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1. INTRODUCTION, DEFINITIONS , AND PRELIMINARIES

Let.A denote the class of functiorfy z) normalizedby

f(z)= z+Zakzk
k=2

that areanalyticin the openunit disk
U:={2:2€C and |z <1}.
Also let A (n) denote the subclass gf consisting of all functiong (z) of the form:

F)=2= Y a2t (@20neN:={1,23..}).
k=n+1

We denote by (n) the subclass afl (n) of functions which arenivalentin U, and byZ, (n)
andC, (n) the subclasses df (n) consisting of functions which are, respectivediarlike of
ordera (0 = o < 1) andconvex of ordery (0 < o < 1) in U. The classesl(n), 7 (n), 7,(n),
andC,(n) were investigated by Chatterjea [1] (and Srivastaval. [9]). In particular, the
following subclasses:

T:=T7(1), T'(a):=7,(1), and C(a):=C4(1)

were considered earlier by Silverman [7].
Next, following the work of Sekine and Owal [4], we denote Myn, V) the subclass afd
consisting of all functiong (z) of the form:

(1.2) f(z)=2-— Z e =10 g2k (9 e R; a4, = 0; neN).

Finally, the subclasseg(n,v), 7. (n,v), andC, (n,J) of the classA (n, ) are defined in
the same way as the subclasgés), 7,(n), andC, (n) of the classA (n).

We begin by recalling the following useful characterizations of the function cl&sses /)
andcC, (n,v) (see Sekine and Owal[4]).

Lemma 1.1. A functionf(z) € A (n, ) of the form(L.1]) is in the classT* (n, ¥) if and only if

(1.2) i(l@—a)akgl—a meN;0sa<l).

k=n+1

Lemma 1.2. A functionf(z) € A (n, ) of the form(L.1)) is in the clas<, (n, ¥) if and only if

(1.3) ik(l{;—a)ak§1—a meN;0Sa<l).

k=n+1

Motivated by the equalities i (1.2) ar]d (]L.3) above, Sekinal. [6] defined a general sub-
classA (n; B, 9) of the classA (n,9) consisting of functions(z) of the form [1.1), which
satisfy the following inequality:

EE:_Bkakégl (Bk:>0;7l€IN).
k=n+1
Thus it is easy to verify each of the following classifications and relationships:

A (n; k,0) =15 (n,9) =T (n,9) =T (n,9),
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A(n;’f‘—“,ﬂ) “Tr(0) (0<a<l)
—

and
A(n;M,ﬁ) =C,(n,9) (0Za<1).

11—«
As a matter of fact, Sekinet al. [6] also obtained each of the following basic properties of the
general classed (n; By, V).

Theorem 1.3. A (n; By, 9) is the convex subfamily of the cladgn, V).

Theorem 1.4.Let

(1.4) fi(z) =2z and fi(z)=2— et 2~
By

(k=n+1n+2n+3,...;neN).

Thenf € A(n; By, 9) if and only if f (z) can be expressed as follows:

FE)=MAGE)+ D Mfil2),

k=n+1

where

M+ Y A=1 (M 20420, neN).

k=n+1

Corollary 1.5. The extreme points of the clags(n; By, ¥) are the functiond; (z) and fj (z)
(k =2 n+1; n € N) given by(1.4).

Applying the concepts of extreme points, fractional calculus, and subordination, $¢kine
[6] obtained several integral means inequalities for higher-order fractional derivatives and frac-
tional integrals of functions belonging to the general clas$es By, ¥). Subsequently, Sekine
and Owal[5] discussed the weakening of the hypotheseB,fan those results by Sekiret al.
[6]. In this paper, we investigate the integral means inequalities for the fractional derivatives of
f(z) of ageneral ordep + A (0 < p < n; 0 £ X < 1) of functions f(z) belonging to the
general classed(n; By, V).

We shall make use of the following definitions of fractional derivativs@wa [3]; see also
Srivastava and Owa/|[8]).

Definition 1.1. Thefractional derivative of orden is defined, for a functiorf (z), by

1 d [~ (O
1.5 D) z::——/ d¢ (05 X<1),
where the functiory (z) is analytic in a simply-connected region of the compiteglane con-
taining the origin and the multiplicity ofz — g)*A is removed by requirindog (= — ¢) to be
real whenz — ¢ > 0.

Definition 1.2. Under the hypotheses of Definitipn [L.1, tiractional derivative of order. + A
is defined, for a functiorf (z), by
dn

DA f () = @Djf(z) (0SA<1;neNy:=NU{0}).
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It readily follows from [1.5) in Definitiof 1]1 that
I'(k+1) Lk
Fk—A+1)
We shall also need the concept of subordination between analytic functions and a subordina-
tion theorem of Littlewood [2] in our investigation.

Given two functionsf (z) andg (z), which are analytic ifJ, the functionf (z) is said to be
subordinateo g (z) in U if there exists a functiom (z), analytic inU with

w(0)=0 and |w(z)|<1 (z€0),

(1.6) D):F = 0 A<1).

such that
f(Z)=gw(z) (2€0).
We denote this subordination by
f(z) <g(2).
Theorem 1.6(Littlewood [2]). If the functionsf (z) andg (z) are analytic inU with
9(2) < f(2),

then
27 2
/ |g(rei‘9)|“d€§/ ‘f(rei9)|ud9 (L>0;0<r<1).
0 0

2. THE MAIN INTEGRAL MEANS | NEQUALITIES
Theorem 2.1. Suppose thaf(z) € A (n; k™' By, ¥) and that

(h+1)*Bpl(h+2-A—p) Tn+1-p) SB:. (k2n+1)

['(h+1) 'n+2—-XA—p) —
forsomeh =2 n,0 = A < 1,and0 < ¢ < p < n. Also let the functiorf;,; (z) be defined by
6ih19
(2.1) frra(2) =2 — 2 (frr € A(ns KT By, )

(h+1)%*1 Bpia
Then, forz =re?and 0 <r < 1,
27 2m
@) [ |prreass [CDr @) 0SA<1in>0).
0 0

Proof. By virtue of the fractional derivative formulf (1.6) and Definitjon|1.2, we find frpm](1.1)
that

+A < i(k—1)0 D k—1
DV f(2) = ) (1 E e ai 2

2—-XA—p Rt I'k+1—-X—p)
Zi=Ap N k!
=—|[1-— PRGIEOLS [ W, P — ] Lt I
r@—x—p>< D R ErEs )
where
I —
(2.3) O(k) = (k= p) 0=A<L;k2n+1;neN).

F'k+1—X—p)
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Since® (k) is adecreasingunction ofk, we have
F'(n+1-p)
F'n+2-X—p)
0=A<l;k=2n+1;,neN).
Similarly, from (2.1), [(1.p), and Definitidn 1.2, we obtain, for< X < 1,
Z1AP (1 B eth? . Fr2—A—pr(h+2) Zh)
r2-X—p (h+1)1By;  I'(h+2-X—p) '
Forz = re? and0 < r < 1, we must show that

e

0<®E)<O(n+1)=

DY fria (2) =

I

do

k!
1- ek (2 X — p)—— D(k) a2
k;H (k—p—1)

</2” - eth? TER-A-—pl'(h+2) ,
=) (h+ 1B,y T(h+2—X—p)
Thus, by applying Theorem 1.6, it would suffice to show that

I

o, (0SA<1; pu>0).

= k!
(24) 1- eI — X — p)————— D(k)a 2!
2 T
<1 eth? F'2—X—pr(h+2) h

(h+ 1) By, T(h+2-XA—p)
Indeed, by setting

00 A |
1-— Z GZ(k_l)ﬂF<2 - A= p)(k+ @(k,‘)akzk_l

k=n-+1
ihd oy
(h+ 1)1 By Lh+2—-X—p)
we find that
h_ (h + 1)q+1Bh+1F(h + 2 —A—p) i(k—1)0 k! k—1
k=n+1
which readily yieldsw(0) = 0.
Therefore, we have
w(z)["
(h+ 1) B T(h+2 -\ —p) k! 1
< ——®(k
= T(h+2) k;ﬂ G p =1y 2Faxll
(h+ 1) By T'(h+2—X—p) = k!
< |z - ® 1 —_—
= |2 T(h+2) (n+ )k;H (k—p—1)1 ™
-ﬂ|Mh+D“H%HNh+2—A—M, I'(n+1-p) 53'__£L——a
T(h+2) Tn+2-A—p) = (k—p—1"
_ |n(h+1)th+1F(h+2—A—p)_ ['(n+1-—p) i k! .
T(h+1) T(n+2—XA—p) k—p—1)""

k=n+1
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o0

. k!
=ET 2 Gy e

k=n+1

25) Zlz" Y ETBup S|z <1 (neN),
k=n-+1
by means of the hypothesis of Theorem 2.1.

In light of the last inequality in (2]5) above, we have the subordinafion (2.4), which evidently
proves Theorem 2.1. O

3. REMARKS AND OBSERVATIONS
First of all, in its special case when= ¢ = 0, Theorem 2.1 readily yields

Corollary 3.1 (cf. Sekine and Owa [5], Theorem.6puppose thaf(z) € A (n; kB, ) and
that

Byul'(h+2-X) TI(n+1) <B, (k=2n+1; n€N)

I(h+1)  Tn+2-\)
for someh =2 nand 0 = A < 1. Also let the functiory;,., (z) be defined by
ez‘hﬁ

W

(3.1) fri1(z) = 2 — " (fas € A(ny kB, ) .

(h + 1) B
Then, forz = re?? and 0 < r < 1,

G2 [Iprerws [P el e o<t 0.
A further consequence of Corollafy 3.1 whén= n would lead us immediately to Corollary
[3.2 below.
Corollary 3.2. Suppose thaf(z) € A (n; kBy, ) and that
(3.3) Boy1 £ By (k=2n+1; neN).

Also let the functiory,, ., (z) be defined by
einﬂ
(n+1)Bup

Then, forz = re? and 0 < r < 1,

for1(z) =2z — 2" (fupr € A(n; kB, 9)) .

21 21
/ |D2f(2)]" do < / DX foir (2)["d6 (0SS A<1; > 0).
0 0

The hypothesis| (3}3) in Corollafy 3.2 is weaker than the corresponding hypothesis in an
earlier result of Sekinet al.[6, p. 953, Theorem 6].

Next, forp = 1 andg = 0, Theoremnj 2]1 reduces to an integral means inequality of Sekine
and Owal[5, Theorem 7] which, fdr = n, yields another result of Sekiret al. [6, p. 953,
Theorem 7] under weaker hypothesis as mentioned above.

Finally, by settingp = ¢ = 1 in Theoremi 2.[L, we obtain a slightly improved version of
another integral means inequalities of Sekine and Qwa [5, Theorem 8] with respect to the pa-
rameter)\ (see also Sekinet al. [6, p. 955, Theorem 8] for the case when= n, just as we
remarked above).
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