POINCARÉ TYPE INEQUALITIES FOR VARIABLE EXPONENTS

FUMI-YUKI MAEDA

4-24 Furue-higashi-machi, Nishiku Hiroshima, 733-0872 Japan EMail: fymaeda@h6.dion.ne.jp

~	
Received:	04 March, 2008
Accepted:	04 August, 2008
Communicated by:	B. Opić
2000 AMS Sub. Class.:	26D10, 26D15.
Key words:	Poincaré inequality, variable exponent.
Abstract:	We consider Poincaré type inequalities of integral form for variable exponents. We give conditions under which these inequalities do not hold as well as condi- tions under which they hold.

journal of inequalities in pure and applied mathematics

Contents

1	Introduction and preliminaries	3
2	Invalidity of Poincaré type inequalities	5
3	Validity of Poincaré Type Inequalities in One-Dimensional Case	7
4	Validity of Poincaré Type Inequalities in Higher-Dimensional Case	11

in pure and applied mathematics

1. Introduction and preliminaries

One of the classical Poincaré inequalities states

$$\int_{G} |\varphi(x)|^{p} dx \leq C(N, p, |G|) \int_{G} |\nabla \varphi(x)|^{p} dx, \quad \forall \varphi \in C_{0}^{1}(G),$$

where G is a bounded open set in \mathbb{R}^N ($N \ge 1$) and $p \ge 1$.

In Fu [2], this inequality with p replaced by a bounded variable exponent p(x) is given as a lemma. Namely, let p(x) be a bounded measurable function on G such that $p(x) \ge 1$ for all $x \in G$. We shall say that the Poincaré inequality (PI, for short) holds on G for $p(\cdot)$ if there exists a constant C > 0 such that

(PI)
$$\int_{G} |\varphi(x)|^{p(x)} dx \le C \int_{G} |\nabla \varphi(x)|^{p(x)} dx$$

for all $\varphi \in C_0^1(G)$. Fu's lemma asserts that (PI) always holds. However, as was already remarked in [1, pp. 444-445, Example] in the one dimensional case, this is false. We shall give some types of $p(\cdot)$ for which (PI) does not hold.

We remark here that the following norm-form of the Poincaré inequality holds for variable exponents (cf. [3, Theorem 3.10]):

$$\|\varphi\|_{L^{p(\cdot)}(G)} \le C \||\nabla\varphi\|\|_{L^{p(\cdot)}(G)}$$

for all $\varphi \in C_0^1(G)$ provided that p(x) is continuous on \overline{G} , where $\|\cdot\|_{L^{p(\cdot)}(G)}$ denotes the (Luxemburg) norm in the variable exponent Lebesgue space $L^{p(\cdot)}(G)$ (see [3] for definition). Thus, our results show that we must distiguish between norm-form and integral-form when we consider the Poincaré inequalities for variable exponents.

We also consider a slightly weaker form: we shall say that the weak Poincaré inequality (wPI, for short) holds on G for $p(\cdot)$ if there exists a constant C > 0 such

in pure and applied mathematics

that

(wPI)
$$\int_{G} |\varphi(x)|^{p(x)} dx \le C \left(1 + \int_{G} |\nabla \varphi(x)|^{p(x)} dx \right)$$

for all $\varphi \in C_0^1(G)$. We shall see that this weak Poincaré inequality does not always hold either.

The main purpose of this paper is to give some sufficient conditions on $p(\cdot)$ under which (PI) or (wPI) holds, and our results show that (PI) holds for a fairly large class of non-constant p(x) and (wPI) holds for p(x) in a larger class.

	Poincaré Type Inequalities		
	Fumi-Yuki Maeda		
vol. 9, iss. 3, art. 68, 2008			
			_
	Litle Page		
	Contents		
	44	••	
	◀	►	
	Page 4 of 13		
	Go Back		
	Full Screen		
	Close		
jC	ournal of i	nequalitie	Э

in pure and applied mathematics

2. Invalidity of Poincaré type inequalities

For a measurable function p(x) on G and $E \subset G$, let

$$p_E^+ = \operatorname{ess\,sup}_{x \in E} p(x)$$
 and $p_E^- = \operatorname{ess\,sup}_{x \in E} p(x)$

Lemma 2.1. Let p(x) and q(x) be measurable functions on G such that $0 < p_G^- \le p_G^+ < \infty$ and $0 < q_G^- \le q_G^+ < \infty$.

1. If there exist a compact set K and open sets G_1 , G_2 such that $K \subset G_1 \Subset G_2 \subset G$, |K| > 0 and $q_K^- > p_{G_2 \setminus \overline{G_1}}^+$, then there exists a sequence $\{\varphi_n\}$ in $C_0^1(G)$ such that

$$\int_{G} |\varphi_n(x)|^{q(x)} \, dx \to \infty \qquad \text{and} \qquad \frac{\int_{G} |\nabla \varphi_n(x)|^{p(x)} \, dx}{\int_{G} |\varphi_n(x)|^{q(x)} \, dx} \to 0$$

as $n \to \infty$.

2. If there exist a compact set K and open sets G_1 , G_2 such that $K \subset G_1 \Subset G_2 \subset G$, |K| > 0 and $q_K^+ < p_{G_2 \setminus \overline{G_1}}^-$, then there exists a sequence $\{\psi_n\}$ in $C_0^1(G) \setminus \{0\}$ such that

$$\int_{G} |\nabla \psi_n(x)|^{p(x)} \, dx \to 0 \qquad \text{and} \qquad \frac{\int_{G} |\nabla \psi_n(x)|^{p(x)} \, dx}{\int_{G} |\psi_n(x)|^{q(x)} \, dx} \to 0$$

as $n \to \infty$.

Proof. Choose
$$\varphi_1 \in C_0^1(G)$$
 such that $\varphi_1 = 1$ on $\overline{G_1}$ and $\operatorname{Spt} \varphi_1 \subset G_2$.
(1) Suppose $q_{\overline{K}} > p_{G_2 \setminus \overline{G_1}}^+$. For simplicity, write $q_1 = q_{\overline{K}}$ and $p_2 = p_{G_2 \setminus \overline{G_1}}^+$. Let $\varphi_n = n\varphi_1, n = 1, 2, \dots$ Then

$$\int_{G} |\nabla \varphi_n|^{p(x)} dx = \int_{G_2 \setminus \overline{G_1}} n^{p(x)} |\nabla \varphi_1|^{p(x)} dx \le n^{p_2} \int_{G} |\nabla \varphi_1|^{p(x)} dx$$

Poincaré Type Inequalities Fumi-Yuki Maeda			
vol. 9, iss. 3, art. 68, 2008			
			-
	Title Page		
	Contents		
	44	••	
	•	►	
	Page 5 of 13		
	Go Back		
	Full Screen		
	Clo	ose	
jc in m	ournal of i pure and athemat	<mark>nequalitie</mark> d appliec ics	se k

and

$$\int_G |\varphi_n|^{q(x)} \, dx \ge \int_K n^{q(x)} \, dx \ge n^{q_1} |K|.$$

These inequalities show that the sequence $\{\varphi_n\}$ has the required properties. (2) Suppose $q_K^+ < p_{\overline{G_2}\setminus\overline{G_1}}^-$. Write $q_2 = q_K^+$ and $p_1 = p_{\overline{G_2}\setminus\overline{G_1}}^-$. Let $\psi_n = (1/n)\varphi_1$, $n = 1, 2, \ldots$. Then

$$\int_{G} |\nabla \psi_n|^{p(x)} dx = \int_{G_2 \setminus \overline{G_1}} n^{-p(x)} |\nabla \varphi_1|^{p(x)} dx \le n^{-p_1} \int_{G} |\nabla \varphi_1|^{p(x)} dx$$

and

$$\int_{G} |\psi_{n}|^{q(x)} \, dx \ge \int_{K} n^{-q(x)} \, dx \ge n^{-q_{2}} |K|.$$

Thus the sequence $\{\psi_n\}$ has the required properties.

By taking p(x) = q(x) in this lemma, we readily obtain

Proposition 2.2.

- 1. If there exist a compact set K and open sets G_1 , G_2 such that $K \subset G_1 \Subset G_2 \subset G$, |K| > 0 and $p_K^- > p_{G_2 \setminus \overline{G_1}}^+$, then (wPI) does not hold for $p(\cdot)$ on G.
- 2. If there exist a compact set K and open sets G_1 , G_2 such that $K \subset G_1 \Subset G_2 \subset G$, |K| > 0 and $p_K^+ < p_{G_2 \setminus \overline{G_1}}^-$, then (PI) does not hold for $p(\cdot)$ on G.

Poincaré Type Inequalities Fumi-Yuki Maeda vol. 9, iss. 3, art. 68, 2008			
Title Page			
Contents			
••		••	
•		►	
Page 6 of 13			
Go Back			
Full Screen			
Close			

in pure and applied mathematics

3. Validity of Poincaré Type Inequalities in One-Dimensional Case

We shall say that f(t) on (t_0, t_1) is of type (L) if there is $\tau \in (t_0, t_1)$ such that f(t) is non-increasing on (t_0, τ) and non-decreasing on (τ, t_1) .

Proposition 3.1. Let N = 1 and G = (a, b).

1. If p(t) is monotone (i.e., non-decreasing or non-increasing) or of type (L) on G, then

$$\int_{a}^{b} |f(t)|^{p(t)} dx \le \frac{|G|}{2} + \max(|G|, |G|^{p^{+}}) \int_{a}^{b} |f'(t)|^{p(t)} dt$$

for $f \in C_0^1(G)$, where |G| = b - a and $p^+ = p_G^+$.

2. If p(t) is monotone on G, then

$$\int_{a}^{b} |f(t)|^{p(t)} dx \le C \int_{a}^{b} |f'(t)|^{p(t)} dt$$

for $f \in C_0^1(G)$, where the constant C depends only on p^+ and |G|.

Proof. (I) First, we consider the case G = (0, 1). Let $f \in C_0^1(G)$. (I-1) Suppose p(t) is non-increasing on $(0, \tau)$, $0 < \tau \le 1$. Then, for $0 < t < \tau$,

$$|f(t)|^{p(t)} \le \left(\int_0^t |f'(s)| \, ds\right)^{p(t)} \le \int_0^t |f'(t)|^{p(t)} \, ds$$
$$\le \int_0^t \left(1 + |f'(s)|^{p(s)}\right) \, ds \le t + \int_0^1 |f'(s)|^{p(s)} \, ds.$$

in pure and applied mathematics

issn: 1443-5756

ÍC

Hence

$$\int_0^\tau |f(t)|^{p(t)} dt \le \frac{\tau^2}{2} + \tau \int_0^1 |f'(s)|^{p(s)} ds.$$

Similarly, if p(t) is non-decreasing on $(\tau, 1)$, $0 \le \tau < 1$, then

$$\int_{\tau}^{1} |f(t)|^{p(t)} dt \le \frac{(1-\tau)^2}{2} + (1-\tau) \int_{0}^{1} |f'(s)|^{p(s)} ds.$$

Hence, if p(t) is monotone or of type (L) on G, then

(3.1)
$$\int_0^1 |f(t)|^{p(t)} dt \le \frac{1}{2} + \int_0^1 |f'(t)|^{p(t)} dt.$$

(I-2) The case $||f'||_1 := \int_0^1 |f'(t)| dt \ge 1$. In this case,

$$1 \le \int_0^1 |f'(t)| \, dt = \frac{1}{2} \int_0^1 |2f'(t)| \, dt$$
$$\le \frac{1}{2} + \frac{1}{2} \int_0^1 |2f'(t)|^{p(t)} \, dt \le \frac{1}{2} + 2^{p^{+-1}} \int_0^1 |f'(t)|^{p(t)} dt,$$

so that

$$\frac{1}{2} \le 2^{p^{+}-1} \int_{0}^{1} |f'(t)|^{p(t)} dt.$$

Hence, by (3.1), we have

(3.2)
$$\int_0^1 |f(t)|^{p(t)} dt \le (1+2^{p^+-1}) \int_0^1 |f'(t)|^{p(t)} dt$$

in case $||f'||_1 \ge 1$.

Poincaré Type Inequalities

Fumi-Yuki Maeda

Title Page		
Contents		
44	••	
•	►	
Page 8 of 13		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

(I-3) The case p(t) is monotone and $||f'||_1 < 1$. We may assume that p(t) is non-decreasing. Set

$$E_1 = \{t \in (0,1); |f'(t)| \le 1\}, \quad E_2 = \{t \in (0,1); |f'(t)| > 1\},$$
$$g_1(t) = \int_{(0,t)\cap E_1} |f'(s)| \, ds \quad \text{and} \quad g_2(t) = \int_{(0,t)\cap E_2} |f'(s)| \, ds.$$

Then for 0 < t < 1

$$|f(t)|^{p(t)} \le \left(\int_0^t |f'(s)| \, ds\right)^{p(t)} = \left(g_1(t) + g_2(t)\right)^{p(t)}$$
$$\le 2^{p^{t-1}} \left(g_1(t)^{p(t)} + g_2(t)^{p(t)}\right).$$

Since $p(s) \le p(t)$ for 0 < s < t and $|f(s)| \le 1$ for $s \in E_1$,

$$g_1(t)^{p(t)} \le \int_{(0,t)\cap E_1} |f'(s)|^{p(t)} ds \le \int_{(0,t)\cap E_1} |f'(s)|^{p(s)} ds \le \int_{E_1} |f'(s)|^{p(s)} ds.$$

On the other hand, since $g_2(t) \leq ||f'||_1 < 1$ and |f'(s)| > 1 for $s \in E_2$,

$$g_2(t)^{p(t)} \le g_2(t) = \int_{(0,t)\cap E_2} |f'(s)| \, ds \le \int_{E_2} |f'(s)|^{p(s)} \, ds$$

Hence

$$|f(t)|^{p(t)} \le 2^{p^{+}-1} \int_0^1 |f'(s)|^{p(s)} ds$$

for all 0 < t < 1, and hence

$$\int_0^1 |f(t)|^{p(t)} dt \le 2^{p^+ - 1} \int_0^1 |f'(s)|^{p(s)} ds$$

is

in case $||f'||_1 < 1$.

(I-4) Combining (I-2) and (I-3), we have (3.2) for all $f \in C_0^1(G)$ if p(t) is monotone.

(II) The general case: Let G = (a, b) and $f \in C_0^1(G)$. Let

$$g(t) = f(a + t(b - a))$$
 and $q(t) = p(a + t(b - a))$

for 0 < t < 1. Then

$$\int_{a}^{b} |f(s)|^{p(s)} ds = (b-a) \int_{0}^{1} |g(t)|^{q(t)} dt$$

and

$$\int_{0}^{1} |g'(t)| dt = \frac{1}{b-a} \int_{a}^{b} |(b-a)f'(s)|^{p(s)} ds$$
$$\leq \max(1, (b-a)^{p^{+}-1}) \int_{a}^{b} |f'(s)|^{p(s)} ds.$$

Hence, applying (3.1) and (3.2) to g(t) and q(t), we obtain the required inequalities of the proposition. (In fact, we can take $C = (1 + 2^{p^+-1}) \max(|G|, |G|^{p^+})$.)

journal of inequalities in pure and applied mathematics

4. Validity of Poincaré Type Inequalities in Higher-Dimensional Case

Theorem 4.1. Let $N \ge 2$ and $G \subset G' \times (a, b)$ with a bounded open set $G' \subset \mathbb{R}^{N-1}$ and set $G_{x'} = \{t \in (a, b) : (x', t) \in G\}$ for $x' \in G'$.

- 1. If $t \mapsto p(x',t)$ is monotone or of type (L) on each component of $G_{x'}$ for a.e. $x' \in G'$ (with respect to the (N-1)-dimensional Lebesgue measure), then (wPI) holds for $p(\cdot)$ on G.
- 2. If $t \mapsto p(x', t)$ is monotone on each component of $G_{x'}$ for a.e. $x' \in G'$ (with respect to the (N-1)-dimensional Lebesgue measure), then (PI) holds for $p(\cdot)$ on G.

Proof. Fix $x' \in G'$ for a moment and let I_j be the components of $G_{x'}$. If $\varphi \in C_0^1(G)$, then $t \mapsto \varphi(x', t)$ belongs to $C_0^1(I_j)$ for each j. Thus, by Proposition 3.1, if $t \mapsto p(x', t)$ is monotone or of type (L) on each I_j , then

$$\int_{I_j} |\varphi(x',t)|^{p(x',t)} dt \le |I_j| + \max(1,|I_j|^{p^+}) \int_{I_j} |\nabla\varphi(x',t)|^{p(x',t)} dt,$$

so that

$$\int_{G_{x'}} |\varphi(x',t)|^{p(x',t)} dt \le |G_{x'}| + \max(1,(b-a)^{p^+}) \int_{G_{x'}} |\nabla\varphi(x',t)|^{p(x',t)} dt;$$

and if $t \mapsto p(x', t)$ is monotone on each I_j then

$$\int_{I_j} |\varphi(x',t)|^{p(x',t)} dt \le C(p^+, I_j) \int_{I_j} |\nabla \varphi(x',t)|^{p(x',t)} dt,$$

so that

$$\int_{G_{x'}} |\varphi(x',t)|^{p(x',t)} dt \le C(p^+, b-a) \int_{G_{x'}} |\nabla \varphi(x',t)|^{p(x',t)} dt.$$

Hence, integrating over G' with respect to x', we obtain the assertion of the theorem.

The following proposition is easily seen by a change of variables:

Proposition 4.2. (*PI*) and (*wPI*) are diffeomorphically invariant. More precisely, let G_1 and G_2 be bounded open sets and $\Phi(x) = (\phi_1(x), \ldots, \phi_N(x))$ be a (C^1 -) diffeomorphism of G_1 onto G_2 . Suppose $|\nabla \phi_j|$, $j = 1, \ldots, N$ and $|\nabla \psi_j|$, $j = 1, \ldots, N$ are all bounded, where $\Phi^{-1}(y) = (\psi_1(y), \ldots, \psi_N(y))$, and suppose $0 < \alpha \leq J_{\Phi}(x) \leq \beta$ for all $x \in G_1$. Let $p_1(x) = p_2(\Phi(x))$ for $x \in G_1$. Then, (*PI*) (resp. (*wPI*)) holds for $p_1(\cdot)$ on G_1 if and only if it holds for $p_2(\cdot)$ on G_2 .

Combining Theorem 4.1 with this Proposition, we can find a fairly large class of p(x) for which (PI) (as well as (wPI)) holds.

journal of inequalities in pure and applied mathematics

References

- [1] X. FAN AND D. ZHAO, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, *J. Math. Anal. Appl.*, **263** (2001), 424–446.
- [2] Y. FU, The existence of solutions for elliptic systems with nonuniform growth, *Studia Math.*, **151** (2002), 227–246.
- [3] O. KOVÁČIK AND J. RÁKOSNÍK, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, *Czechoslovak Math. J.*, **41** (1991), 592–618.

journal of inequalities in pure and applied mathematics