
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 2, Article 31, 2004

STARLIKENESS AND CONVEXITY CONDITIONS FOR CLASSES OF
FUNCTIONS DEFINED BY SUBORDINATION

R. AGHALARY, JAY M. JAHANGIRI, AND S.R. KULKARNI

UNIVERSITY OF URMIA , URMIA , IRAN.

raghalary@yahoo.com

KENT STATE UNIVERSITY, OHIO, USA.

jay@geauga.kent.edu

FERGUSSENCOLLEGE, PUNE, INDIA .

srkulkarni40@hotmail.com

Received 21 May, 2003; accepted 18 April, 2004
Communicated by H. Silverman

ABSTRACT. We consider the familyP(1, b), b > 0, consisting of functionsp analytic in the
open unit discU with the normalizationp(0) = 1 which have the disc formulation|p − 1| < b
in U. Applying the subordination properties to certain choices ofp using the functionsfn(z) =
z +

∑∞
k=1+n akzk, n = 1, 2, ..., we obtain inclusion relations, sufficient starlikeness and con-

vexity conditions, and coefficient bounds for functions in these classes. In some cases our results
improve the corresponding results appeared in print.
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1. I NTRODUCTION

LetA denote the class of functions that are analytic in the open unit discU = {z ∈ C : |z| <
1} and letAn be the subclass ofA consisting of functionsfn of the form

(1.1) fn(z) = z +
∞∑

k=1+n

akz
k, n = 1, 2, 3, . . . .

The functionp ∈ A and normalized byp(0) = 1 is said to be inP(1, b) if

(1.2) |p(z)− 1| < b, b > 0, z ∈ U.

The classP(1, b) which is defined using the disc formulation (1.2) was studied by Janowski [6]
and has an alternative characterization in terms of subordination (see [5] or [14]), that is, for

ISSN (electronic): 1443-5756

c© 2004 Victoria University. All rights reserved.

069-03

http://jipam.vu.edu.au/
mailto:raghalary@yahoo.com
mailto:jay@geauga.kent.edu
mailto:srkulkarni40@hotmail.com
http://www.ams.org/msc/


2 R. AGHALARY , JAY M. JAHANGIRI , AND S.R. KULKARNI

z ∈ U , we have

(1.3) p ∈ P(1, b) ⇐⇒ p(z)≺ 1 + bz.

For the functionsφ andψ in A, we say that theφ is subordinate toψ in U , denoted byφ ≺ ψ,
if there exists a functionw(z) in A with w(0) = 0 and|w(z)| < 1, such thatφ(z) = ψ(w(z))
in U. For further references see Duren [3].

The familyP(1, b) contains many interesting classes of functions which have close inter-
relations with different well-known classes of analytic univalent functions. For example, for
fn ∈ An if (

zf ′n
fn

)
∈ P(1, 1− α), 0 ≤ α ≤ 1,

thenfn is starlike of orderα in U and if(
1+

zf ′′n
f ′n

)
∈ P(1, 1− α), 0 ≤ α ≤ 1,

thenfn is convex of orderα in U.
For 0 ≤ α ≤ 1 we letS∗(α) be the class of functionsfn ∈ An which are starlike of orderα

in U , that is,

S∗(α) ≡
{
fn ∈ An : <

(
zf ′n
fn

)
≥ α, |z| < 1

}
,

and letK(α) be the class of functionsfn ∈ An which are convex of orderα in U , that is,

K(α) ≡
{
fn ∈ An : <

(
1 +

zf ′′n
f ′n

)
≥ α, |z| < 1

}
.

Alexander [1] showed thatfn is convex inU if and only if zf ′n is starlike inU.
In this paper we investigate inclusion relations, starlikeness, convexity, and coefficient condi-

tions onfn and its related classes for two choices ofp(fn) inP(1, b). In some cases, we improve
the related known results appeared in the literature.

DefineF(1, b) be the subclass ofP(1, b) consisting of functionsp(f1) so that

(1.4) p(f1(z)) =
zf ′1(z)

f1(z)

(
1 +

zf ′′1 (z)

f ′1(z)

)
wheref1 ∈ A1 is given by (1.1).

For fixed v > −1, n ≥ 1, and forλ ≥ 0, defineMv
λ(1, b) be the subclass ofP(1, b)

consisting of functionsp(fn) so that

(1.5) p(fn(z)) = (1− λ)
Dvfn(z)

z
+ λ(Dvfn(z))′

wherefn ∈ An andDvf is thev-th order Ruscheweyh derivative [10].
Thev-th order Ruscheweyh derivativeDv of a functionfn in An is defined by

(1.6) Dvfn(z) =
z

(1− z)1+v
∗ fn(z) = z +

∞∑
k=1+n

Bk(v)akz
k,

where

Bk(v) =
(1 + v)(2 + v) · · · (v + k − 1)

(k − 1)!

and the operator“ ∗ ” stands for the convolution or Hadamard product of two power series

f(z) =
∞∑
i=1

aiz
i and g(z) =

∞∑
i=1

biz
i
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STARLIKENESS AND CONVEXITY CONDITIONS 3

defined by

(f ∗ g)(z) = f(z) ∗ g(z) =
∞∑
i=1

aibiz
i.

2. THE FAMILY F(1, b)

The classF(1, b) for certain values ofb yields a sufficient starlikeness condition for the
functionsf1 ∈ A1.

Theorem 2.1. If 0 < b ≤ 9
4

andp(f1) ∈ F(1, b) then

zf ′1
f1

∈ P
(

1,
3−

√
9− 4b

2

)
.

We need the following lemma, which is due to Jack [4].

Lemma 2.2. Letw(z) be analytic inU withw(0) = 0. If |w| attains its maximum value on the
circle |z| = r at a pointsz0, we can writez0w

′(z0) = kw(z0) for some realk, k ≥ 1.

Proof of Theorem 2.1.For b1 = 3−
√

9−4b
2

write zf ′
1(z)

f1(z)
= 1 + b1w(z). Obviously,w is analytic

in U andw(0) = 0. The proof is complete if we can show that|w| < 1 in U. On the contrary,
suppose that there existsz0 ∈ U such that|w(z0)| = 1. Then, by Lemma 2.2, we must have
z0w

′(z0) = kw(z0) for some realk, k ≥ 1 which yields∣∣∣∣z0f
′
1(z0)

f1(z0)

(
1 +

z0f
′′
1 (z0)

f ′1(z0)

)
− 1

∣∣∣∣ =
∣∣(1 + b1w(z0))

2 + b1z0w
′(z0)− 1

∣∣
=
∣∣bk + 2b1 + b21w(z0)

∣∣
≥3b1 − b21 = b.

This contradicts the hypothesis, and so the proof is complete. �

Corollary 2.3. For 0 < b ≤ 2 let p(f1) ∈ F(1, b). Thenf1 ∈ S∗
(
−1+

√
9−4b

2

)
.

Corollary 2.4. If p(f1) ∈ F(1, b) and0 < b ≤ 2, then∣∣∣∣arg
zf ′1(z)

f1(z)

∣∣∣∣ < arcsin

(
3−

√
9− 4b

2

)
.

It is not known if the above corollaries can be extended to the case whenb > 2.

Corollary 2.5. If <
(

f1(z)
zf ′

1(z)+z2f ′′
1 (z)

)
> 1

2
thenf1 ∈ S∗

(
−1+

√
5

2

)
.

Remark 2.6. For 0 < b < 2, Theorem 2.1 is an improvement to Theorem 1 obtained by
Obradovíc, Joshi, and Jovanović [8].

Corollary 2.7. If p(f1) ∈ F(1, b) thenf1 is convex inU for 0 < b ≤ 0.935449.

Proof. Forp(f1) ∈ F(1, b) we can write| arg p(f1)| < arcsin b. Therefore,∣∣∣∣arg

(
1 +

zf ′′1 (z)

f ′1(z)

)∣∣∣∣ < arcsin b+ arcsin

(
3−

√
9− 4b

2

)
.

Now the proof is complete upon noting that the right hand side of the above inequality is less
than π

2
for b = 0.935449 . �

Remark 2.8. It is not known if the above Corollary 2.7 is sharp but it is an improvement to
Corollary 2 obtained by Obradovic, Joshi, and Jovanovic [8].
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Corollary 2.9. If p(f1) ∈ F(1, b) thenf1 is convex in the disc|z| < 0.935449
b

for 0.935449 ≤
b ≤ 1.

Proof. We writep(f1) = 1+bw(z) wherew is a Schwarz function. Let|z| ≤ ρ. Then|w(z)| ≤ ρ
and so|p(f1) − 1| < bρ for |z| ≤ ρ. Upon choosingbρ = 0.935449 it follows from the above
Corollary 2.7 that| arg(1 + zf ′′1 /f

′
1)| < π/2 for |z| ≤ ρ = 0.935449/b . Therefore the proof is

complete. �

In the following example we show that there exist functionsf which are not necessarily
starlike or univalent inU for p(f1) ∈ F(1, b) if b is sufficiently large.

Example 2.1.For the spirallike functiong(z) = z/(1− z)1+i we have

<
(
e−

π
4
i zg

′(z)

g(z)

)
=

1√
2

(
1− |z|2

|1− z|2

)
> 0, z ∈ U.

Sincezg′(z)
g(z)

= 1+iz
1−z

, we obtain

<
(
zg′(z)

g(z)

)
=

1− r( cos θ + sin θ)

1− 2r cos θ + r2

for z = reiθ. Thusg(z) is not starlike for|z| < t, 1√
2
< t < 1. This means thatf(z) = g(rz)

r
is

not starlike inU. Now set

h(z) =

∫ z

0

g(ζ)

ζ
dζ = i((1− z)−i − 1)

and letz0 = e2π−1
e2π+1

≈0.996 . Therefore,h(z0) = h(−z0) and soh is not univalent inU. Conse-

quently,f(z) = h(z0z)
z0

is not univalent inU for sufficiently large values ofb. On the other hand,
p(g) ∈ F(1, b) for sufficiemtly largeb, since,

|p(g(z))− 1| =
∣∣∣∣ 1 + 3iz

(1− z)2
+

z

1− z
− 1

∣∣∣∣ < b

for sufficiemtly largeb.

The following theorem is the converse of Theorem 2.1 for a special case.

Theorem 2.10.If zf ′
1

f1
∈ P

(
1, 3−

√
5

2

)
thenp(f1) ∈ F(1, 1) for |z| < r0 = 0.7851 .

To prove our theorem, we need the following lemma due to Dieudonné [2].

Corollary 2.11. Let z0 andw0 be given points inU, with z0 6= 0. Then for all functionsf
analytic and satisfying|f(z)| < 1 in U, with f(0) = 0 andf(z0) = w0, the region of values of
f ′(z0) is the closed disc ∣∣∣∣w − w0

z0

∣∣∣∣≤ |z0|2 − |w0|2

|z0|(1− |z0|2)
.

Proof of Theorem 2.10.Write

q(z) =
zf ′1(z)

f1(z)
= 1 +

(
3−

√
5

2

)
w(z),
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STARLIKENESS AND CONVEXITY CONDITIONS 5

wherew is a Schwarz function. We need to find the largest disc|z| < ρ for which∣∣∣∣∣∣
[
1 +

(
3−

√
5

2

)
w(z)

]2

+

(
3−

√
5

2

)
zw′(z)− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

3−
√

5

2

)2

w2(z) + (3−
√

5)w(z) +

(
3−

√
5

2

)
zw′(z)

∣∣∣∣∣∣ < 1.

For fixedr = |z| andR = |w(z)| we haveR ≤ r. Therefore, by Lemma 2.11, we obtain

|w′(z)|≤R
r

+
r2 −R2

r(1− r2)

and so

|p(f1)− 1| =
∣∣∣∣zf ′1(z)f1(z)

(
1 +

zf ′′1 (z)

f ′1(z)

)
− 1

∣∣∣∣
=

∣∣∣∣∣∣
(

3−
√

5

2

)2

w2(z) + (3−
√

5)w(z) +

(
3−

√
5

2

)
zw′(z)

∣∣∣∣∣∣
≤ t2R2 + 3tR + t

r2 −R2

1− r2

=
t

1− r2
ψ(R),

where

ψ(R) = R2(t− tr2 − 1) + 3R(1− r2) + r2 and t =
3−

√
5

2
.

We note thatψ(R) attains its maximum atR0 = 3(1−r2)
2(1+tr2−t)

.So the theorem follows forr0≈0.7851

which is the root of the equationt
1−r2ψ(R0) = 1.

Lettingz0 andw0 in Lemma 2.11 be so that|z0| = r0 and|w0| = 3(1−r2
0)

2(1+tr2
0−t)

we conclude that
the bound given by Theorem 2.10 is sharp. �

3. THE FAMILY Mv
λ(1, b)

We begin with stating and proving some properties of the familyMv
λ(1, b).

Theorem 3.1. If p(fn) ∈Mv
λ(1, b) then

Dvfn(z)

z
∈ P(1,

b

1 + λn
).

We need the following lemma, which is due to Miller and Mocanu [7].

Lemma 3.2.Letq(z) = 1+qnz
n+· · · (n ≥ 1) be analytic inU and leth(z) be convex univalent

in U with h(0) = 1. If q(z) + 1
c
zq′(z) ≺ h(z) for c > 0, then

q(z) ≺ c

n
z−c/n

∫ z

0

h(t)t
c
n
−1dt.

Proof of Theorem 3.1.For p(fn) ∈ Mv
λ(1, b) setq(z) = Dvfn(z)

z
. Then we can writeq(z) +

λzq′(z) ≺ 1 + bz. Now, applying Lemma 3.2, we obtain

q(z) ≺ +1 +
b

1 + λn
z.
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6 R. AGHALARY , JAY M. JAHANGIRI , AND S.R. KULKARNI

Substituting back forq(z) and choosingw(z) to be analytic inU with |w(z)| ≤ |z|n, by the
definition of subordination we have

Dvfn(z)

z
= 1 +

b

(1 + λn)
w(z).

Now the theorem follows using the necessary and sufficient condition (1.3). The estimates in
Theorem 3.1 are sharp forp(fn) wherefn is given by

Dvfn(z)

z
= 1 +

b

(1 + λn)
zn.

�

Corollary 3.3. If p(fn) ∈Mv
λ(1, b) then∣∣∣∣Dvfn(z)

z

∣∣∣∣ ≤ 1 +
b

1 + λn
|z|n.

Corollary 3.4. If |f ′n(z) + λzf ′′n(z)− 1| < b then

f ′n(z) ≺ 1 +
b

1 + λn
z.

Corollary 3.5. If
∣∣∣(1− λ)fn(z)

z
+ λf ′n(z)− 1

∣∣∣ < b then

fn(z)

z
≺ 1 +

b

1 + λn
z.

In the next two theorems we investigate the inclusion relations for classes ofMv
λ.

Theorem 3.6.For 0 ≤ λ1 < λ andv ≥ 0, let b1 = 1+λ1n
1+nλ

b. Then

Mv
λ(1, b) ⊂Mv

λ1
(1, b1).

Proof. The case forλ1 = 0 is trivial. Forλ1 6= 0 suppose thatp(fn) ∈Mv
λ(1, b). Therefore, we

can write

(1− λ1)
Dvfn(z)

z
+ λ1(D

vfn(z))′

=
λ1

λ

[
(1− λ)

Dvfn(z)

z
+ λ(Dvfn(z))′

]
+

(
1− λ1

λ

)(
Dvfn(z)

z

)
.

Now, by definition,p(fn) ∈Mv
λ1

(1, b1) and so the proof is complete. �

Theorem 3.7.Letv ≥ 0 andb1 = b(1+v)
n+1+v

. Then

Mv+1
λ (1, b) ⊂Mv

λ(1, b1).

Proof. Forfn ∈ An suppose thatp1(fn) ∈Mv+1
λ (1, b) where

p1(fn(z)) = (1− λ)
D1+vfn(z)

z
+ λ(Dv+1fn(z))′.

Set

p2(fn(z)) = (1− λ)
Dvfn(z)

z
+ λ(Dvfn(z))′.
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An elementary differentiation yields

p1(fn(z)) = (1− λ)
D1+vfn(z)

z
+ λ(Dv+1fn(z))′

= p2(fn(z)) +
1

1 + v
zp′2(fn(z)).

From this and Lemma 3.2, we conclude thatp1(fn) ∈Mv
λ(1, b1). �

Corollary 3.8.

f ′n(z) + λzf ′′n(z) ∈ P(1, b) =⇒ (1− λ)
fn(z)

z
+ λf ′n(z) ∈ P

(
1,

b

1 + n

)
.

Theorem 3.9.For v ≥ 0 andλ > 0 let b < 1 + λn. If p(fn) ∈Mv
λ(1, b) then∣∣∣∣z(Dvfn(z))′

Dvfn(z)
− 1

∣∣∣∣ < b(2 + λn)

λ[(1 + λn)− b]
.

Proof. First note that, we can write∣∣∣∣(1− λ)
Dvfn(z)

z
+ λ(Dvfn(z))′ − 1

∣∣∣∣ < b ;

∣∣∣∣Dvfn(z)

z
− 1

∣∣∣∣ < b

1 + λn
.

For b1 = b(2+λn)
λ[(1+λn)−b]

we definew(z) by

1 + b1w(z) =
[z(Dvfn(z))′]

[Dvfn(z)]
.

One can easily verify thatw(z) is analytic inU andw(0) = 0. To conclude the proof, it suffices
to show that|w(z)| < 1 in U. If this is not the case, then by Lemma 2.2, there exists a point
z0 ∈ U such that|w(z0)| = 1 andz0w

′(z0) = kw(z0). Therefore

|p(fn(z0))− 1| =
∣∣∣∣(1− λ)

Dvf(z0)

z0

+ λ(Dvf(z0))
′ − 1

∣∣∣∣
=

∣∣∣∣Dvfn(z0)

z0

[
(1− λ) + λ

z0(D
vfn(z0))

′

Dvfn(z0)

]
− 1

∣∣∣∣
=

∣∣∣∣λ(z0(D
vfn(z0))

′

Dvfn(z0)
− 1

)
Dvfn(z0)

z0

+

(
Dvfn(z0)

z0

− 1

)∣∣∣∣
≥ λb1

(
1− b

1 + nλ

)
− b

1 + nλ
= b.

This is a contradiction to the hypothesis and so|w(z)| < 1 in U. �

Corollary 3.10. i) If f ′n(z) ∈ P(1, 1+n
3+n

) then zf ′
n(z)

fn(z)
∈ P(1, 1).

ii) If f ′n(z) + zf ′′n(z) ∈ P(1, 1+n
3+n

) then zf ′′
n (z)

f ′
n(z)

∈ P(1, 1).

Theorem 3.11.Letp(fn) ∈Mv
λ(1, b) for someλ > 0. If

b =


λ(1 + λn)

2 + λ(n− 1)
; 0 < λ ≤ (n− 3) +

√
n2 + 2n+ 9

2n

(1 + λn)

√
2λ− 1

λ2n2 + 2λ(1 + n)
;

(n− 3) +
√
n2 + 2n+ 9

2n
≤ λ ≤ 1

then

<
(
Dv+1fn(z)

Dvfn(z)

)
>

v

1 + v
.

J. Inequal. Pure and Appl. Math., 5(2) Art. 31, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 R. AGHALARY , JAY M. JAHANGIRI , AND S.R. KULKARNI

We need the following lemma, which is due to Ponnusamy and Singh [9].

Lemma 3.12. Let 0 < λ1 < λ < 1 and letQ be analytic inU satisfyingQ(z) ≺ 1 + λ1z, and
Q(0) = 1. If q(z) is analytic inU, q(0) = 1 and satisfies

Q(z)[c+ (1− c)q(z)] ≺ 1 + λz,

where

c =


1− λ

1 + λ1

, 0 < λ+ λ1 ≤ 1

1− (λ2 + λ2
1)

2(1− λ2
1)

, λ2 + λ2
1 ≤ 1 ≤ λ+ λ1

thenRe{q(z)} > 0, z ∈ U .

Proof of Theorem 3.11.From Theorem 3.1 and the fact0 < b < 1 < 1 + λn we conclude that

Dvfn(z)

z
≺ 1 + b1z, 0 < b1 =

b

1 + nλ
< b < 1.

On the other hand, we may write

Dvfn(z)

z

[
(1− λ) + λ

(
z(Dvfn(z))′

Dvfn(z)

)]
≺ 1 + bz.

LettingQ(z) = Dvfn(z)
z

, q(z) = z(Dvfn(z))′

Dvfn(z)
, andc = 1−λ, we see that all conditions in Lemma

3.12 are satisfied. This implies thatRe q(z) > 0 and so the proof is complete. �

Corollary 3.13. Letp(fn) ∈Mv
λ(1, b) for someλ > 0. ThenDvfn is starlike in the disc

|z| ≤


λ(1 + nλ)

(2 + λ(n− 1))b
if 0 < λ < λ1 andb1 ≤ b ≤ 1

(1 + λn)

b

√
2λ− 1

λ2n2 + 2λ(1 + n)
if λ1 ≤ λ ≤ 1 andb2 ≤ b ≤ 1,

where

λ1 =
(n− 3) +

√
n2 + 2n+ 9

2n
, b1 =

λ(1 + nλ)

[2 + λ(n− 1)]
, and

b2 = (1 + λn)

√
2λ− 1

λ2n2 + 2λ(1 + n)
.

i) If f ′n ∈ P
(

1, (1+n)√
1+(1+n)2

)
thenfn is starlike inU .

ii) If f ′n + zf ′′n ∈ P
(

1, (1+n)√
1+(1+n)2

)
thenfn is convex inU .

If we let λ = 1 andv = 0, 1 in Corollary 3.13, then we obtain

Corollary 3.14. Let (1+n)√
1+(1+n)2

≤ b ≤ 1 andfn ∈ An.

i) If f ′n ∈ P(1, b) thenf is starlike for|z| < (1+n)

b
√

1+(1+n)2
.

ii) If f ′n + zf ′′n ∈ P(1, b) thenf is convex for|z| < 1+n

b
√

1+(1+n)2
.
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4. COEFFICIENT BOUNDS

Sufficient coefficient conditions forF(1, b) andMv
λ(1, b) are given next.

Theorem 4.1.Letp(f1) be given by (1.4) forf1 as in (1.1). If

(4.1)
∞∑

k=2

(k2 + b− 1)|ak| < b,

thenp(f1) ∈ F(1, b).

Proof. We need to show that if (4.1) then|p(f1(z))− 1| < b. Forp(f1) we can write

|p(f1(z))− 1| =

∣∣∣∣zf ′1f1

(
1 +

zf ′′1
f ′1

)
− 1

∣∣∣∣
=

∣∣∣∣∑∞
k=2(k

2 − 1)akz
k

z +
∑∞

k=2 akzk

∣∣∣∣
≤

∑∞
k=2(k

2 − 1)|ak||z|k−1

1−
∑∞

k=2 |ak||z|k−1

<

∑∞
k=2(k

2 − 1)|ak|
1−

∑∞
k=2 |ak|

.

The above right hand inequality is less thanb by (4.1) and sop(f1) ∈ F(1, b). �

Theorem 4.2.Letp(fn) be given by (1.5) forfn as in (1.1). If

(4.2)
∞∑

k=1+n

(λk − λ+ 1)Bk(v)|ak| < b,

thenp(fn) ∈Mv
λ(1, b).

Proof. Apply the Ruscheweyh derivative (1.6) to the functionfn(z) and substitute in (1.5) to
obtain

|p(fn(z))− 1| =
∣∣∣∣(1− λ)

Dvfn(z)

z
+ λ(Dvfn(z))′ − 1

∣∣∣∣
=

∣∣∣∣∣
∞∑

k=1+n

(λk − λ+ 1)Bk(v)akz
k−1

∣∣∣∣∣
<

∞∑
k=1+n

(λk − λ+ 1)Bk(v)|ak|.

Now this latter inequality is less thanb by (4.2) and sop(fn) ∈Mv
λ(1, b). �

Next, by judiciously varying the arguments of the coefficients of the functionsfn given by
(1.1), we shall show that the sufficient coefficient conditions (4.1) and (4.2) are also necessary
for their respective classes with varying arguments.

A functionfn given by (1.1) is said to be inV(θk) if arg(ak) = θk for all k. If, further, there
exists a real numberβ such thatθk + (k − 1)β ≡ π(mod 2π) thenfn is said to be inV(θk; β).
The union ofV(θk; β) taken over all possible{θk} and all possible realβ is denoted byV. For
more details see Silverman [13].

Some examples of functions inV are
i) T ≡ V(π; 0) ⊂ V whereT is the class of analytic univalent functions with negative

coefficients studied by Schild [11] and Silverman [12].
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ii) Univalent functions of the formz +
∑∞

k=2 |ak|eiθkzk are inV(θk; 2π/k) ⊂ V for θk =
π − 2(k − 1)π/k.

Note that the familyV is rotationally invariant sincefn ∈ V(θk; β) implies that

e−iγfn(zeiγ) ∈ V(θk + (k − 1)γ; β − γ).

Finally, we let

VF(1, b) ≡ V ∩ F(1, b) and VMv
λ(1, b) ≡ V ∩Mv

λ(1, b).

Theorem 4.3.

p(f1) ∈ VF(1, b) ⇐⇒
∞∑

k=2

(k2 + b− 1)|ak| < b.

Proof. In light of Theorem 4.1, we only need to prove the “only if” part of the theorem. Suppose
p(f1) ∈ VF(1, b), then

|p(f1)− 1| =
∣∣∣∣∑∞

k=2(k
2 − 1)akz

k−1

1 +
∑∞

k=2 akzk−1

∣∣∣∣ < b

or

(4.3)

∣∣∣∣∣
∞∑

k=2

(k2 − 1)akz
k−1

∣∣∣∣∣ < b

∣∣∣∣∣1 +
∞∑

k=2

akz
k−1

∣∣∣∣∣ .
The condition (4.3) must hold for all values ofz in U. Therefore, forf1 ∈ V(θk; β) we set
z = reiβ in (4.3) and letr −→ 1−. Upon clearing the inequality (4.3) we obtain the condition

∞∑
k=2

(k2 − 1)|ak| < b

(
1−

∞∑
k=2

|ak|

)
as required. �

Corollary 4.4. If 0 < b ≤ 1 andp(f1) ∈ VF(1, b) thenf1 is convex inU.

Corollary 4.5. If 1 < b ≤ 3 andp(f1) ∈ VF(1, b) thenf1 is starlike inU.

The above two corollaries can be justifed using Theorem 4.3 and the following lemma due to
Silverman [12].

Lemma 4.6. For f1 of the form (1.1) and univalent inU we have

i) If
∑∞

k=2 k
2|ak| ≤ 1, thenf1 is convex inU.

ii) If
∑∞

k=2 k|ak| ≤ 1, thenf1 is starlike inU.

Next, we show that the above sufficient coefficient condition (4.2) is also necessary for func-
tions inVMv

λ(1, b).

Theorem 4.7.

p(fn) ∈ VMv
λ(1, b) ⇐⇒

∞∑
k=1+n

(λk − λ+ 1)Bk(v)|ak| < b.

Proof. Suppose thatp(fn) ∈ VMv
λ(1, b). Then, by (1.5), we have

|p(fn(z))− 1| =
∣∣∣∣(1− λ)

Dvfn(z)

z
+ λ(Dvfn(z))′ − 1

∣∣∣∣ < b.
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On the other hand, forfn ∈ V(θk; β) we have

fn(z) = z +
∞∑

k=1+n

|ak|eiθkzk.

The condition required forp(fn) ∈ VMv
λ(1, b) must hold for all values ofz in U. Setting

z = reiβ yields
∞∑

k=1+n

(λk − λ+ 1)Bk(v)|ak|rk−1 < b.

The required coefficient condition follows upon lettingz −→ 1−. �

From the above Theorem 4.7 and Lemma 4.6.ii, we obtain

Corollary 4.8. If λ ≥ 2b− 1 andp(fn) ∈ VMv
λ(1, b) thenf is starlike inU.
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