SUFFICIENT CONDITIONS FOR STARLIKE FUNCTIONS OF ORDER α

V. RAVICHANDRAN, C. SELVARAJ, AND R. RAJALAKSMI
Department of Mathematics and Computer Applications Sri Venkateswara College of Engineering Pennalur 602 105, India. vravi@svce.ac.in
Department of Mathematics
L N Government College PONNERI, 601 204, INDIA.
Department of Mathematics
Loyola College
Chennai 600 034, India.

Received 5 June, 2002; accepted 4 November, 2002
Communicated by H.M. Srivastava
Dedicated to the memory of Prof. K.S. Padmanabhan

AbSTRACT. In this paper, we obtain some sufficient conditions for an analytic function $f(z)$, defined on the unit disk Δ, to be starlike of order α.

Key words and phrases: Starlike function of order α, Univalent function.

1. Introduction

Let \mathcal{A}_{n} be the class of all functions $f(z)=z+a_{n+1} z^{n+1}+\cdots$ which are analytic in $\triangle=$ $\{z ;|z|<1\}$ and let $\mathcal{A}_{1}=\mathcal{A}$. A function $f(z) \in \mathcal{A}$ is starlike of order α, if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad 0 \leq \alpha<1
$$

for all $z \in \triangle$. The class of all starlike functions of order α is denoted by $S^{*}(\alpha)$. We write $S^{*}(0)$ simply as S^{*}. Recently, Li and Owa [3] proved the following:

```
ISSN (electronic): 1443-5756
(C)2002 Victoria University. All rights reserved.
The authors are thankful to the referee for his comments and suggestions.
067-02
```

Theorem 1.1. If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right\}>-\frac{\alpha}{2}, \quad z \in \triangle
$$

for some $\alpha(\alpha \geq 0)$, then $f(z) \in S^{*}$.
In fact, Lewandowski, Miller and Zlotkiewicz [1] and Ramesha, Kumar, and Padmanabhan [7] have proved a weaker form of the above theorem. If the number $-\alpha / 2$ is replaced by $-\alpha^{2}(1-\alpha) / 4,(0 \leq \alpha<2)$ in the above condition, Li and Owa [3] have proved that $f(z)$ is in $S^{*}(\alpha / 2)$.

Li and Owa [3] have also proved the following:
Theorem 1.2. If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right|<\rho, \quad z \in \triangle
$$

where $\rho=2.2443697$, then $f(z) \in S^{*}$.
The above theorem with $\rho=3 / 2$ and $\rho=1 / 6$ were earlier proved by Li and Owa [2] and Obradovic [6] respectively.

In this paper, we obtain some sufficient conditions for functions to be starlike of order β. To prove our result, we need the following:

Lemma 1.3. [4] Let Ω be a set in the complex plane \mathcal{C} and suppose that Φ is a mapping from $\mathcal{C}^{2} \times \triangle$ to \mathcal{C} which satisfies $\Phi(i x, y ; z) \notin \Omega$ for $z \in \triangle$, and for all real x, y such that $y \leq$ $-n\left(1+x^{2}\right) / 2$. If the function $p(z)=1+c_{n} z^{n}+\cdots$ is analytic in \triangle and $\Phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \triangle$, then $\operatorname{Re} p(z)>0$.

2. Sufficient Conditions for Starlikeness

In this section, we prove some sufficient conditions for function to be starlike of order β.
Theorem 2.1. If $f(z) \in \mathcal{A}_{n}$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right\}>\alpha \beta\left[\beta+\frac{n}{2}-1\right]+\left[\beta-\frac{\alpha n}{2}\right], \quad z \in \triangle, 0 \leq \alpha, \beta \leq 1
$$

then $f(z) \in S^{*}(\beta)$.
Proof. Define $p(z)$ by

$$
(1-\beta) p(z)+\beta=\frac{z f^{\prime}(z)}{f(z)}
$$

Then $p(z)=1+c_{n} z^{n}+\cdots$ and is analytic in \triangle. A computation shows that

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1-\beta) z p^{\prime}(z)+[(1-\beta) p(z)+\beta]^{2}-[(1-\beta) p(z)+\beta]}{(1-\beta) p(z)+\beta}
$$

and hence

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)= & \alpha(1-\beta) z p^{\prime}(z)+\alpha(1-\beta)^{2} p^{2}(z) \\
& \quad+(1-\beta)(1+2 \alpha \beta-\alpha) p(z)+\beta[\alpha \beta+1-\alpha] \\
= & \Phi\left(p(z), z p^{\prime}(z) ; z\right)
\end{aligned}
$$

where

$$
\Phi(r, s ; t)=\alpha(1-\beta) s+\alpha(1-\beta)^{2} r^{2}+(1-\beta)(1+2 \alpha \beta-\alpha) r+\beta[\alpha \beta+1-\alpha] .
$$

For all real x and y satisfying $y \leq-n\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re} \Phi(i x, y ; z) & =\alpha(1-\beta) y-\alpha(1-\beta)^{2} x^{2}+\beta[\alpha \beta+1-\alpha] \\
& \leq-\frac{\alpha}{2}(1-\beta) n-\left[\frac{n \alpha}{2}(1-\beta)+\alpha(1-\beta)^{2}\right] x^{2}+\beta[\alpha \beta+1-\alpha] \\
& =-\frac{\alpha}{2}(1-\beta) n-\frac{\alpha(1-\beta)}{2}(n+2-2 \beta) x^{2}+\beta(\alpha \beta+1-\alpha) \\
& \leq \beta(\alpha \beta+1-\alpha)-\frac{\alpha}{2}(1-\beta) n \\
& =\alpha \beta\left(\beta+\frac{n}{2}-1\right)+\left(\beta-\frac{n \alpha}{2}\right) .
\end{aligned}
$$

Let $\Omega=\left\{w ; \operatorname{Re} w>\alpha \beta\left(\beta+\frac{n}{2}-1\right)+\left(\beta-\frac{n \alpha}{2}\right)\right\}$. Then $\Phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ and $\Phi(i x, y ; z) \notin \Omega$ for all real x and $y \leq-n\left(1+x^{2}\right) / 2, z \in \triangle$. By an application of Lemma 1.3 , the result follows.

By taking $\beta=0$ and $n=1$ in the above theorem, we have the following:
Corollary 2.2. [3] If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right\}>-\frac{\alpha}{2}, \quad z \in \triangle,
$$

for some $\alpha(\alpha \geq 0)$, then $f(z) \in S^{*}$.
If we take $\beta=\alpha / 2$ and $n=1$, we get the following:
Corollary 2.3. [3] If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right\}>-\frac{\alpha^{2}}{4}(1-\alpha), \quad z \in \triangle,
$$

for some $\alpha(0<\alpha \leq 2)$, then $f(z) \in S^{*}(\alpha / 2)$.
In fact, in the proof of the above theorem, we have proved the following: If $p(z)=1+c_{n} z^{n}+$ \cdots is analytic in \triangle and satisfies

$$
\begin{array}{r}
\operatorname{Re}\left(\alpha(1-\beta) z p^{\prime}(z)+\alpha(1-\beta)^{2} p^{2}(z)+(1-\beta)(1+2 \alpha \beta-\alpha) p(z)+\beta[\alpha \beta+1-\alpha]\right) \\
>\alpha \beta\left[\beta+\frac{n}{2}-1\right]+\left(\beta-\frac{\alpha n}{2}\right),
\end{array}
$$

then $\operatorname{Re} p(z)>0$. Using a method similar to the one used in the above theorem, we have the following:

Theorem 2.4. Let $\alpha \geq 0,0 \leq \beta<1$. If $f(z) \in \mathcal{A}_{n}$ satisfies

$$
\operatorname{Re}\left\{\frac{f(z)}{z}\left(\alpha \frac{z f^{\prime}(z)}{f(z)}+1-\alpha\right)\right\}>-\frac{n}{2} \alpha(1-\beta)+\beta, \quad z \in \triangle
$$

then

$$
\operatorname{Re} \frac{f(z)}{z}>\beta
$$

As a special case, we get the following: If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{f^{\prime}(z)+\alpha z f^{\prime \prime}(z)\right\}>-\frac{\alpha}{2}, \quad z \in \triangle
$$

$\alpha \geq 0$, then

$$
\operatorname{Re} f^{\prime}(z)>0
$$

However, a sharp form of this result was proved by Nunokawa and Hoshino [5].
Theorem 2.5. Let $0 \leq \beta<1, a=(n / 2+1-\beta)^{2}$ and $b=(n / 2+\beta)^{2}$ satisfy $(a+b) \beta^{2}$ $<b(1-2 \beta)$. Let t_{0} be the positive real root of the equation

$$
2 a(1-\beta)^{2} t^{2}+\left[3 a \beta^{2}+b(1-\beta)^{2}\right] t+\left[(a+2 b) \beta^{2}-(1-\beta)^{2} b\right]=0
$$

and

$$
\rho^{2}=\frac{(1-\beta)^{3}\left(1+t_{0}\right)^{2}\left(a t_{0}+b\right)}{\beta^{2}+(1-\beta)^{2} t_{0}}
$$

If $f(z) \in \mathcal{A}_{n}$ satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right| \leq \rho, \quad z \in \triangle
$$

then $f(z) \in S^{*}(\beta)$.
Proof. Define $p(z)$ by

$$
(1-\beta) p(z)+\beta=\frac{z f^{\prime}(z)}{f(z)}
$$

Then $p(z)=1+c_{n} z^{n}+\cdots$ and is analytic in \triangle. A computation shows that

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1-\beta) z p^{\prime}(z)+[(1-\beta) p(z)+\beta]^{2}-[(1-\beta) p(z)+\beta]}{(1-\beta) p(z)+\beta}
$$

and hence

$$
\begin{aligned}
& \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \\
& \quad\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \\
& \left.\quad=\frac{(1-\beta)(p(z)-1)}{(1-\beta) p(z)+\beta}\left[(1-\beta) z p^{\prime}(z)+[(1-\beta) p(z)+\beta]^{2}-[(1-\beta) p(z)+\beta)\right]\right] \\
& \quad \equiv \Phi\left(p(z), z p^{\prime}(z) ; z\right)
\end{aligned}
$$

Then, for all real x and y satisfying $y \leq-n\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
& |\Phi(i x, y ; z)|^{2} \\
& \begin{aligned}
= & \frac{(1-\beta)^{2}\left(1+x^{2}\right)}{\beta^{2}+(1-\beta)^{2} x^{2}}\left\{\left[(1-\beta) y-\beta+\beta^{2}-(1-\beta)^{2} x^{2}\right]^{2}\right. \\
& \left.+[2 \beta(1-\beta)-(1-\beta)]^{2} x^{2}\right\}
\end{aligned} \\
& \begin{aligned}
= & \frac{(1-\beta)^{2}(1+t)}{\beta^{2}+(1-\beta)^{2} t}\left\{\left[(1-\beta) y-\beta+\beta^{2}-(1-\beta)^{2} t\right]^{2}\right. \\
& \left.+[2 \beta(1-\beta)-(1-\beta)]^{2} t\right\}
\end{aligned} \\
& \quad \equiv g(t, y),
\end{aligned}
$$

where $t=x^{2}>0$ and $y \leq-n(1+t) / 2$. Since

$$
\frac{\partial g}{\partial y}=\frac{(1-\beta)^{3}(1+t)}{\beta^{2}+(1-\beta)^{2} t}\left[(1-\beta) y-\beta+\beta^{2}-(1-\beta)^{2} t\right]^{2}<0,
$$

we have

$$
g(t, y) \geq g\left(t,-\frac{n}{2}(1+t)\right) \equiv h(t)
$$

Note that

$$
h(t)=\frac{(1-\beta)^{3}(1+t)^{2}}{\beta^{2}+(1-\beta)^{2} t}\left[t\left(\frac{n}{2}+1-\beta\right)^{2}+\left(\frac{n}{2}+\beta\right)^{2}\right] .
$$

Also it is clear that $h^{\prime}(-1)=0$ and the other two roots of $h^{\prime}(t)=0$ are given by

$$
2 a(1-\beta)^{2} t^{2}+\left[3 a \beta^{2}+b(1-\beta)^{2}\right] t+\left[(a+2 b) \beta^{2}-(1-\beta)^{2} b\right]=0
$$

where $a=(n / 2+1-\beta)^{2}$ and $b=(n / 2+\beta)^{2}$. Since t_{0} is the positive root of this equation we have $h(t) \geq h\left(t_{0}\right)$ and hence

$$
|\Phi(i x, y ; z)|^{2} \geq h\left(t_{0}\right)
$$

Define $\Omega=\{w ;|w|<\rho\}$. Then $\Phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ and $\Phi(i x, y ; z) \notin \Omega$ for all real x and $y \leq-n\left(1+x^{2}\right) / 2, z \in \triangle$. Therefore by an application of Lemma 1.3, the result follows.

If we take $n=1, \beta=0$, we have $t_{0}=\frac{\sqrt{73}-1}{36}$ and therefore we have the following:
Corollary 2.6. [3] If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right|<\rho, \quad z \in \triangle,
$$

where $\rho^{2}=\frac{827+73 \sqrt{73}}{288}$, then $f(z) \in S^{*}$.

References

[1] Z. LEWANDOWSKI, S.S. MILLER and E. ZŁOTKIEWICZ, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56 (1976), 111-117.
[2] J.-L. LI AND S. OWA, Properties of the Salagean operator, Georgian Math. J., 5(4) (1998), 361-366.
[3] J.-L. LI and S. OWA, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (2002), 313-318.
[4] S.S. MILLER and P.T. MOCANU, Differential subordinations and inequalities in the complex plane, J. Differ. Equations, 67 (1987), 199-211.
[5] M. NUNOKAWA AND S. HOSHINO, One criterion for multivalent functions, Proc. Japan Acad., Ser. A, 67 (1991), 35-37.
[6] M. OBRADOVIĆ, Ruscheweyh derivatives and some classes of univalent functions, in: Current Topics in Analytic Function Theory, (H.M. Srivastava and S. Owa, Editors), World Sci. Publishing, River Edge, NJ, 1992, pp. 220-233.
[7] C. RAMESHA, S. KUMAR AND K.S. PADMANABHAN, A sufficient condition for starlikeness, Chinese J. Math., 23 (1995), 167-171.

