Journal of Inequalities in Pure and Applied Mathematics

SUFFICIENT CONDITIONS FOR STARLIKE FUNCTIONS OF ORDER α

Dedicated to the memory of Prof. K.S. Padmanabhan.

V. RAVICHANDRAN, C. SELVARAJ AND R. RAJALAKSMI

Department of Mathematics and Computer Applications Sri Venkateswara College of Engineering Pennalur 602 105, India. EMail: vravi@svce.ac.in

Department of Mathematics L N Government College Ponneri, 601 204, India.

Department of Mathematics Loyola College Chennai 600 034, India.

volume 3, issue 5, article 81, 2002.

Received 5 June, 2002; accepted 4 November, 2002.

Communicated by: H.M. Srivastava

©2000 Victoria University ISSN (electronic): 1443-5756 067-02

Abstract

In this paper, we obtain some sufficient conditions for an analytic function f(z), defined on the unit disk \triangle , to be starlike of order α .

2000 Mathematics Subject Classification: 30C45.

Key words: Starlike function of order α , Univalent function.

The authors are thankful to the referee for his comments and suggestions.

Contents

1	Introduction	3
2	Sufficient Conditions for Starlikeness	5
Refe	erences	

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 2 of 11

1. Introduction

Let \mathcal{A}_n be the class of all functions $f(z) = z + a_{n+1}z^{n+1} + \cdots$ which are analytic in $\Delta = \{z; |z| < 1\}$ and let $\mathcal{A}_1 = \mathcal{A}$. A function $f(z) \in \mathcal{A}$ is starlike of order α , if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad 0 \le \alpha < 1,$$

for all $z \in \triangle$. The class of all starlike functions of order α is denoted by $S^*(\alpha)$. We write $S^*(0)$ simply as S^* . Recently, Li and Owa [3] proved the following:

Theorem 1.1. *If* $f(z) \in A$ *satisfies*

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha}{2}, \quad z \in \Delta,$$

for some α ($\alpha \geq 0$), then $f(z) \in S^*$.

In fact, Lewandowski, Miller and Zlotkiewicz [1] and Ramesha, Kumar, and Padmanabhan [7] have proved a weaker form of the above theorem. If the number $-\alpha/2$ is replaced by $-\alpha^2(1-\alpha)/4$, $(0 \le \alpha < 2)$ in the above condition, Li and Owa [3] have proved that f(z) is in $S^*(\alpha/2)$.

Li and Owa [3] have also proved the following:

Theorem 1.2. If $f(z) \in A$ satisfies

$$\left| \frac{zf''(z)}{f'(z)} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right| < \rho, \quad z \in \Delta,$$

where $\rho = 2.2443697$, then $f(z) \in S^*$.

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 3 of 11

The above theorem with $\rho = 3/2$ and $\rho = 1/6$ were earlier proved by Li and Owa [2] and Obradovic [6] respectively.

In this paper, we obtain some sufficient conditions for functions to be starlike of order β . To prove our result, we need the following:

Lemma 1.3. [4] Let Ω be a set in the complex plane \mathcal{C} and suppose that Φ is a mapping from $\mathcal{C}^2 \times \triangle$ to \mathcal{C} which satisfies $\Phi(ix, y; z) \notin \Omega$ for $z \in \triangle$, and for all real x, y such that $y \leq -n(1+x^2)/2$. If the function $p(z) = 1 + c_n z^n + \cdots$ is analytic in \triangle and $\Phi(p(z), zp'(z); z) \in \Omega$ for all $z \in \triangle$, then $\operatorname{Re} p(z) > 0$.

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

2. Sufficient Conditions for Starlikeness

In this section, we prove some sufficient conditions for function to be starlike of order β .

Theorem 2.1. If $f(z) \in A_n$ satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > \alpha\beta\left[\beta+\frac{n}{2}-1\right]+\left[\beta-\frac{\alpha n}{2}\right], \ z \in \Delta, \ 0 \le \alpha, \beta \le 1,$$

then $f(z) \in S^*(\beta)$.

Proof. Define p(z) by

$$(1-\beta)p(z) + \beta = \frac{zf'(z)}{f(z)}.$$

Then $p(z) = 1 + c_n z^n + \cdots$ and is analytic in \triangle . A computation shows that

$$\frac{zf''(z)}{f'(z)} = \frac{(1-\beta)zp'(z) + [(1-\beta)p(z) + \beta]^2 - [(1-\beta)p(z) + \beta]}{(1-\beta)p(z) + \beta}$$

and hence

$$\frac{zf'(z)}{f(z)} \left(\alpha \frac{zf''(z)}{f'(z)} + 1 \right) = \alpha (1 - \beta) z p'(z) + \alpha (1 - \beta)^2 p^2(z)$$

$$+ (1 - \beta) (1 + 2\alpha\beta - \alpha) p(z) + \beta [\alpha\beta + 1 - \alpha]$$

$$= \Phi(p(z), zp'(z); z),$$

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 5 of 11

where

$$\Phi(r,s;t) = \alpha(1-\beta)s + \alpha(1-\beta)^2r^2 + (1-\beta)(1+2\alpha\beta-\alpha)r + \beta[\alpha\beta+1-\alpha].$$

For all real x and y satisfying $y \le -n(1+x^2)/2$, we have

$$\operatorname{Re} \Phi(ix, y; z) = \alpha (1 - \beta) y - \alpha (1 - \beta)^2 x^2 + \beta [\alpha \beta + 1 - \alpha]$$

$$\leq -\frac{\alpha}{2} (1 - \beta) n - \left[\frac{n\alpha}{2} (1 - \beta) + \alpha (1 - \beta)^2 \right] x^2 + \beta [\alpha \beta + 1 - \alpha]$$

$$= -\frac{\alpha}{2} (1 - \beta) n - \frac{\alpha (1 - \beta)}{2} (n + 2 - 2\beta) x^2 + \beta (\alpha \beta + 1 - \alpha)$$

$$\leq \beta (\alpha \beta + 1 - \alpha) - \frac{\alpha}{2} (1 - \beta) n$$

$$= \alpha \beta \left(\beta + \frac{n}{2} - 1 \right) + \left(\beta - \frac{n\alpha}{2} \right).$$

Let $\Omega = \left\{ w; \operatorname{Re} w > \alpha \beta \left(\beta + \frac{n}{2} - 1 \right) + \left(\beta - \frac{n\alpha}{2} \right) \right\}$. Then $\Phi(p(z), zp'(z); z) \in \Omega$ and $\Phi(ix, y; z) \notin \Omega$ for all real x and $y \leq -n(1+x^2)/2, z \in \Delta$. By an application of Lemma 1.3, the result follows.

By taking $\beta = 0$ and n = 1 in the above theorem, we have the following:

Corollary 2.2. [3] If $f(z) \in A$ satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha}{2}, \quad z \in \triangle,$$

for some α ($\alpha \geq 0$), then $f(z) \in S^*$.

If we take $\beta = \alpha/2$ and n = 1, we get the following:

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 6 of 11

Corollary 2.3. [3] If $f(z) \in A$ satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha^2}{4}(1-\alpha), \quad z \in \triangle,$$

for some α (0 < $\alpha \le 2$), then $f(z) \in S^*(\alpha/2)$.

In fact, in the proof of the above theorem, we have proved the following: If $p(z) = 1 + c_n z^n + \cdots$ is analytic in \triangle and satisfies

$$\operatorname{Re}(\alpha(1-\beta)zp'(z) + \alpha(1-\beta)^{2}p^{2}(z) + (1-\beta)(1+2\alpha\beta-\alpha)p(z) + \beta[\alpha\beta+1-\alpha]) > \alpha\beta\left[\beta+\frac{n}{2}-1\right] + \left(\beta-\frac{\alpha n}{2}\right),$$

then $\operatorname{Re} p(z) > 0$. Using a method similar to the one used in the above theorem, we have the following:

Theorem 2.4. Let $\alpha \geq 0$, $0 \leq \beta < 1$. If $f(z) \in A_n$ satisfies

$$\operatorname{Re}\left\{\frac{f(z)}{z}\left(\alpha\frac{zf'(z)}{f(z)}+1-\alpha\right)\right\} > -\frac{n}{2}\alpha(1-\beta)+\beta, \quad z \in \triangle,$$

then

$$\operatorname{Re} \frac{f(z)}{z} > \beta.$$

As a special case, we get the following: If $f(z) \in \mathcal{A}$ satisfies

$$\operatorname{Re}\left\{f'(z) + \alpha z f''(z)\right\} > -\frac{\alpha}{2}, \quad z \in \Delta,$$

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 7 of 11

 $\alpha > 0$, then

$$\operatorname{Re} f'(z) > 0.$$

However, a sharp form of this result was proved by Nunokawa and Hoshino [5].

Theorem 2.5. Let $0 \le \beta < 1$, $a = (n/2 + 1 - \beta)^2$ and $b = (n/2 + \beta)^2$ satisfy $(a + b)\beta^2 < b(1 - 2\beta)$. Let t_0 be the positive real root of the equation

$$2a(1-\beta)^2t^2 + [3a\beta^2 + b(1-\beta)^2]t + [(a+2b)\beta^2 - (1-\beta)^2b] = 0$$

and

$$\rho^2 = \frac{(1-\beta)^3 (1+t_0)^2 (at_0+b)}{\beta^2 + (1-\beta)^2 t_0}.$$

If $f(z) \in A_n$ *satisfies*

$$\left| \frac{zf''(z)}{f'(z)} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right| \le \rho, \quad z \in \Delta,$$

then $f(z) \in S^*(\beta)$.

Proof. Define p(z) by

$$(1 - \beta)p(z) + \beta = \frac{zf'(z)}{f(z)}.$$

Then $p(z) = 1 + c_n z^n + \cdots$ and is analytic in \triangle . A computation shows that

$$\frac{zf''(z)}{f'(z)} = \frac{(1-\beta)zp'(z) + [(1-\beta)p(z) + \beta]^2 - [(1-\beta)p(z) + \beta]}{(1-\beta)p(z) + \beta}$$

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 8 of 11

and hence

$$\frac{zf''(z)}{f'(z)} \left(\frac{zf'(z)}{f(z)} - 1 \right) = \frac{(1-\beta)(p(z)-1)}{(1-\beta)p(z)+\beta} [(1-\beta)zp'(z) + [(1-\beta)p(z)+\beta]^2 - [(1-\beta)p(z)+\beta]]$$

$$= \Phi(p(z), zp'(z); z).$$

Then, for all real x and y satisfying $y \le -n(1+x^2)/2$, we have

$$\begin{split} |\Phi(ix,y;z)|^2 \\ &= \frac{(1-\beta)^2(1+x^2)}{\beta^2+(1-\beta)^2x^2} \left\{ [(1-\beta)y-\beta+\beta^2-(1-\beta)^2x^2]^2 \right. \\ &\qquad \qquad + [2\beta(1-\beta)-(1-\beta)]^2x^2 \right\} \\ &= \frac{(1-\beta)^2(1+t)}{\beta^2+(1-\beta)^2t} \{ [(1-\beta)y-\beta+\beta^2-(1-\beta)^2t]^2 \\ &\qquad \qquad + [2\beta(1-\beta)-(1-\beta)]^2t \} \\ &\equiv g(t,y), \end{split}$$

where $t = x^2 > 0$ and $y \le -n(1+t)/2$. Since

$$\frac{\partial g}{\partial y} = \frac{(1-\beta)^3 (1+t)}{\beta^2 + (1-\beta)^2 t} [(1-\beta)y - \beta + \beta^2 - (1-\beta)^2 t]^2 < 0,$$

we have

$$g(t,y) \ge g\left(t, -\frac{n}{2}(1+t)\right) \equiv h(t).$$

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Close

Quit

Page 9 of 11

Note that

$$h(t) = \frac{(1-\beta)^3 (1+t)^2}{\beta^2 + (1-\beta)^2 t} \left[t \left(\frac{n}{2} + 1 - \beta \right)^2 + \left(\frac{n}{2} + \beta \right)^2 \right].$$

Also it is clear that h'(-1) = 0 and the other two roots of h'(t) = 0 are given by

$$2a(1-\beta)^2t^2 + [3a\beta^2 + b(1-\beta)^2]t + [(a+2b)\beta^2 - (1-\beta)^2b] = 0,$$

where $a = (n/2 + 1 - \beta)^2$ and $b = (n/2 + \beta)^2$. Since t_0 is the positive root of this equation we have $h(t) \ge h(t_0)$ and hence

$$|\Phi(ix, y; z)|^2 \ge h(t_0).$$

Define $\Omega = \{w; |w| < \rho\}$. Then $\Phi(p(z), zp'(z); z) \in \Omega$ and $\Phi(ix, y; z) \notin \Omega$ for all real x and $y \leq -n(1+x^2)/2$, $z \in \Delta$. Therefore by an application of Lemma 1.3, the result follows.

If we take $n=1, \beta=0$, we have $t_0=\frac{\sqrt{73}-1}{36}$ and therefore we have the following:

Corollary 2.6. [3] If $f(z) \in A$ satisfies

$$\left| \frac{zf''(z)}{f'(z)} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right| < \rho, \quad z \in \Delta,$$

where $\rho^2 = \frac{827 + 73\sqrt{73}}{288}$, then $f(z) \in S^*$.

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 10 of 11

References

- [1] Z. LEWANDOWSKI, S.S. MILLER AND E. ZŁOTKIEWICZ, Generating functions for some classes of univalent functions, *Proc. Amer. Math. Soc.*, **56** (1976), 111–117.
- [2] J.-L. LI AND S. OWA, Properties of the Salagean operator, *Georgian Math. J.*, **5(4)** (1998), 361–366.
- [3] J.-L. LI AND S. OWA, Sufficient conditions for starlikeness, *Indian J. Pure Appl. Math.*, **33** (2002), 313–318.
- [4] S.S. MILLER AND P.T. MOCANU, Differential subordinations and inequalities in the complex plane, *J. Differ. Equations*, **67** (1987), 199–211.
- [5] M. NUNOKAWA AND S. HOSHINO, One criterion for multivalent functions, *Proc. Japan Acad.*, *Ser. A*, **67** (1991), 35–37.
- [6] M. OBRADOVIĆ, Ruscheweyh derivatives and some classes of univalent functions, in: *Current Topics in Analytic Function Theory*, (H.M. Srivastava and S. Owa, Editors), World Sci. Publishing, River Edge, NJ, 1992, pp. 220–233.
- [7] C. RAMESHA, S. KUMAR AND K.S. PADMANABHAN, A sufficient condition for starlikeness, *Chinese J. Math.*, **23** (1995), 167–171.

Sufficient Conditions for Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and R. Rajalaksmi

Title Page

Contents

Go Back

Close

Quit

Page 11 of 11