left\|v^{1}\right\| \cdots\left\|v^{d}\right\|} \text { for every } x \in \mathbb{R}_{+}^{n}
$$

Let us observe that $\|T x\|=\|x\|$ for every $x \in \mathbb{R}^{n}$, and that

$$
\begin{aligned}
& (f \circ T)^{(d)}\left(0_{n}\right)\left(v^{1}, \ldots, v^{d}\right)=f^{(d)}\left(0_{n}\right)\left(T v^{1}, \ldots, T v^{d}\right), \\
& 0_{n} \neq T v^{1} \ll \cdots \ll v^{d} \ll T 1_{n} \in\{-1,1\}^{n}
\end{aligned}
$$

It follows that the vectors $u^{i}:=T v^{i}$ are all in $\{-1,0,1\}^{n} \cap H$, and that 2.1) holds.
3.2. The Symmetric Case. The following needed lemma is a slight generalization of Theorem 1.1 .
Lemma 3.2. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a symmetric polynomial with $\operatorname{deg}(g) \leq 3$. Then for every $\sigma>0$ we have

$$
\min \left\{g(x) \mid x \in \mathbb{R}_{+}^{n},\|x\|=\sigma\right\}=\min _{1 \leq k \leq n} g\left(\sigma \bar{\epsilon}_{k}\right)
$$

Proof. Fix $\sigma>0$ and set $\alpha:=\min _{1 \leq k \leq n} g\left(\sigma \bar{\epsilon}_{k}\right), K:=\left\{x \in \mathbb{R}_{+}^{n} \mid\|x\|=\sigma\right\}$. Hence, $\alpha=$ $g\left(\sigma \bar{\epsilon}_{p}\right)$ for some $p \in\{1, \ldots, n\}$. We have for g the decomposition $g=\sum_{i=0}^{3} g_{i}$, with g_{i} symmetric i-form for every $i \in\{0,1,2,3\}$. Now define the symmetric cubic

$$
h: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad h=\sum_{i=0}^{3} S^{3-i} g_{i}-\alpha S^{3},
$$

where $S(x):=\sigma^{-1} \sum_{j=1}^{n} x_{j}$. Obviously, $\left.h\right|_{K}=\left.g\right|_{K}-\alpha$. By Theorem 1.1, we have $h \geq 0$ on \mathbb{R}_{+}^{n}, and so $\left.g\right|_{K} \geq \alpha$. Since $\sigma \bar{\epsilon}_{p} \in K$ and $g\left(\sigma \bar{\epsilon}_{p}\right)=\alpha$, we get $\alpha=\min _{x \in K} g(x)$.

Proof of Theorem [2.3. As in the proof of Theorem 2.2](Step 1), by the same induction based on Lemma 3.1, we get $y \in \mathbb{R}_{+}^{n}$ and $u^{1}=\epsilon_{k_{1}}, \ldots, u^{d-3}=\epsilon_{k_{d-3}}$, such that $\|y\|=1, k_{1} \geq \cdots \geq$ $k_{d-3}, \operatorname{supp}(y)=\operatorname{supp}\left(\epsilon_{k_{d-3}}\right)=\left\{1, \ldots, k_{d-3}\right\}$, and

$$
\begin{equation*}
f(x) \geq \frac{6\|x\|^{d}}{d!} \cdot f^{(d-3)}(y)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) \text { for every } x \in \mathbb{R}_{+}^{n} \tag{3.7}
\end{equation*}
$$

Note that the above inequality corresponds to (3.5) for $i=d-3$. Since $\|y\|=1, \operatorname{supp}(y)=$ $\left\{1, \ldots, k_{d-3}\right\}$, and the polynomial map

$$
\mathbb{R}^{k_{d-3}} \ni z \mapsto f^{(d-3)}\left(z, 0_{n-k_{d-3}}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) \in \mathbb{R}
$$

is a symmetric 3 -form, applying Lemma 3.2 shows that

$$
\begin{equation*}
f^{(d-3)}(y)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) \geq f^{(d-3)}\left(\bar{\epsilon}_{k}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) \tag{3.8}
\end{equation*}
$$

for some $k \leq k_{d-3}$. Now combining (3.7) with (3.8) yields (2.3). As the map

$$
g: \mathbb{R}^{k} \rightarrow \mathbb{R}, \quad g(z)=f^{(d-3)}\left(z, 0_{n-k}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right)
$$

is a 3 -form, we have $6 g(z)=g^{\prime \prime \prime}(z)(z, z, z)=g^{\prime \prime \prime}\left(0_{k}\right)(z, z, z)$ for every $z \in \mathbb{R}^{k}$. This gives

$$
\begin{aligned}
f^{(d-3)}\left(\bar{\epsilon}_{k}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}\right) & =g\left(1_{k}\right) \\
& =\frac{g^{\prime \prime \prime}\left(0_{k}\right)\left(1_{k}, 1_{k}, 1_{k}\right)}{6} \\
& =\frac{f^{(d)}\left(0_{n}\right)\left(\bar{\epsilon}_{k_{1}}, \ldots, \bar{\epsilon}_{k_{d-3}}, \bar{\epsilon}_{k}, \bar{\epsilon}_{k}, \bar{\epsilon}_{k}\right)}{6}
\end{aligned}
$$

which proves (2.4.
Example 3.1. Proof of the fundamental $A M-G M$ inequality by verifying condition (a) from Theorem 2.3.

Proof. Let $n \in \mathbb{N}^{*}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\sum_{i=1}^{n} x_{i}^{n}-n \prod_{i=1}^{n} x_{i}$. We shall prove that $f \geq 0$ on \mathbb{R}_{+}^{n}. Since Theorem 1.1 shows this for $n \leq 3$, assume that $n \geq 4$. For all $u^{1}, \ldots, u^{n} \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
f^{(n)}\left(0_{n}\right)\left(u^{1}, \ldots, u^{n}\right)=\sum_{i_{1}, \cdots, i_{n}=1}^{n} \frac{\partial^{n} f}{\partial x_{i_{1}} \cdots \partial x_{i_{n}}}\left(0_{n}\right) p_{i_{1}}\left(u^{1}\right) \cdots p_{i_{n}}\left(u^{n}\right), \tag{3.9}
\end{equation*}
$$

where $p_{1}, \ldots, p_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are the standard linear projections. For ease of exposition, let us define the map

$$
v: \mathbb{R}^{n} \rightarrow\{1, \ldots, n\}, \quad v(x)=\operatorname{card}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

and consider the set $A:=\{1, \ldots, n\}^{n}$. For every $i=\left(i_{1}, \ldots, i_{n}\right) \in A$, set

$$
\frac{\partial^{n} f}{\partial x^{i}}:=\frac{\partial^{n} f}{\partial x_{i_{1}} \partial x_{i_{2}} \cdots \partial x_{i_{n}}} \equiv \begin{cases}n!, & v(i)=1 \tag{3.10}\\ -n, & v(i)=n \\ 0, & 1<v(i)<n\end{cases}
$$

the last equality being easily checked. Now fix $k_{1} \geq \cdots \geq k_{n}$ in $\{1, \ldots, n\}$, and let

$$
B:=\left\{i \in A \mid i_{1} \leq k_{1}, i_{2} \leq k_{2}, \ldots, i_{n} \leq k_{n}\right\} .
$$

By (3.9) and (3.10) we get

$$
\begin{equation*}
f^{(n)}\left(0_{n}\right)\left(\epsilon_{k_{1}}, \ldots, \epsilon_{k_{n}}\right)=\sum_{i \in B} \frac{\partial^{n} f}{\partial x^{i}}\left(0_{n}\right)=n!\cdot \operatorname{card}\left(B_{1}\right)-n \cdot \operatorname{card}\left(B_{n}\right), \tag{3.11}
\end{equation*}
$$

where $B_{1}:=\{i \in B \mid v(i)=1\}$ and $B_{n}:=\{i \in B \mid v(i)=n\}$. Since obviously

$$
B_{1}=\left\{\epsilon_{n}, 2 \epsilon_{n}, \ldots, k_{n} \epsilon_{n}\right\}, \quad B_{n} \subset\left\{i \in A \mid i_{n} \leq k_{n}, v(i)=n\right\}=: E,
$$

we have $\operatorname{card}\left(B_{1}\right)=k_{n}$ and $\operatorname{card}\left(B_{n}\right) \leq \operatorname{card}(E)=k_{n}(n-1)$!. To prove the last equality, let us observe that every element $i \in E$ can be obtained by selecting $i_{n} \in\left\{1, \ldots, k_{n}\right\}$ (there are k_{n} possibilities), and then choosing pairwise distinct $i_{1}, \ldots, i_{n-1} \in\{1, \ldots, n\} \backslash\left\{i_{n}\right\}$ (that is, a permutation of this set). By (3.11) we get

$$
f^{(n)}\left(0_{n}\right)\left(\epsilon_{k_{1}}, \ldots, \epsilon_{k_{n}}\right) \geq 0
$$

The conclusion follows by Theorem 2.3 .
For Pólya's general result on strictly positive forms, we refer the reader to [3]. Bounds for the exponent from Pólya's theorem are given in [5, 8]. Various symmetric inequalities can be found especially in [3, 6], but also in [1, 4, 7, 9]. Some general results on symmetric inequalities can be found in [10] and [11].

References

[1] J.L. BRENNER, A unified treatment and extension of some means of classical analysis. I. Comparison theorems, J. Combin. Inform. System Sci., 3 (1978), 175-199.
[2] M.D. CHOI, T.Y. LAM and B. REZNICK, Even symmetric sextics, Math. Z., 195 (1987), 559580.
[3] G. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge Mathematical Library, 2nd ed., 1952.
[4] D.B. HUNTER, The positive-definiteness of the complete symmetric functions of even order, Math. Proc. Cambridge Philos. Soc., 82 (1977), 255-258.
[5] J. A. de LOERA and F. SANTOS, An effective version of Pólya's theorem on positive definite forms, J. Pure Appl. Algebra 108 (1996), 231-240.
[6] D.S. MITRINOVIĆ and P.M. VASIĆ, Analytic inequalities, Die Grundlehren der mathematischen Wissenchaften, Band 165, Springer-Verlag, Berlin - Heidelberg - New York, 1970.
[7] R.F. MUIRHEAD, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters, Proc. Edinburgh Math. Soc.(1), 21 (1903), 144-157.
[8] V. POWERS and B. REZNICK, A new bound for Pólya's theorem with applications to polynomials positive on polyhedra. Effective methods in algebraic geometry (Bath, 2000), J. Pure Appl. Algebra, 164 (2001), 221-229.
[9] S. ROSSET, Normalized symmetric functions, Newton's inequalities and a new set of stronger inequalities, Amer. Math. Monthly, 96 (1989), 815-819.
[10] V. TIMOFTE, On the positivity of symmetric polynomial functions. Part I: General results, J. Math. Anal. Appl., 284 (2003), 174-190.
[11] V. TIMOFTE, On the positivity of symmetric polynomial functions. Part II: Lattice general results and positivity criteria for degrees 4 and 5 , J. Math. Anal. Appl., (in press).
[12] V. TIMOFTE, Discriminants for positivity of real symmetric n-ary quartics (preprint).

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 076-04

[^1]: ${ }^{1}$ Replacing f by $-f$ leads to the corresponding upper estimate.

