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ABSTRACT. In this paper, we introduce the classA∗
o (p, A,B, α ) of p-valent functions in the

unit discU = { z : | z | < 1 }. We obtain coefficient estimate, distortion and closure theorems,
radii of close-to convexity, starlikeness and convexity of orderδ ( 0 6 δ < 1 ) for this class.
We also obtain class preserving integral operators for this class. Furthermore, various distortion
inequalities for fractional calculus of functions in this class are also given.
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1. I NTRODUCTION

Let A(n) be the class of functionsf , analytic andp−valent inU = {z : |z| < 1} given by

(1.1) f(z) = zp +
∞∑

n=1

ap+nz
p+n, ap+n > 0.

A functionf belonging to the classA(n) is said to be in the classA∗m(p, A, B, α) if and only if

(p− 1) + Re

{
zf (p)(z)

f (p−1)(z)

}
> 0 for z ∈ U.

In the other words,f ∈ A∗m(p, A, B, α) if and only if it satisfies the condition∣∣∣∣∣∣
(p− 1) + zf (p)(z)

f (p−1)(z)
− p

(A−B)(p− α) + pB −B
[
(p− 1) + zf (p)(z)

f (p−1)(z)

]
∣∣∣∣∣∣ < 1
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2 H.Ö. GÜNEY AND S. SÜMER EKER

where−1 ≤ B < A ≤ 1, −1 ≤ B < 0 and0 ≤ α < p. Let Am denote the subclass ofA(n)
consisting of functions analytic andp−valent which can be expressed in the form

(1.2) f(z) = zp −
∞∑

n=1

ap+nz
p+n; ap+n ≥ 0.

Let us define

A∗o(p, A, B, α) = A∗m(p, A, B, α)
⋂

Am.

In this paper, we obtain a coefficient estimate, distortion theorems, integral operators and radii
of close-to-convexity, starlikeness and convexity, closure properties and distortion inequalities
for fractional calculus. This paper is motivated by an earlier work of Nunokawa [1].

2. COEFFICIENT ESTIMATES

Theorem 2.1. If the functionf is defined by (1.1), thenf ∈ A∗o(p, A, B, α) if and only if

(2.1)
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n ≤ (A−B)(p− α)p!.

The result is sharp.

Proof. Assume that the inequality (2.1) holds true and let|z| = 1. Then we obtain∣∣zf (p)(z)− f (p−1)(z)
∣∣− ∣∣(A−B)(p− α)f (p−1) −Bzf (p) + Bf (p−1)

∣∣
=

∣∣∣∣∣−
∞∑

n=1

n(p + n)!

(n + 1)!
ap+nz

n+1

∣∣∣∣∣ −
∣∣∣∣∣ (A−B)(p− α)p!z

−

[
(A−B)(p− α)

∞∑
n=1

(p + n)!

(n + 1)!
ap+nz

n+1 −B
∞∑

n=1

n(p + n)!

(n + 1)!
ap+nz

n+1

]∣∣∣∣∣
≤

∞∑
n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n − (A−B)(p− α)p! ≤ 0

by hypothesis. Hence, by the maximum modulus theorem, we havef ∈ A∗o(p, A, B, α). To
prove the converse, assume that∣∣∣∣∣∣

(p− 1) + zf (p)(z)

f (p−1)(z)
− p

(A−B)(p− α) + pB −B
[
(p− 1) + zf (p)(z)

f (p−1)(z)

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
−

∞∑
n=1

n(p+n)!
(n+1)!

ap+nz
n+1

(A−B)(p− α)

(
p!z −

∞∑
n=1

(p+n)!
(n+1)!

ap+nzn+1

)
+ B

∞∑
n=1

n(p+n)!
(n+1)!

ap+nzn+1

∣∣∣∣∣∣∣∣ < 1.

SinceRe(z) ≤ |z| for all z, we have

(2.2) Re


−

∞∑
n=1

n(p+n)!
(n+1)!

ap+nz
n+1

(A−B)(p− α)

(
p!z −

∞∑
n=1

(p+n)!
(n+1)!

ap+nzn+1

)
+ B

∞∑
n=1

n(p+n)!
(n+1)!

ap+nzn+1

 < 1.
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ON A CERTAIN CLASS OF p−VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS 3

Choosing values ofz on the real axis and lettingz → 1− through real values, we obtain

(2.3)
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n ≤ (A−B)(p− α)p!,

which obviously is required assertion (2.1). Finally, sharpness follows if we take

(2.4) f(z) = zp − (A−B)(p− α)p!(n + 1)!

(p + n)! [n(1−B) + (A−B)(p− α)]
zp+n.

�

Corollary 2.2. If f ∈ A∗o(p, A, B, α), then

(2.5) ap+n ≤
(A−B)(p− α)p!(n + 1)!

(p + n)! [n(1−B) + (A−B)(p− α)]
.

The equality in (2.5) is attained for the functionf given by (2.4).

3. DISTORTION PROPERTIES

Theorem 3.1. If f ∈ A∗o(p, A, B, α), then for|z| = r < 1

(3.1) rp − 2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]
rp+1

≤ |f(z)| ≤ rp +
2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]
rp+1

and

(3.2) prp−1 − 2(A−B)(p− α)

(1−B) + (A−B)(p− α)
rp

≤ |f ′(z)| ≤ prp−1 +
2(A−B)(p− α)

(1−B) + (A−B)(p− α)
rp.

All the inequalities are sharp.

Proof. Let

f(z) = zp −
∞∑

n=1

ap+nz
p+n, ap+n > 0.

From Theorem 2.1, we have

(p + 1)! [(1−B) + (A−B)(p− α)]

2

∞∑
n=1

ap+n

≤
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n

≤ (A−B)(p− α)p!

which

(3.3)
∞∑

n=1

ap+n ≤
2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]

and

(3.4)
∞∑

n=1

(p + n)ap+n ≤
2(A−B)(p− α)

(1−B) + (A−B)(p− α)
.
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4 H.Ö. GÜNEY AND S. SÜMER EKER

Consequently, for|z| = r < 1, we obtain

|f(z)| ≤ rp + rp+1

∞∑
n=1

ap+n ≤ rp +
2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]
rp+1

and

|f(z)| ≥ rp − rp+1

∞∑
n=1

ap+n ≥ rp − 2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]
rp+1

which prove that the assertion (3.1) of Theorem 3.1 holds.
The inequalities in (3.2) can be proved in a similar manner and we omit the details.�

The bounds in (3.1) and (3.2) are attained for the functionf given by

(3.5) f(z) = zp − 2(A−B)(p− α)

(p + 1) [(1−B) + (A−B)(p− α)]
zp+1.

Letting r → 1− in the left hand side of (3.1), we have the following:

Corollary 3.2. If f ∈ A∗o(p, A, B, α), then the disc|z| < 1 is mapped byf onto a domain that
contains the disc

|w| < (p + 1)(1−B) + (A−B)(p− α)(p− 1)

(p + 1) [(1−B) + (A−B)(p− α)]
.

The result is sharp with the extremal functionf being given by (3.5).

Puttingα = 0 in Theorem 3.1 and Corollary 3.2, we get

Corollary 3.3. If f ∈ A∗o(p, A, B, 0), then for|z| = r

rp − 2p(A−B)

(p + 1) [(1−B) + p(A−B)]
rp+1

≤ |f(z)| ≤ rp +
2p(A−B)

(p + 1) [(1−B) + p(A−B)]
rp+1

and

prp−1 − 2p(A−B)

(1−B) + p(A−B)
rp ≤ |f ′(z)| ≤ prp−1 +

2p(A−B)

(1−B) + p(A−B)
rp.

The result is sharp with the extremal function

(3.6) f(z) = zp − 2p(A−B)

(p + 1) [(1−B) + p(A−B)]
zp+1; z = ∓r.

Corollary 3.4. If f ∈ A∗o(p, A, B, 0), then the disc|z| < 1 is mapped byf onto a domain that
contains the disc

|w| < (p + 1)(1−B) + p(p− 1)(A−B)

(p + 1) [(1−B) + p(A−B)]
.

The result is sharp with the extremal functionf being given by (3.6).
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ON A CERTAIN CLASS OF p−VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS 5

4. RADII OF CLOSE-TO-CONVEXITY , STARLIKENESS AND CONVEXITY

Theorem 4.1.Letf ∈ A∗o(p, A, B, α). Thenf isp−valent close-to-convex of orderδ (0 ≤ δ < p)
in |z| < R1, where

(4.1) R1 = inf
n

{[
(p + n)![n(1−B) + (A−B)(p− α)]

(A−B)(p− α)(n + 1)p!

(
p− δ

p + n

)] 1
n

}
.

Theorem 4.2. If f ∈ A∗o(p, A, B, α), thenf is p−valent starlike of orderδ (0 ≤ δ < p) in
|z| < R2, where

(4.2) R2 = inf
n

{[
(p + n)![n(1−B) + (A−B)(p− α)]

(A−B)(p− α)(n + 1)!p!

(
p− δ

p + n− δ

)] 1
n

}
.

Theorem 4.3.If f ∈ A∗o(p, A, B, α), thenf is ap−valent convex function of orderδ (0 ≤ δ < p)
in |z| < R3, where

(4.3) R3 = inf
n

{[
[n(1−B) + (A−B)(p− α)](p + n− 1)!

(A−B)(p− α)(n + 1)!(p− 1)!

(
p− δ

p + n− δ

)] 1
n

}
.

In order to establish the required results in Theorems 4.1, 4.2 and 4.3, it is sufficient to show
that ∣∣∣∣f ′(z)

zp−1
− p

∣∣∣∣ ≤ p− δ for |z| < R1,∣∣∣∣zf ′(z)

f(z)
− p

∣∣∣∣ ≤ p− δ for |z| < R2 and∣∣∣∣[1 +
zf ′′(z)

f ′(z)

]
− p

∣∣∣∣ ≤ p− δ for |z| < R3,

respectively.

Remark 4.4. The results in Theorems 4.1, 4.2 and 4.3 are sharp with the extremal functionf
given by (2.4). Furthermore, takingδ = 0 in Theorems 4.1, 4.2 and 4.3, we obtain radius of
close-to-convexity, starlikeness and convexity, respectively.

5. I NTEGRAL OPERATORS

Theorem 5.1.Letc be a real number such thatc > −p. If f ∈ A∗o(p, A, B, α), then the function
F defined by

(5.1) F (z) =
c + p

zc

∫ z

0

tc−1f(t)dt

also belongs toA∗o(p, A, B, α).

Proof. Let

f(z) = zp −
∞∑

n=1

ap+nz
p+n.

Then from the representation ofF , it follows that

F (z) = zp −
∞∑

n=1

bp+nz
p+n,
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6 H.Ö. GÜNEY AND S. SÜMER EKER

wherebp+n =
(

c+p
c+p+n

)
ap+n. Therefore using Theorem 2.1 for the coefficients ofF , we have

∞∑
n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
bp+n

=
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!

(
c + p

c + p + n

)
ap+n

≤ (A−B)(p− α)p!

since c+p
c+p+n

< 1 andf ∈ A∗o(p, A, B, α). HenceF ∈ A∗o(p, A, B, α). �

Theorem 5.2. Let c be a real number such thatc > −p. If F ∈ A∗o(p, A, B, α), then the
functionf defined by (5.1) isp−valent in|z| < R∗, where

(5.2) R∗ = inf
n

{[(
c + p

c + p + n

)
(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!(A−B)(p− α)p!

(
p

p + n

)] 1
n

}
.

The result is sharp. Sharpness follows if we take

f(z) = zp −
(

c + p + n

c + p

)
(n + 1)!(A−B)(p− α)p!

(p + n)! [n(1−B) + (A−B)(p− α)]
zp+n.

6. CLOSURE PROPERTIES

In this section we show that the classA∗o(p, A, B, α) is closed under “arithmetic mean” and
“convex linear combinations”.

Theorem 6.1.Let

fj(z) = zp −
∞∑

n=1

ap+n,jz
p+n, j = 1, 2, ...

and

h(z) = zp −
∞∑

n=1

bp+nz
p+n,

where

bp+n =
∞∑

j=1

λjap+n,j, λj > 0

and
∑∞

j=1 λj = 1. If fj ∈ A∗o(p, A, B, α) for eachj = 1, 2, ..., thenh ∈ A∗o(p, A, B, α).

Proof. If fj ∈ A∗o(p, A, B, α), then we have from Theorem 2.1 that
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n,j ≤ (A−B)(p− α)p!, j = 1, 2, ....

Therefore
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
bp+n

=
∞∑

n=1

[
(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!

(
∞∑

j=1

λjap+n,j

)]
≤ (A−B)(p− α)p!.

Hence, by Theorem 2.1,h ∈ A∗o(p, A, B, α). �
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ON A CERTAIN CLASS OF p−VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS 7

Theorem 6.2.The classA∗o(p, A, B, α) is closed under convex linear combinations.

Theorem 6.3.Letfp(z) = zp and

fp+n = zp − (A−B)(p− α)(n + 1)!p!

(p + n)! [n(1−B) + (A−B)(p− α)]
zp+n (n ≥ 1).

Thenf ∈ A∗o(p, A, B, α) if and only if it can be expressed in the form

f(z) = λpfp(z) +
∞∑

n=1

λnfp+n(z), z ∈ U,

whereλn ≥ 0 andλp = 1−
∑∞

n=1 λn.

Proof. Let us assume that

f(z) = λpfp(z) +
∞∑

n=1

λnfp+n(z)

= zp −
∞∑

n=1

(A−B)(p− α)(n + 1)!p!

(p + n)! [n(1−B) + (A−B)(p− α)]
λnz

p+n.

Then from Theorem 2.1 we have

∞∑
n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!

× (A−B)(p− α)(n + 1)!p!

(p + n)! [n(1−B) + (A−B)(p− α)]
λn

≤ (A−B)(p− α)p!.

Hencef ∈ A∗o(p, A, B, α). Conversely, letf ∈ A∗o(p, A, B, α). It follows from Corollary 2.2
that

ap+n ≤
(A−B)(p− α)(n + 1)!p!

(p + n)! [n(1−B) + (A−B)(p− α)]
.

Setting

λn =
(p + n)! [n(1−B) + (A−B)(p− α)]

(A−B)(p− α)(n + 1)!p!
ap+n, n = 1, 2, . . .

andλp = 1−
∑∞

n=1 λn, we have

f(z) = zp −
∞∑

n=1

ap+nz
p+n

= zp −
∞∑

n=1

λnz
p +

∞∑
n=1

λnz
p −

∞∑
n=1

λn
(A−B)(p− α)(n + 1)!p!

(p + n)! [n(1−B) + (A−B)(p− α)]
zp+n

= λpfp(z) +
∞∑

n=1

λnfp+n(z).

This completes the proof of Theorem 6.3. �
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8 H.Ö. GÜNEY AND S. SÜMER EKER

7. DEFINITIONS AND APPLICATIONS OF FRACTIONAL CALCULUS

In this section, we shall prove several distortion theorems for functions to general class
A∗o(p, A, B, α). Each of these theorems would involve certain operators of fractional calcu-
lus we find it to be convenient to recall here the following definition which were used recently
by Owa [2] (and more recently, by Owa and Srivastava [3], and Srivastava and Owa [4] ; see
also Srivastava et al. [5]).

Definition 7.1. The fractional integral of orderλ is defined, for a functionf , by

(7.1) D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ
dζ (λ > 0),

wheref is an analytic function in a simply – connected region of thez -plane containing the
origin, and the multiplicity of(z − ζ)λ−1 is removed by requiringlog(z − ζ) to be real when
z − ζ > 0.

Definition 7.2. The fractional derivative of orderλ is defined, for a functionf , by

(7.2) Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1),

wheref is constrained, and the multiplicity of(z − ζ)−λ is removed, as in Definition 7.1.

Definition 7.3. Under the hypotheses of Definition 7.2, the fractional derivative of order(n+λ)
is defined by

(7.3) Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z) (0 ≤ λ < 1),

where0 ≤ λ < 1 andn ∈ N0 = N
⋃
{0}. From Definition 7.2, we have

(7.4) D0
zf(z) = f(z)

which, in view of Definition 7.3 yields,

(7.5) Dn+0
z f(z) =

dn

dzn
D0

zf(z) = fn(z).

Thus, it follows from (7.4) and (7.5) that

lim
λ→0

D−λ
z f(z) = f(z) and lim

λ→0
D1−λ

z f(z) = f ′(z).

Theorem 7.1.Let the functionf defined by (1.2) be in the classA∗o(p, A, B, α). Then forz ∈ U
andλ > 0,∣∣D−λ

z f(z)
∣∣ ≥ |z|p+λ

{
Γ(p + 1)

Γ(λ + p + 1)

− 2(A−B)(p− α)Γ(p + 1)

(λ + p + 1)Γ(λ + p + 1) [(1−B) + (A−B)(p− α)]
|z|
}

and∣∣D−λ
z f(z)

∣∣ ≤ |z|p+λ

{
Γ(p + 1)

Γ(λ + p + 1)

+
2(A−B)(p− α)Γ(p + 1)

(λ + p + 1)Γ(λ + p + 1) [(1−B) + (A−B)(p− α)]
|z|
}

.

The result is sharp.
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ON A CERTAIN CLASS OF p−VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS 9

Proof. Let

F (z) =
Γ(p + 1 + λ)

Γ(p + 1)
z−λD−λ

z f(z)

= zp −
∞∑

n=1

Γ(p + n + 1)Γ(p + λ + 1)

Γ(p + 1)Γ(p + n + λ + 1)
ap+nz

p+n

= zp −
∞∑

n=1

ϕ(n)ap+nz
p+n,

where

ϕ(n) =
Γ(p + n + 1)Γ(p + λ + 1)

Γ(p + 1)Γ(p + n + λ + 1)
, (λ > 0, n ∈ N).

Then by using0 < ϕ(n) ≤ ϕ(1) = p+1
p+λ+1

and Theorem 2.1, we observe that

(p + 1)! [(1−B) + (A−B)(p− α)]

2!

∞∑
n=1

ap+n

≤
∞∑

n=1

(p + n)! [n(1−B) + (A−B)(p− α)]

(n + 1)!
ap+n

≤ (A−B)(p− α)p!,

which shows thatF (z) ∈ A∗o(p, A, B, α). Consequently, with the aid of Theorem 3.1, we have

|F (z)| ≥ |zp| − ϕ(1) |z|p+1
∞∑

n=1

ap+n

≥ |z|p − 2(A−B)(p− α)

(p + λ + 1)[(1−B) + (A−B)(p− α)]
|z|p+1

and

|F (z)| ≤ |zp|+ ϕ(1) |z|p+1
∞∑

n=1

ap+n

≤ |z|p +
2(A−B)(p− α)

(p + λ + 1)[(1−B) + (A−B)(p− α)]
|z|p+1

which completes the proof of Theorem 7.1.By lettingλ → 0, Theorem 7.1 reduces at once to
Theorem 3.1. �

Corollary 7.2. Under the hypotheses of Theorem 7.1,D−λ
z f(z) is included in a disk with its

center at the origin and radiusR−λ
1 given by

R−λ
1 =

{
Γ(p + 1)

Γ(λ + p + 1)

}{
1 +

2(A−B)(p− α)

(p + λ + 1)[(1−B) + (A−B)(p− α)]

}
.

Theorem 7.3.Let the functionf defined by (1.2) be in the classA∗o(p, A, B, α). Then,∣∣Dλ
z f(z)

∣∣ ≥ |z|p−λ

{
Γ(p + 1)

Γ(p− λ + 1)

− 2(A−B)(p− α)Γ(2− λ)Γ(p + 1)

Γ(p− λ + 1)Γ(p− λ + 2)[(1−B) + (A−B)(p− α)]
|z|
}
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and∣∣Dλ
z f(z)

∣∣ ≤ |z|p−λ

{
Γ(p + 1)

Γ(p− λ + 1)

+
2(A−B)(p− α)Γ(2− λ)Γ(p + 1)

Γ(p− λ + 1)Γ(p− λ + 2)[(1−B) + (A−B)(p− α)]
|z|
}

for 0 ≤ λ < 1.

Proof. Using similar arguments as given by Theorem 7.1, we can get the result. �

Corollary 7.4. Under the hypotheses of Theorem 7.3,Dλ
z f(z) is included in the disk with its

center at the origin and radiusRλ
2 given by

Rλ
2 =

{
Γ(p + 1)

Γ(λ + p + 1)

}{
1 +

2(A−B)(p− α)Γ(2− λ)

Γ(p− λ + 1)[(1−B) + (A−B)(p− α)]

}
.
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