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ABSTRACT. We consider the family?(1,5), b > 0, consisting of functiong analytic in the

open unit disd/ with the normalizatiorp(0) = 1 which have the disc formulatiojp — 1| < b

in U. Applying the subordination properties to certain choiceg o$ing the functiong,(z) =

Z+ Y nl i, a2, n = 1,2,..., we obtain inclusion relations, sufficient starlikeness and con-
vexity conditions, and coefficient bounds for functions in these classes. In some cases our results
improve the corresponding results appeared in print.
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1. INTRODUCTION

Let A denote the class of functions that are analytic in the open unitdisc{z € C : |z| <
1} and letA4,, be the subclass o4 consisting of functiong;, of the form

(1.2) fu2) =2+ Z a2t n=1,2,3,....
k=1+n

The functionp € A and normalized by(0) = 1 is said to be irP(1, b) if

(1.2) Ip(z) —1| < b, b>0, zeU.

The classP(1, b) which is defined using the disc formulatign (1.2) was studied by Janoski [6]
and has an alternative characterization in terms of subordination[(see [5] or [14]), that is, for
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2 R. AGHALARY, JAY M. JAHANGIRI, AND S.R. KULKARNI

z € U, we have
(1.3) p € P(Lb) < p(z)<1+bz.

For the functiong) andv in A, we say that the is subordinate t@ in U, denoted by) < v,
if there exists a functiomw(z) in A with w(0) = 0 and|w(z)| < 1, such thaip(z) = ¥ (w(z))
in U. For further references see Durén [3].

The family P(1,b) contains many interesting classes of functions which have close inter-
relations with different well-known classes of analytic univalent functions. For example, for
fn€ A, if

(Z];ﬂ‘) eP(l,1-a), 0<a<l,

thenf,, is starlike of order in U and if

Zf//
(H—f—/") eP(l,1—a), 0<a<l,
thenf,, is convex of ordery in U.

For0 < a < 1 we letS*(a) be the class of functiong, € A,, which are starlike of ordet

in U, that is,
S*(a) = {fn €A, R <Zj;f") >a, |2 < 1},

and letC(«) be the class of functiong, € A,, which are convex of order in U, that is,

Zf//
IC(oz)E{fneAnﬁR(l%— f/") >a, |z <1}.
Alexander[[1] showed thaf, is convex inU if and only if z f] is starlike inU.
In this paper we investigate inclusion relations, starlikeness, convexity, and coefficient condi-
tions onf,, and its related classes for two choice®0f,,) in P(1,b). In some cases, we improve
the related known results appeared in the literature.
DefineF(1,b) be the subclass d?(1, b) consisting of functiong( f;) so that

(1.4) p(f1(2)) = 2f1(2) (1 N ;'(z)>

fi(2) fi(2)
wheref, € A, is given by [1.1).
For fixedv > —1, n > 1, and forA > 0, define M}(1,b) be the subclass dP(1,b)
consisting of functiong( f,,) so that
DY f.(2)

(1.5) P(fa(2)) = (1 = A) ===+ A(D"fu(2))

wheref, € A, andD" f is thev-th order Ruscheweyh derivativie [10].
Thewv-th order Ruscheweyh derivative’ of a functionf,, in A,, is defined by

z

* fu(2) = 2 + Z Bi(v)agz",

(1.6) D f.(z) = m 2
where . ) —
Bk(v):( +0v)(24v)---(v+k—1)

(k—1)!
and the operatof x ” stands for the convolution or Hadamard product of two power series

f(z) = iaizi and g(z) = i bz
i=1 i=1
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defined by
(f x9)(2) = f(z) x g(2) = Z aibiz’".

2. THE FAMILY F(1,D)

The classF(1,b) for certain values ob yields a sufficient starlikeness condition for the
functionsf; € A;.

Theorem 2.1.1f 0 < b < 2 andp(f;) € F(1,b) then

z—ﬂeP(l,—B_ '9_4b>.
1 2

We need the following lemma, which is due to Jack [4].

Lemma 2.2. Letw(z) be analytic inU with w(0) = 0. If |w| attains its maximum value on the
circle |z| = r at a pointsz,, we can writezow’(zy) = kw(zo) for some reak, k > 1.

Proof of Theorerm 2]1For b, = ?"TM write Zf’il—((j)) = 1+ byw(z). Obviously,w is analytic
in U andw(0) = 0. The proof is complete if we can show that| < 1 in U. On the contrary,
suppose that there exists € U such thafw(z,)| = 1. Then, by Lemma 2|2, we must have
2ow'(29) = kw(z) for some reak, k£ > 1 which yields

20.f1(20) 20 f1 (20)
f1(20) (1+ fi(20)

) - 1‘ — (1 + brw(z0))> + by 20w/ (20) — 1

= |by, + 2by + bjw(zo)|

>3by — b} = b.
This contradicts the hypothesis, and so the proof is complete. 0O
Corollary 2.3. For0 < b < 2letp(f,) € F(1,b). Thenf, € S* (—*”\gm) ,

Corollary 2.4. If p(f1) € F(1,b) and0 < b < 2, then
‘ z2f1(z) 3—\/9—4b>
arg _ .
fi(2) 2
It is not known if the above corollaries can be extended to the case ivheh

f1(2) 1 x [ =1+V6
Corollary 2.5. If R( il ) > Lthenfy € 87 (=1545).

Remark 2.6. For 0 < b < 2, Theorenm 2.1 is an improvement to Theorem 1 obtained by
Obradove, Joshi, and Jovanav(8].

Corollary 2.7. If p(f1) € F(1,b) then f; is convex inJ for 0 < b < 0.935449.
Proof. Forp(f;) € F(1,b) we can write arg p(f1)| < arcsin b. Therefore,

< arcsin (

" _ /Q 4b
arg (1 + : ,1 <Z)) < arcsin b + arcsin (l) )
fi(2) 2
Now the proof is complete upon noting that the right hand side of the above inequality is less
than? for b = 0.935449 . O

Remark 2.8. It is not known if the above Corollafy 3.7 is sharp but it is an improvement to
Corollary 2 obtained by Obradovic, Joshi, and Jovanavic [8].
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Corollary 2.9. If p(fi) € F(1,b) then f; is convex in the dis¢z| < 2235442 for 0.935449 <
b<1.

Proof. We writep(f1) = 14bw(z) wherew is a Schwarz function. Let| < p. Then|w(z)| < p
and so|p(f1) — 1| < bp for |z| < p. Upon choosingp = 0.935449 it follows from the above
Corollary[2.T that arg(1 + = f{'/ f1)| < /2 for |z| < p = 0.935449/b . Therefore the proof is
complete. O

In the following example we show that there exist functighsvhich are not necessarily
starlike or univalent itV for p(f1) € F(1,b) if b is sufficiently large.

Example 2.1. For the spirallike functio(z) = 2/(1 — z)*** we have

v 2 1 [1—|z?
%(e‘uzg(’z)) :_( ‘212) >0, zeU.
9(2) V2 \[1— 2|
Since% = 12 we obtain

(2)
- (zg’(z)) 1 —7r(cosf +sinb)

g(2) 1 —2rcos@ +r?

for z = re”. Thusg(z) is not starlike forlz| < ¢, = <t < 1. This means thaf(z) = 9(r2) g
not starlike inU. Now set

o) = [ 2ac— i -2 -1
o ¢
and letzy = ﬁ:—:zog% . Therefore h(zp) = h(—zp) and soh is not univalent inJ. Conse-

quently, () = "2} is not univalent i for sufficiently large values of. On the other hand,

p(g) € F(1,b) for sufficiemtly largeb, since,

14 3z z

o) 11 = [ 225 4 2 1] <

for sufficiemtly largeb.

The following theorem is the converse of Theotfen) 2.1 for a special case.

Theorem 2.10. If % epP (1, 3*2\/5) thenp(f1) € F(1,1) for |z] < ro =0.7851 .
To prove our theorem, we need the following lemma due to Dieudonné [2].

Corollary 2.11. Let z, and w, be given points i/, with z, # 0. Then for all functionsf
analytic and satisfyingf(z)| < 1in U, with f(0) = 0 and f(zy) = wy, the region of values of
f'(20) is the closed disc

‘ Wy |20|% — |wo|?
wW—— | <+— .
z0 |~ |20/ (1 — [20[?)
Proof of Theorer 2.10Write
2f1(2) 3—v5
z) = =1+ w(z),
q(z) A6 ( 5 (2)
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wherew is a Schwarz function. We need to find the largest ¢lise< p for which

1+ <3 _2\/5> w(z)] + (3 _2\/5> 2w'(z) — 1

- (3 _ ﬁ) w?(z) + (3 — \/g)w(z) + (3 _2\/5> 2w'(2)| < 1.

2

For fixedr = |z| andR = |w(z)| we haveR < r. Therefore, by Lemma 2.11, we obtain

, R r*—R?
w (2)|§? + m
and so
o |#fiR) 2fi(z)\
Ip(f1) — 1] = 0 (1 + ) ) 1’
_ (3 _2\/5> W2 (2) + (3 — VB)w(z) + (3 - ﬁ) w'(2)
< #R* 4 3tR + tri :fj
= —U(R),
where
Y(R) = R*(t—tr* —1)+3R(1—r*)+7r* and t = 5 _2‘/5.

We note that)(R) attains its maximum ag, = 2(?1&25;7227)” So the theorem follows fofy~0.7851

which is the root of the equatiop’5 v (R,) = 1.

Letting zo andw, in Lemma 2.1(1 be so tht,| = o and|wy| = Q(Pﬁt%ﬁ_)t) we conclude that
0
the bound given by Theorem 2]10 is sharp. OJ

3. THE FAmMILY M(1,D)
We begin with stating and proving some properties of the fauvily(1, b).
Theorem 3.1.1f p(f,) € M (1,b) then

D" fn(2)
1 :
z €PQ, 1+ )xn)
We need the following lemma, which is due to Miller and Moc&nu [7].

Lemma3.2.Letq(z) = 1+¢,2"+--- (n > 1) be analytic inU and leth(z) be convex univalent
in U with 1(0) = 1. If ¢(2) + 12¢/(z) < h(z) for ¢ > 0, then

g(z) < Sameln / h(t)t5 1 dt.
n 0

Proof of Theorerfi 3|1For p(f,) € M3(1,b) setq(z) = Z42E) Then we can writgy(2) +
Az¢'(z) < 1+ bz. Now, applying Lemma 3|2, we obtain

q(z) < +1+ z.

1+ An
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Substituting back for(z) and choosingu(z) to be analytic inU with |w(z)| < |z
definition of subordination we have

D f.(2) b

- 1+ mw(z).

Now the theorem follows using the necessary and sufficient conditioh (1.3). The estimates in
Theorenj 31 are sharp fpt f,,) wheref,, is given by
Dfu(z) b

=14 —F=2"
2 +(1+)\n)z

" by the

Corollary 3.3. If p(f,,) € M5(1,b) then
‘D”fn(z)

1
- +1—|—/\n

2"
z

Corollary 3.4. If | f (2) + Az f)(2) — 1| < bthen

fl(z) <1+

1+/\nz'

Corollary 3.5. If |(1 — \) 22 1 \f7(2) — 1‘ < bthen

—_t <l —02z.
z R 1+)\nz

In the next two theorems we investigate the inclusion relations for classet; of

Theorem 3.6.For 0 < \; < Aandv > 0, leth; = %b. Then

MK(L b) - Mgl(la bl)

Proof. The case fo; = 0 is trivial. For\; # 0 suppose thai( f,,) € M5(1,b). Therefore, we
can write

1w ZLE L oy
o )\1 van(Z) v , )\1 van(2>
=5 (1—=X\) . +/\(Df"(z>)]+(1_T)< . >
Now, by definition,p(f,) € M3 (1,b:) and so the proof is complete. O

Theorem 3.7.Letv > 0 andb, = zﬂiﬂi Then

M1>)\+1(1, b) - MK(L bl)
Proof. For f,, € A, suppose that, (f,) € MY (1,b) where

D1+vfn(2)
z

pi(fn(2)) = (1= A) + D" fu(2))

Set
D?f.(2)

p2(fu(2)) = (1 = A) +A(D* fu(2))'-
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An elementary differentiation yields
pi(fa(z)) = (1= A) D" fa(2))
= palfal2) + 2B (Fa(2)).

Dl-i—vfn(z)
f +

1+w
From this and Lemma 3.2, we conclude thatf,) € M5 (1, b:). O
Corollary 3.8.
n , b
f1(2) + Azfl(2) € P(1,b) = (1 — )\)f (2) (z)eP (1, = n) :

Theorem 3.9.Forv > 0 andX > 0letb < 1 + An. pr(fn) e M5(1,b) then

<Dwa>>_1w< b(2 4 An)
Dv fo(2) Al(1+ An) —b]
Proof. First note that, we can write
Forb, = % we definew(z) by

_ DY fa(2))]

One can easily verify thab(z) is analytic inU andw(0) = 0. To conclude the proof, it suffices
to show thatw(z)| < 1in U. If this is not the case, then by Lemra|2.2, there exists a point
2o € U such thatw(zo)| = 1 andzow’(zy) = kw(zo). Therefore

D? f(% p
(Gt 1= (1= V2L Dy - 1
D? fo(20) { ZO<van(ZO))/} ’
= | (1 =N AR
20 ( ) van(Z())
20(D" fn(20))’ > D? fo(2) (van(ZO) )‘
=2 2 + -1
< D? fu(20) 20 20
b b
> — — -
_Abl(l 1+n/\) 1+nA
This is a contradiction to the hypothesis and®¢z)| < 1in U. O
Corollary 3.10. i) I f1,(2) € P(1, 52) thenZ=E € P(1,1).
i) If f1,(2) + 2f/(2) € P(1, 52) thenE) ¢ 73(1 1).
Theorem 3.11.Letp(f,) € M(1,0b) for some/\ > 0. If
A1+ An) O<)\<(n—3)+\/n2+2n+9
b 2+ An—1)" - 2n
a A1 (n—3)+VnZ+2n+9
: <A<
(1+)\n)\/)\2n2+2)\(1+n) ’ 2n sAsl

then

DU—an(Z) v
%( D f,.(2) ) - 140
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We need the following lemma, which is due to Ponnusamy and Singh [9].

Lemma 3.12.Let0 < A\; < A < 1 and let@ be analytic inU satisfyingQ(z) < 1 + Az, and
Q(0) = 1. If ¢(z) is analytic inU, ¢(0) = 1 and satisfies

Q(2)[c+ (1 —c)q(2)] < 1+ Az,

where
11—
A+ <1

1+/\1, O< A+ <

€= 2 2
1 — (N + X))
I S VS PR VIR D WD |
21—y 0 L TASISATA

thenRe{q(z)} >0, z € U.

Proof of Theorer 3.11From Theorem 3]1 and the fati b < 1 < 1 + An we conclude that
D" fu(2)
<1+bz, 0<b =
z T 0% S
On the other hand, we may write

Letting Q(z) = 2 g(2) = %:(f)))/, andc = 1 — ), we see that all conditions in Lemma

are satisfied. This implies thaé ¢(z) > 0 and so the proof is complete. O

Corollary 3.13. Letp(f,) € M} (1,b) for some\ > 0. ThenD" f,, is starlike in the disc
A1 +nA)
2+ An—1))b
(1+An)
b

<b<1.

if 0O<A< X andb; <b<1

2] <

20 —1
if My <A<landb, <b<1
\/)\2n2+2)\(1+n) TAsAS P =

where

(n—3)+vn2+2n+9 b A1+ nA)

, b= ————  and
2n

24+ A(n—1)]
20 —1
b= (1 )\")\/)\ZTﬂ +2X\(1+n)

i)y If f/ eP (1, M) then f, is starlike inU.

A=

1+(1+n)2

i) If f/ +2f"cP (1, \/%) then f, is convex irl’.

If we let A = 1 andv = 0, 1 in Corollary[3.13, then we obtain

_ (4n) <h<
\/m_b_landfne/ln_
i) If £/ € P(1,b) thenf is starlike for|z| < b\/%

i) If f +2f7 € P(1,b) thenf is convex foriz| < bfjﬁ

Corollary 3.14. Let
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4. COEFFICIENT BOUNDS

Sufficient coefficient conditions faF (1, b) and M5 (1, b) are given next.
Theorem 4.1. Letp(f,) be given by[(1]4) foff; as in (1.1). If

(4.1) > (K +b—1)ar| <b,

k=2

thenp(f,) € F(1,b).
Proof. We need to show that if (4.1) thep(fi(z)) — 1| < b. Forp(f;) we can write

£0-9)-
z))—1 — |1+ -1
Ip(f1(2)) — 1 i 7
| (R — Dag
B 24> e, apz®
D onea (k2 — 1)a]]2[*
T L= a2
S = Dl
1 =302, fax
The above right hand inequality is less thaoy (4.1) and s@(f1) € F(1,b). O
Theorem 4.2. Letp( f,) be given by[(1]5) fof,, as in [1.1). If
(4.2) > (Ak = A+ 1)Bi(v)|ax| < b,
k=1+n

thenp(f,) € M5(1,0).

Proof. Apply the Ruscheweyh derivative (1.6) to the functifiy{z) and substitute il (1]5) to
obtain

Ip(fu(2)) — 1| = ‘(1 B )‘)DUJ;"(Z)

[e.e]

> (k= A+ 1)Bi(v)apzt!

k=14n

< > (M= A+ 1)Bi(v)]al.
k=14+n

Now this latter inequality is less tharby (4.2) and s@(f,) € M5(1,b). O

Next, by judiciously varying the arguments of the coefficients of the functfgrgiven by
(1.7), we shall show that the sufficient coefficient conditi¢ns| (4.1) (4.2) are also necessary
for their respective classes with varying arguments.
A function f,, given by ) is said to be iW(0y) if arg(ax) = 6y for all k. If, further, there
exists a real numbe? such that,, + (k — 1)8 = w(mod 27) then f,, is said to be inV(0y; 3).
The union ofV(0,; 3) taken over all possibléd,. } and all possible reat is denoted by. For
more details see Silverman [13].
Some examples of functions hare

i) 7 = V(m;0) C V where7 is the class of analytic univalent functions with negative
coefficients studied by Schild [11] and Silverman|[12].

+ MDD’ fn(2)) — 1‘
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i) Univalent functions of the form + 77, |ax|e® z* are inV(6y; 27 /k) C V for 6, =
T —2(k—1)n/k.
Note that the family is rotationally invariant sincg,, € V(0,; 3) implies that
e fu(2e) € V(O + (k — 1)y; 8 — 7).
Finally, we let
VF(1,b) =VNnF(,b) and YVM3(1,0) =V N MS(1,b).
Theorem 4.3.
p(fi) €VF(L,0) <= Y (K> +b—1)|ay| <b.
k=2

Proof. In light of Theorenf 4]L, we only need to prove trealy if” part of the theorem. Suppose
p(f1) € VF(1,b), then

|p(f1) - 1| = ZZOZQ(kQ — 1)akzk—1 . b
14 >0, azh!
or
(4.3) Z(k2 — Dap" ' < b|1+ Zakzk_l '
k=2 2

The condition |(4.8) must hold for all values ofin U. Therefore, forf; € V(6x; 3) we set
z =re'®in (4.3) and ler — 1~. Upon clearing the inequalitms) we obtain the condition

> (K = 1)lag| < b <1 -y |ak]>
k= k=2

2
as required. O

Corollary 4.4. 1f 0 < b < 1 andp(f1) € VF(1,b) thenf, is convex inJ.
Corollary 4.5. If 1 < b < 3 andp(f1) € VF(1,b) thenf; is starlike inU.

The above two corollaries can be justifed using Thedremn 4.3 and the following lemma due to
Silverman [12].
Lemma 4.6. For f; of the form[(1.]l) and univalent if we have
i) If Y07, k*lag| < 1,thenf; is convex inl.
i) 1f >0, klag| < 1,thenf, is starlike inU.

Next, we show that the above sufficient coefficient condition (4.2) is also necessary for func-
tions inV M5 (1,0).

Theorem 4.7.
p(fn) € VML) <= > (M — A+ 1)Bi(v)|ax| < b.
k=14n
Proof. Suppose thai(f,,) € VM}(1,b). Then, by [1.5), we have

Ip(fu(2)) — 1] = |(1 = A)%"(Z) + MDY fo(2)) — 1] <b.
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On the other hand, fof,, € V(6;; 3) we have

falz) =2+ Z |ay| e 2F.
k=1+4n
The condition required fop(f,) € VM3 (1,b) must hold for all values ot in U. Setting
z = re' yields

> (Ak = A+ 1)Bg(v)|aglr* ' < b.
k=14n
The required coefficient condition follows upon letting— 1. 0J

From the above Theorem 4.7 and Lenima 4.6.ii, we obtain
Corollary 4.8. If A > 2b— 1 andp(f,) € VMS5(1,b) thenf is starlike inU.
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