Journal of Inequalities in Pure and Applied Mathematics

COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART

AINI JANTENG, SUZEINI ABDUL HALIM, AND MASLINA DARUS
Institute of Mathematical Sciences
Universiti Malaya, 50603 Kuala Lumpur, Malaysia
aini_jg@ums.edu.my
Institute of Mathematical Sciences
Universiti Malaya
50603 Kuala Lumpur, Malaysia
suzeini@um.edu.my
School of Mathematical Sciences
Faculty of Sciences and Technology
Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia maslina@pkrisc.cc.ukm.my

Received 07 March, 2005; accepted 09 March, 2006
Communicated by A. Sofo

Abstract. Let \mathcal{R} denote the subclass of normalised analytic univalent functions f defined by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and satisfy

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>0
$$

where $z \in \mathcal{D}=\{z:|z|<1\}$. The object of the present paper is to introduce the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$. For $f \in \mathcal{R}$, we give sharp upper bound for $\left|a_{2} a_{4}-a_{3}^{2}\right|$.

Key words and phrases: Fekete-Szegö functional, Hankel determinant, Convex and starlike functions, Positive real functions.

2000 Mathematics Subject Classification Primary 30C45.

1. Introduction

Let \mathcal{A} denote the class of normalised analytic functions f of the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

[^0]where $z \in \mathcal{D}=\{z:|z|<1\}$. In [9], Noonan and Thomas stated that the q th Hankel determinant of f is defined for $q \geq 1$ by
\[

H_{q}(n)=\left|$$
\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q+1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q+2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}
$$\right| .
\]

Now, let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.2}
\end{equation*}
$$

which are univalent in \mathcal{D}.
A classical theorem of Fekete and Szegö [1] considered the Hankel determinant of $f \in \mathcal{S}$ for $q=2$ and $n=1$,

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|
$$

They made an early study for the estimates of $\left|a_{3}-\mu a_{2}^{2}\right|$ when $a_{1}=1$ and μ real. The wellknown result due to them states that if $f \in \mathcal{S}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}4 \mu-3, & \text { if } \quad \mu \geq 1 \\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), & \text { if } \quad 0 \leq \mu \leq 1 \\ 3-4 \mu, & \text { if } \quad \mu \leq 0\end{cases}
$$

Hummel [3, 4] proved the conjecture of V. Singh that $\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{3}$ for the class \mathcal{C} of convex functions. Keogh and Merkes [5] obtained sharp estimates for $\left|a_{3}-\mu a_{2}^{2}\right|$ when f is close-toconvex, starlike and convex in \mathcal{D}.

Here, we consider the Hankel determinant of $f \in \mathcal{S}$ for $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right| .
$$

Now, we are working on the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$. In this earlier work, we find a sharp upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for $f \in \mathcal{R}$. The subclass \mathcal{R} is defined as the following.

Definition 1.1. Let f be given by (1.2). Then $f \in \mathcal{R}$ if it satisfies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>0, \quad(z \in \mathcal{D}) \tag{1.3}
\end{equation*}
$$

The subclass \mathcal{R} was studied systematically by MacGregor [8] who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part.

We first state some preliminary lemmas which shall be used in our proof.

2. Preliminary Results

Let \mathcal{P} be the family of all functions p analytic in \mathcal{D} for which $\operatorname{Re}\{p(z)\}>0$ and

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

for $z \in \mathcal{D}$.
Lemma 2.1 ([10]). If $p \in \mathcal{P}$ then $\left|c_{k}\right| \leq 2$ for each k.

Lemma 2.2 ([2]). The power series for $p(z)$ given in (2.1) converges in \mathcal{D} to a function in \mathcal{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \tag{2.2}\\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, \quad n=1,2,3, \ldots
$$

and $c_{-k}=\bar{c}_{k}$, are all nonnegative. They are strictly positive exceptfor $p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k}} z\right)$, $\rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$ for $k \neq j$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can be found in [2].

3. Main Result

Theorem 3.1. Let $f \in \mathbb{R}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}
$$

The result obtained is sharp.
Proof. We refer to the method by Libera and Zlotkiewicz [6, 7]. Since $f \in \mathcal{R}$, it follows from (1.3) that

$$
\begin{equation*}
f^{\prime}(z)=p(z) \tag{3.1}
\end{equation*}
$$

for some $z \in \mathcal{D}$. Equating coefficients in (3.1) yields

$$
\left\{\begin{array}{l}
2 a_{2}=c_{1} \tag{3.2}\\
3 a_{3}=c_{2} \\
4 a_{4}=c_{3}
\end{array} .\right.
$$

From (3.2), it can be easily established that

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}}{8}-\frac{c_{2}^{2}}{9}\right|
$$

We make use of Lemma 2.2 to obtain the proper bound on $\left|\frac{c_{1} c_{3}}{8}-\frac{c_{2}^{2}}{9}\right|$. We may assume without restriction that $c_{1}>0$. We begin by rewriting (2.2) for the cases $n=2$ and $n=3$.

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
c_{1} & 2 & c_{1} \\
\bar{c}_{2} & c_{1} & 2
\end{array}\right|=8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2} \geq 0,
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{3.3}
\end{equation*}
$$

for some $x,|x| \leq 1$. Then $D_{3} \geq 0$ is equivalent to

$$
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|2 c_{2}-c_{1}^{2}\right|^{2} ;
$$

and this, with (3.3), provides the relation

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z, \tag{3.4}
\end{equation*}
$$

for some value of $z,|z| \leq 1$.

Suppose, now, that $c_{1}=c$ and $c \in[0,2]$. Using 3.3) along with (3.4 we get

$$
\left|\frac{c_{1} c_{3}}{8}-\frac{c_{2}^{2}}{9}\right|=\left|\frac{c^{4}}{288}+\frac{c^{2}\left(4-c^{2}\right) x}{144}-\frac{\left(4-c^{2}\right)\left(32+c^{2}\right) x^{2}}{288}+\frac{c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z}{16}\right|
$$

and an application of the triangle inequality shows that

$$
\begin{align*}
& \left|\frac{c_{1} c_{3}}{8}-\frac{c_{2}^{2}}{9}\right| \tag{3.5}\\
& \leq \frac{c^{4}}{288}+\frac{c\left(4-c^{2}\right)}{16}+\frac{c^{2}\left(4-c^{2}\right) \rho}{144}+\frac{(c-2)(c-16)\left(4-c^{2}\right) \rho^{2}}{288} \\
& =F(\rho)
\end{align*}
$$

with $\rho=|x| \leq 1$. We assume that the upper bound for (3.5) attains at the interior point of $\rho \in[0,1]$ and $c \in[0,2]$, then

$$
F^{\prime}(\rho)=\frac{c^{2}\left(4-c^{2}\right)}{144}+\frac{(c-2)(c-16)\left(4-c^{2}\right) \rho}{144}
$$

We note that $F^{\prime}(\rho)>0$ and consequently F is increasing and $\operatorname{Max}_{\rho} F(\rho)=F(1)$, which contadicts our assumption of having the maximum value at the interior point of $\rho \in[0,1]$. Now let

$$
G(c)=F(1)=\frac{c^{4}}{288}+\frac{c\left(4-c^{2}\right)}{16}+\frac{c^{2}\left(4-c^{2}\right)}{144}+\frac{(c-2)(c-16)\left(4-c^{2}\right)}{288},
$$

then

$$
G^{\prime}(c)=\frac{-c\left(5+c^{2}\right)}{36}=0
$$

implies $c=0$ which is a contradiction. Observe that

$$
G^{\prime \prime}(c)=\frac{-5-3 c^{2}}{36}<0
$$

Thus any maximum points of G must be on the boundary of $c \in[0,2]$. However, $G(c) \geq G(2)$ and thus G has maximum value at $c=0$. The upper bound for (3.5) corresponds to $\rho=1$ and $c=0$, in which case

$$
\left|\frac{c_{1} c_{3}}{8}-\frac{c_{2}^{2}}{9}\right| \leq \frac{4}{9} .
$$

Equality is attained for functions in \mathcal{R} given by

$$
f^{\prime}(z)=\frac{1+z^{2}}{1-z^{2}}
$$

This concludes the proof of our theorem.

References

[1] M. FEKETE AND G. SZEGÖ, Eine Bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., 8 (1933), 85-89.
[2] U. GRENANDER AND G. SZEGÖ, Toeplitz Forms and their Application, Univ. of California Press, Berkeley and Los Angeles, (1958)
[3] J. HUMMEL, The coefficient regions of starlike functions, Pacific J. Math., 7 (1957), 1381-1389.
[4] J. HUMMEL, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc., 11 (1960), 741-749.
[5] F.R. KEOGH and E.P. MERKES, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[6] R.J. LIBERA AND E.J. ZLOTKIEWICZ, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[7] R.J. LIBERA AND E.J. ZLOTKIEWICZ, Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc., 87(2) (1983), 251-289.
[8] T.H. MACGREGOR, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[9] J.W. NOONAN AND D.K. THOMAS, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223(2) (1976), 337-346.
[10] CH. POMMERENKE, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, (1975)

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 068-05

