

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 4, Article 112, 2004

DIFFERENTIAL ESTIMATE FOR *n*-ARY FORMS ON CLOSED ORTHANTS

VLAD TIMOFTE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE DÉPARTEMENT DE MATHÉMATIQUES 1015 LAUSANNE, SWITZERLAND. vlad.timofte@epfl.ch

Received 09 April, 2004; accepted 03 December, 2004 Communicated by A. Lupaş

ABSTRACT. We prove a differential inequality for real forms of arbitrary degree, the problem being considered on closed orthants $H \subset \mathbb{R}^n$. A sufficient positivity criterion is derived. Our results allow computer implementation and contain enough information to imply the fundamental AM - GM inequality.

Key words and phrases: Homogeneous polynomial, Symmetric polynomial, Estimate, Positivity.

2000 Mathematics Subject Classification. 26D15, 26D05.

1. INTRODUCTION AND NOTATIONS

Positivity criteria for real *n*-ary *d*-forms (*d*-homogeneous polynomials $f : \mathbb{R}^n \to \mathbb{R}$) are of practical significance, but effective results exist for lower degree only.

- For quadratic forms, Sylvester's criterion characterizes strict positivity on $\mathbb{R}^n \setminus \{0_n\}$.
- For symmetric cubics (d = 3), positivity on the first orthant \mathbb{R}^n_+ is reduced in [2] to a finite number of tests (see Theorem 1.1 below), which are the same for all cubics.
- For symmetric quartics (d = 4) on ℝⁿ₊ or ℝⁿ, and for symmetric quintics (d = 5) on ℝⁿ₊, positivity is expressed in [11] in terms of finite test-sets depending on the symmetric form. For quartics, explicit discriminants and effective related algorithms (Maple worksheets) are derived in [12].

All mentioned results provide equivalent conditions and allow computer implementation. For arbitrary degree, it is of interest to find "reasonable" sufficient conditions for positivity on closed orthants in \mathbb{R}^n . In our entire discussion we require that $n \in \mathbb{N}$, $n \geq 2$.

For every $k \in \{1, \ldots, n\}$, write $0_k := (0, \ldots, 0) \in \mathbb{R}^k$, $1_k := (1, \ldots, 1) \in \mathbb{R}^k$, and set $\epsilon_k := (1_k, 0_{n-k}) \in \mathbb{R}^n$, $\bar{\epsilon}_k := k^{-1}\epsilon_k$. For $x \in \mathbb{R}^n$, it is convenient to write x_k for its kth component. Therefore, we avoid denoting vectors with symbols with lower indexes (upper indexes will be allowed) and 0_k , 1_k , ϵ_k , $\bar{\epsilon}_k$ are the only exceptions to this rule.

ISSN (electronic): 1443-5756

^{© 2004} Victoria University. All rights reserved.

⁰⁷⁶⁻⁰⁴

For every $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, set

$$\operatorname{supp}(x) := \{ j \in \{1, \dots, n\} \, | \, x_j \neq 0 \}, \quad ||x|| := \sum_{j=1}^n |x_j|.$$

We need the following theorem, which is known in the context of even symmetric sextics (for the original statement see [2, Th. 3.7, p. 567]).

Theorem 1.1. Let $g : \mathbb{R}^n \to \mathbb{R}$ be a symmetric cubic. Then

$$g \ge 0$$
 on $\mathbb{R}^n_+ \iff g(\epsilon_k) \ge 0$ for every $k \in \{1, \ldots, n\}$.

2. MAIN RESULTS

Let us consider an arbitrary *d*-form $f : \mathbb{R}^n \to \mathbb{R}$, with $d \in \mathbb{N}^*$. For ease of exposition, let us define the order relation " \ll " on \mathbb{R}^n by

$$u \ll v \iff u_j \in \{0, v_j\}$$
 for every $j \in \{1, \dots, n\}$
 $\iff u_j = v_j$ for every $j \in \text{supp}(u)$.

Remark 2.1. The following properties of "*«*" are immediate.

- **1):** $0_n \ll u$ for every $u \in \mathbb{R}^n$.
- **2):** $u \ll 1_n \iff u \in \{0, 1\}^n$.
- **3):** For every $u \in \mathbb{R}^n$, the set $\{x \in \mathbb{R}^n \mid x \ll u\}$ is finite.
- **4):** If H is a closed orthant in \mathbb{R}^n and if $u \ll v \in H$, then $u \in H$.
- 5): If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a diagonal linear isomorphism or a permutation of coordinates or a composition of finitely many such operators, then

$$u \ll v \iff Tu \ll Tv.$$

The following result provides a lower estimate¹ for f in terms of its d-th differential $f^{(d)}$. As we shall see, its symmetric variant (Theorem 2.3) contains enough information to imply the fundamental AM - GM inequality.

Theorem 2.2. Let $H \subset \mathbb{R}^n$ be a closed orthant. There exist $u^1, \ldots, u^d \in \{-1, 0, 1\}^n \cap H$, such that $0_n \neq u^1 \ll \cdots \ll u^d$ and

(2.1)
$$f(x) \ge \frac{\|x\|^d}{d!} \cdot \frac{f^{(d)}(0_n)(u^1, \dots, u^d)}{\|u^1\| \cdots \|u^d\|} \text{ for every } x \in H.$$

In particular, if $f^{(d)}$ satisfies the inequality

(2.2)
$$f^{(d)}(0_n)(u^1, \dots, u^d) \ge 0$$

for all $0_n \neq u^1 \ll \cdots \ll u^d \in \{-1, 0, 1\}^n \cap H$, then $f \ge 0$ on H.

Theorem 2.3. Assume f to be symmetric, with $d \ge 4$. Then there exist in $\{1, \ldots, n\}$ integers $k_1 \ge \cdots \ge k_{d-3} \ge k$, such that

(2.3)
$$f(x) \ge \frac{6\|x\|^d}{d!} f^{(d-3)}(\bar{\epsilon}_k)(\bar{\epsilon}_{k_1}, \dots, \bar{\epsilon}_{k_{d-3}})$$

(2.4)
$$= \frac{\|x\|^d}{d!} f^{(d)}(0_n)(\bar{\epsilon}_{k_1}, \dots, \bar{\epsilon}_{k_{d-3}}, \bar{\epsilon}_k, \bar{\epsilon}_k, \bar{\epsilon}_k) \text{ for every } x \in \mathbb{R}^n_+.$$

In particular, we have $(a) \Rightarrow (b) \Rightarrow (c)$, where:

(a):
$$f^{(d)}(0_n)(\epsilon_{k_1},\ldots,\epsilon_{k_d}) \geq 0$$
 for all $k_1 \geq \cdots \geq k_d$,

¹Replacing f by -f leads to the corresponding upper estimate.

(b):
$$f^{(d-3)}(\epsilon_k)(\epsilon_{k_1}, \ldots, \epsilon_{k_{d-3}}) \ge 0$$
 for all $k_1 \ge \cdots \ge k_{d-3} \ge k$
(c): $f \ge 0$ on \mathbb{R}^n_+ .

Computer implementation of Theorems 2.2 and 2.3 is possible. The presence of $f^{(d)}$ in the above statements poses no serious computation problem, since we have the identity

$$f^{(d)}(0_n)(u^1,\ldots,u^d) = \sum_{J \subset \{1,\ldots,d\}} (-1)^{\operatorname{card}(J)} f\left(-\sum_{j \in J} u^j\right) \text{ for all } u^1,\ldots,u^d \in \mathbb{R}^n.$$

3. **Proofs**

3.1. The Non-symmetric Case. We first need the following lemma:

Lemma 3.1. There exist $u \in \{0,1\}^n$ and $y \in \mathbb{R}^n_+$, such that ||y|| = 1, $\operatorname{supp}(y) = \operatorname{supp}(u)$, and

(3.1)
$$f(x) \ge \frac{f'(y)(u)}{d\|u\|} \cdot \|x\|^d \text{ for every } x \in \mathbb{R}^n_+.$$

If f is symmetric, we can find y such that $y_1 \ge \cdots \ge y_n$. In this case, we have $u = \epsilon_k$ for some $k \in \{1, \ldots, n\}$.

Proof. Let us first observe that inequality (3.1) is *d*-homogeneous in *x*. Consider the compact set $K := \{x \in \mathbb{R}^n_+ | \|x\| = 1\}$ and choose $y \in K$, such that $f(y) = \min(f|_K)$. Assume for simplicity that $y_1 \ge \cdots \ge y_n$ (if *f* is symmetric, we can find *y* with this property). It follows that $\sup p(y) = \{1, \ldots, k\}$ for some $k \le n$. We claim that

(3.2)
$$kdf(y) = f'(y)(\epsilon_k).$$

By Euler's theorem on homogeneous functions we get

(3.3)
$$df(y) = \sum_{j=1}^{k} y_j \frac{\partial f}{\partial x_j}(y) = f'(y)(y).$$

We need to consider two cases:

- i) If k = 1, then $y = \epsilon_1$ and (3.3) obviously reduces to (3.2).
- ii) If $k \ge 2$, then $y' := (y_1, \ldots, y_k)$ is a global minimum for the restriction of the map $]0, \infty[^k \ni z \mapsto f(z, 0_{n-k}) \in \mathbb{R}$ to the subset $\{z \in]0, \infty[^k \mid ||z|| = 1\}$. Thus, applying the method of Lagrange multipliers shows that

(3.4)
$$\frac{\partial f}{\partial x_1}(y) = \frac{\partial f}{\partial x_2}(y) = \dots = \frac{\partial f}{\partial x_k}(y) = \lambda$$

for some $\lambda \in \mathbb{R}$. Now (3.3) and (3.4) yield $\lambda = df(y)$. Using this in (3.4) leads to

$$f'(y)(\epsilon_k) = \sum_{j=1}^{\kappa} \frac{\partial f}{\partial x_j}(y) = k\lambda = kdf(y).$$

Our claim is proved. For every $x \in \mathbb{R}^n_+ \setminus \{0_n\}$ we have $||x||^{-1}x \in K$, and so

$$\frac{f(x)}{\|x\|^d} = f(\|x\|^{-1}x) \ge f(y) = \frac{f'(y)(\epsilon_k)}{kd} = \frac{f'(y)(\epsilon_k)}{d\|\epsilon_k\|},$$

which proves (3.1) for $u = \epsilon_k$.

Proof of Theorem 2.2.

Step 1. We first consider the particular case $H = \mathbb{R}^n_+$. Let us show by induction that for every $i \in \{1, \ldots, d\}$, there exist $y^i \in \mathbb{R}^n_+$ and $u^1, \ldots, u^i \in \{0, 1\}^n$, such that $||y^i|| = 1$, $\operatorname{supp}(y^i) = \operatorname{supp}(u^i)$, $u^i \ll \cdots \ll u^1$, and

(3.5)
$$f(x) \ge \frac{(d-i)! \|x\|^d}{d! \|u^1\| \cdots \|u^i\|} \cdot f^{(i)}(y^i)(u^1, \dots, u^i) \text{ for every } x \in \mathbb{R}^n_+.$$

For i = 1 this is clear, by Lemma 3.1. Assuming the statement to hold for some i < d, we will prove it for i + 1. For simplicity, we shall assume that $y_1^i \ge \cdots \ge y_n^i$ (if f is symmetric, we can find such y^i at each step of our induction). Consequently, we have $\operatorname{supp}(y^i) = \{1, \ldots, k\}$ and $u^i = \epsilon_k$ for some $k \in \{1, \ldots, n\}$. Let us observe that the map $\mathbb{R}^k \ni z \mapsto f^{(i)}(z, 0_{n-k})(u^1, \ldots, u^i) \in \mathbb{R}$ is a (d-i)-form. According to Lemma 3.1, there exist $y^{i+1} = (\zeta, 0_{n-k}) \in \mathbb{R}^k_+ \times \mathbb{R}^{n-k}_+$ and $u^{i+1} = (v, 0_{n-k}) \in \{0, 1\}^n$, such that $||y^{i+1}|| = 1$, $\operatorname{supp}(y^{i+1}) = \operatorname{supp}(u^{i+1})$, and

$$f^{(i)}(z, 0_{n-k})(u^1, \dots, u^i) \ge \frac{f^{(i+1)}(y^{i+1})(u^1, \dots, u^i, u^{i+1})}{(d-i)\|u^{i+1}\|} \cdot \|z\|^{d-i} \text{ for every } z \in \mathbb{R}^k_+.$$

For $z = (y_1^i, \ldots, y_k^i)$ we have $(z, 0_{n-k}) = y^i$, $||z|| = ||y^i|| = 1$, and consequently

(3.6)
$$f^{(i)}(y^{i})(u^{1},\ldots,u^{i}) \geq \frac{f^{(i+1)}(y^{i+1})(u^{1},\ldots,u^{i+1})}{(d-i)\|u^{i+1}\|}$$

We also have $0_n \neq u^{i+1} \ll \epsilon_k = u^i$. Now combining (3.5) with (3.6) completes our induction, as well as the proof for $H = \mathbb{R}^n_+$, since $f^{(d)}$ is constant, $f^{(d)}(y^d) = f^{(d)}(0_n)$.

Step 2. We next turn to the general case. Clearly, we can find $\delta_1, \ldots, \delta_n \in \{-1, 1\}$, such that the linear isomorphism $T : \mathbb{R}^n \to \mathbb{R}^n$, $Tx = (\delta_1 x_1, \ldots, \delta_n x_n)$, maps \mathbb{R}^n_+ onto H, that is, $T(\mathbb{R}^n_+) = H$. Applying the conclusion of Step 1 to the *d*-form $f \circ T$ yields the existence of *d* vectors $v^1, \ldots, v^d \in \mathbb{R}^n_+$, such that $0_n \neq v^d \ll \cdots \ll v^1 \ll 1_n$ and

$$f(Tx) \ge \frac{\|x\|^d}{d!} \cdot \frac{(f \circ T)^{(d)}(0_n)(v^1, \dots, v^d)}{\|v^1\| \cdots \|v^d\|} \text{ for every } x \in \mathbb{R}^n_+.$$

Let us observe that ||Tx|| = ||x|| for every $x \in \mathbb{R}^n$, and that

$$(f \circ T)^{(d)}(0_n)(v^1, \dots, v^d) = f^{(d)}(0_n)(Tv^1, \dots, Tv^d),$$

$$0_n \neq Tv^1 \ll \dots \ll Tv^d \ll T1_n \in \{-1, 1\}^n.$$

It follows that the vectors $u^i := Tv^i$ are all in $\{-1, 0, 1\}^n \cap H$, and that (2.1) holds.

3.2. **The Symmetric Case.** The following needed lemma is a slight generalization of Theorem 1.1.

Lemma 3.2. Let $g : \mathbb{R}^n \to \mathbb{R}$ be a symmetric polynomial with $\deg(g) \leq 3$. Then for every $\sigma > 0$ we have

$$\min\{g(x) \mid x \in \mathbb{R}^n_+, \, \|x\| = \sigma\} = \min_{1 \le k \le n} g(\sigma \bar{\epsilon}_k).$$

Proof. Fix $\sigma > 0$ and set $\alpha := \min_{1 \le k \le n} g(\sigma \overline{\epsilon}_k)$, $K := \{x \in \mathbb{R}^n_+ | ||x|| = \sigma\}$. Hence, $\alpha = g(\sigma \overline{\epsilon}_p)$ for some $p \in \{1, ..., n\}$. We have for g the decomposition $g = \sum_{i=0}^3 g_i$, with g_i symmetric *i*-form for every $i \in \{0, 1, 2, 3\}$. Now define the symmetric cubic

$$h: \mathbb{R}^n \to \mathbb{R}, \quad h = \sum_{i=0}^3 S^{3-i} g_i - \alpha S^3,$$

where $S(x) := \sigma^{-1} \sum_{j=1}^{n} x_j$. Obviously, $h|_K = g|_K - \alpha$. By Theorem 1.1, we have $h \ge 0$ on \mathbb{R}^n_+ , and so $g|_K \ge \alpha$. Since $\sigma \bar{\epsilon}_p \in K$ and $g(\sigma \bar{\epsilon}_p) = \alpha$, we get $\alpha = \min_{x \in K} g(x)$. \Box

Proof of Theorem 2.3. As in the proof of Theorem 2.2 (Step 1), by the same induction based on Lemma 3.1, we get $y \in \mathbb{R}^n_+$ and $u^1 = \epsilon_{k_1}, \ldots, u^{d-3} = \epsilon_{k_{d-3}}$, such that ||y|| = 1, $k_1 \ge \cdots \ge k_{d-3}$, $\operatorname{supp}(y) = \operatorname{supp}(\epsilon_{k_{d-3}}) = \{1, \ldots, k_{d-3}\}$, and

(3.7)
$$f(x) \ge \frac{6\|x\|^d}{d!} \cdot f^{(d-3)}(y)(\bar{\epsilon}_{k_1}, \dots, \bar{\epsilon}_{k_{d-3}}) \text{ for every } x \in \mathbb{R}^n_+$$

Note that the above inequality corresponds to (3.5) for i = d - 3. Since ||y|| = 1, $\sup(y) = \{1, \ldots, k_{d-3}\}$, and the polynomial map

$$\mathbb{R}^{k_{d-3}} \ni z \mapsto f^{(d-3)}(z, 0_{n-k_{d-3}})(\bar{\epsilon}_{k_1}, \dots, \bar{\epsilon}_{k_{d-3}}) \in \mathbb{R}$$

is a symmetric 3-form, applying Lemma 3.2 shows that

(3.8)
$$f^{(d-3)}(y)(\bar{\epsilon}_{k_1},\ldots,\bar{\epsilon}_{k_{d-3}}) \ge f^{(d-3)}(\bar{\epsilon}_k)(\bar{\epsilon}_{k_1},\ldots,\bar{\epsilon}_{k_{d-3}})$$

for some $k \leq k_{d-3}$. Now combining (3.7) with (3.8) yields (2.3). As the map

$$g: \mathbb{R}^k \to \mathbb{R}, \quad g(z) = f^{(d-3)}(z, 0_{n-k})(\bar{\epsilon}_{k_1}, \dots, \bar{\epsilon}_{k_{d-3}})$$

is a 3-form, we have $6g(z) = g'''(z)(z, z, z) = g'''(0_k)(z, z, z)$ for every $z \in \mathbb{R}^k$. This gives

$$f^{(d-3)}(\bar{\epsilon}_{k})(\bar{\epsilon}_{k_{1}},\dots,\bar{\epsilon}_{k_{d-3}}) = g(1_{k})$$

$$= \frac{g'''(0_{k})(1_{k},1_{k},1_{k})}{6}$$

$$= \frac{f^{(d)}(0_{n})(\bar{\epsilon}_{k_{1}},\dots,\bar{\epsilon}_{k_{d-3}},\bar{\epsilon}_{k},\bar{\epsilon}_{k},\bar{\epsilon}_{k})}{6},$$

$$= 4).$$

which proves (2.4).

Example 3.1. Proof of the fundamental AM - GM inequality by verifying condition (a) from Theorem 2.3.

Proof. Let $n \in \mathbb{N}^*$ and $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \sum_{i=1}^n x_i^n - n \prod_{i=1}^n x_i$. We shall prove that $f \ge 0$ on \mathbb{R}^n_+ . Since Theorem 1.1 shows this for $n \le 3$, assume that $n \ge 4$. For all $u^1, \ldots, u^n \in \mathbb{R}^n$, we have

(3.9)
$$f^{(n)}(0_n)(u^1,\dots,u^n) = \sum_{i_1,\dots,i_n=1}^n \frac{\partial^n f}{\partial x_{i_1}\cdots \partial x_{i_n}}(0_n) p_{i_1}(u^1)\cdots p_{i_n}(u^n),$$

where $p_1, \ldots, p_n : \mathbb{R}^n \to \mathbb{R}$ are the standard linear projections. For ease of exposition, let us define the map

$$v: \mathbb{R}^n \to \{1, \dots, n\}, \quad v(x) = \operatorname{card}(\{x_1, \dots, x_n\}),$$

and consider the set $A := \{1, \ldots, n\}^n$. For every $i = (i_1, \ldots, i_n) \in A$, set

(3.10)
$$\frac{\partial^n f}{\partial x^i} := \frac{\partial^n f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_n}} \equiv \begin{cases} n!, & v(i) = 1\\ -n, & v(i) = n\\ 0, & 1 < v(i) < n \end{cases}$$

the last equality being easily checked. Now fix $k_1 \ge \cdots \ge k_n$ in $\{1, \ldots, n\}$, and let

$$B := \{ i \in A \mid i_1 \le k_1, i_2 \le k_2, \dots, i_n \le k_n \}.$$

By (3.9) and (3.10) we get

(3.11)
$$f^{(n)}(0_n)(\epsilon_{k_1},\ldots,\epsilon_{k_n}) = \sum_{i\in B} \frac{\partial^n f}{\partial x^i}(0_n) = n! \cdot \operatorname{card}(B_1) - n \cdot \operatorname{card}(B_n),$$

where $B_1 := \{i \in B \mid v(i) = 1\}$ and $B_n := \{i \in B \mid v(i) = n\}$. Since obviously

$$B_1 = \{\epsilon_n, 2\epsilon_n, \dots, k_n\epsilon_n\}, \quad B_n \subset \{i \in A \mid i_n \le k_n, v(i) = n\} =: E,$$

we have $\operatorname{card}(B_1) = k_n$ and $\operatorname{card}(B_n) \leq \operatorname{card}(E) = k_n(n-1)!$. To prove the last equality, let us observe that every element $i \in E$ can be obtained by selecting $i_n \in \{1, \ldots, k_n\}$ (there are k_n possibilities), and then choosing pairwise distinct $i_1, \ldots, i_{n-1} \in \{1, \ldots, n\} \setminus \{i_n\}$ (that is, a permutation of this set). By (3.11) we get

$$f^{(n)}(0_n)(\epsilon_{k_1},\ldots,\epsilon_{k_n}) \ge 0.$$

The conclusion follows by Theorem 2.3.

For Pólya's general result on strictly positive forms, we refer the reader to [3]. Bounds for the exponent from Pólya's theorem are given in [5, 8]. Various symmetric inequalities can be found especially in [3, 6], but also in [1, 4, 7, 9]. Some general results on symmetric inequalities can be found in [10] and [11].

REFERENCES

- [1] J.L. BRENNER, A unified treatment and extension of some means of classical analysis. I. Comparison theorems, *J. Combin. Inform. System Sci.*, **3** (1978), 175–199.
- [2] M.D. CHOI, T.Y. LAM AND B. REZNICK, Even symmetric sextics, Math. Z., 195 (1987), 559– 580.
- [3] G. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, Cambridge Mathematical Library, 2nd ed., 1952.
- [4] D.B. HUNTER, The positive-definiteness of the complete symmetric functions of even order, *Math. Proc. Cambridge Philos. Soc.*, **82** (1977), 255–258.
- [5] J. A. de LOERA AND F. SANTOS, An effective version of Pólya's theorem on positive definite forms, J. Pure Appl. Algebra 108 (1996), 231–240.
- [6] D.S. MITRINOVIĆ AND P.M. VASIĆ, Analytic inequalities, Die Grundlehren der mathematischen Wissenchaften, Band 165, Springer-Verlag, Berlin - Heidelberg - New York, 1970.
- [7] R.F. MUIRHEAD, Some methods applicable to identities and inequalities of symmetric algebraic functions of *n* letters, *Proc. Edinburgh Math. Soc.*(1), **21** (1903), 144–157.
- [8] V. POWERS AND B. REZNICK, A new bound for Pólya's theorem with applications to polynomials positive on polyhedra. Effective methods in algebraic geometry (Bath, 2000), J. Pure Appl. Algebra, 164 (2001), 221–229.
- [9] S. ROSSET, Normalized symmetric functions, Newton's inequalities and a new set of stronger inequalities, *Amer. Math. Monthly*, **96** (1989), 815–819.
- [10] V. TIMOFTE, On the positivity of symmetric polynomial functions. Part I: General results, *J. Math. Anal. Appl.*, **284** (2003), 174–190.
- [11] V. TIMOFTE, On the positivity of symmetric polynomial functions. Part II: Lattice general results and positivity criteria for degrees 4 and 5, *J. Math. Anal. Appl.*, (in press).
- [12] V. TIMOFTE, Discriminants for positivity of real symmetric *n*-ary quartics (preprint).