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ABSTRACT. In this paper, we obtain some sufficient conditions for an analytic functionf(z),
defined on the unit disk4, to be starlike of orderα.
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1. I NTRODUCTION

LetAn be the class of all functionsf(z) = z + an+1z
n+1 + · · · which are analytic in4 =

{z; |z| < 1} and letA1 = A. A functionf(z) ∈ A is starlike of orderα, if

Re

(
zf ′(z)

f(z)

)
> α, 0 ≤ α < 1,

for all z ∈ 4. The class of all starlike functions of orderα is denoted byS∗(α). We writeS∗(0)

simply asS∗. Recently, Li and Owa [3] proved the following:
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Theorem 1.1. If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α

2
, z ∈ 4,

for someα (α ≥ 0), thenf(z) ∈ S∗.

In fact, Lewandowski, Miller and Zlotkiewicz [1] and Ramesha, Kumar, and Padmanabhan

[7] have proved a weaker form of the above theorem. If the number−α/2 is replaced by

−α2(1− α)/4, (0 ≤ α < 2) in the above condition, Li and Owa [3] have proved thatf(z) is in

S∗(α/2).

Li and Owa [3] have also proved the following:

Theorem 1.2. If f(z) ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ < ρ, z ∈ 4,

whereρ = 2.2443697, thenf(z) ∈ S∗.

The above theorem withρ = 3/2 andρ = 1/6 were earlier proved by Li and Owa [2] and

Obradovic [6] respectively.

In this paper, we obtain some sufficient conditions for functions to be starlike of orderβ. To

prove our result, we need the following:

Lemma 1.3. [4] Let Ω be a set in the complex planeC and suppose thatΦ is a mapping from

C2 × 4 to C which satisfiesΦ(ix, y; z) 6∈ Ω for z ∈ 4, and for all realx, y such thaty ≤
−n(1+x2)/2. If the functionp(z) = 1+cnz

n + · · · is analytic in4 andΦ(p(z), zp′(z); z) ∈ Ω

for all z ∈ 4, thenRe p(z) > 0.

2. SUFFICIENT CONDITIONS FOR STARLIKENESS

In this section, we prove some sufficient conditions for function to be starlike of orderβ.

Theorem 2.1. If f(z) ∈ An satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> αβ

[
β +

n

2
− 1

]
+

[
β − αn

2

]
, z ∈ 4, 0 ≤ α, β ≤ 1,

thenf(z) ∈ S∗(β).

Proof. Definep(z) by

(1− β)p(z) + β =
zf ′(z)

f(z)
.

Thenp(z) = 1 + cnz
n + · · · and is analytic in4. A computation shows that

zf ′′(z)

f ′(z)
=

(1− β)zp′(z) + [(1− β)p(z) + β]2 − [(1− β)p(z) + β]

(1− β)p(z) + β
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and hence

zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)
= α(1− β)zp′(z) + α(1− β)2p2(z)

+ (1− β)(1 + 2αβ − α)p(z) + β[αβ + 1− α]

= Φ(p(z), zp′(z); z),

where

Φ(r, s; t) = α(1− β)s + α(1− β)2r2 + (1− β)(1 + 2αβ − α)r + β[αβ + 1− α].

For all realx andy satisfyingy ≤ −n(1 + x2)/2, we have

Re Φ(ix, y; z) = α(1− β)y − α(1− β)2x2 + β[αβ + 1− α]

≤ −α

2
(1− β)n−

[nα

2
(1− β) + α(1− β)2

]
x2 + β[αβ + 1− α]

= −α

2
(1− β)n− α(1− β)

2
(n + 2− 2β)x2 + β(αβ + 1− α)

≤ β(αβ + 1− α)− α

2
(1− β)n

= αβ
(
β +

n

2
− 1

)
+

(
β − nα

2

)
.

Let Ω =
{
w; Re w > αβ

(
β + n

2
− 1

)
+

(
β − nα

2

)}
. Then Φ(p(z), zp′(z); z) ∈ Ω and

Φ(ix, y; z) 6∈ Ω for all realx andy ≤ −n(1 + x2)/2, z ∈ 4. By an application of Lemma 1.3,

the result follows. �

By takingβ = 0 andn = 1 in the above theorem, we have the following:

Corollary 2.2. [3] If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α

2
, z ∈ 4,

for someα (α ≥ 0), thenf(z) ∈ S∗.

If we takeβ = α/2 andn = 1, we get the following:

Corollary 2.3. [3] If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α2

4
(1− α), z ∈ 4,

for someα (0 < α ≤ 2), thenf(z) ∈ S∗(α/2).

In fact, in the proof of the above theorem, we have proved the following: Ifp(z) = 1+cnz
n+

· · · is analytic in4 and satisfies

Re(α(1− β)zp′(z) + α(1− β)2p2(z) + (1− β)(1 + 2αβ − α)p(z) + β[αβ + 1− α])

> αβ
[
β +

n

2
− 1

]
+

(
β − αn

2

)
,

thenRe p(z) > 0. Using a method similar to the one used in the above theorem, we have the

following:
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Theorem 2.4.Letα ≥ 0, 0 ≤ β < 1. If f(z) ∈ An satisfies

Re

{
f(z)

z

(
α

zf ′(z)

f(z)
+ 1− α

)}
> −n

2
α(1− β) + β, z ∈ 4,

then

Re
f(z)

z
> β.

As a special case, we get the following: Iff(z) ∈ A satisfies

Re {f ′(z) + αzf ′′(z)} > −α

2
, z ∈ 4,

α ≥ 0, then

Re f ′(z) > 0.

However, a sharp form of this result was proved by Nunokawa and Hoshino [5].

Theorem 2.5. Let 0 ≤ β < 1, a = (n/2 + 1 − β)2 and b = (n/2 + β)2 satisfy(a + b)β2

< b(1− 2β). Let t0 be the positive real root of the equation

2a(1− β)2t2 + [3aβ2 + b(1− β)2]t + [(a + 2b)β2 − (1− β)2b] = 0

and

ρ2 =
(1− β)3(1 + t0)

2(at0 + b)

β2 + (1− β)2t0
.

If f(z) ∈ An satisfies ∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ ≤ ρ, z ∈ 4,

thenf(z) ∈ S∗(β).

Proof. Definep(z) by

(1− β)p(z) + β =
zf ′(z)

f(z)
.

Thenp(z) = 1 + cnz
n + · · · and is analytic in4. A computation shows that

zf ′′(z)

f ′(z)
=

(1− β)zp′(z) + [(1− β)p(z) + β]2 − [(1− β)p(z) + β]

(1− β)p(z) + β

and hence

zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)
=

(1− β)(p(z)− 1)

(1− β)p(z) + β
[(1− β)zp′(z) + [(1− β)p(z) + β]2 − [(1− β)p(z) + β)]]

≡ Φ(p(z), zp′(z); z).
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Then, for all realx andy satisfyingy ≤ −n(1 + x2)/2, we have

|Φ(ix, y; z)|2

=
(1− β)2(1 + x2)

β2 + (1− β)2x2

{
[(1− β)y − β + β2 − (1− β)2x2]2

+[2β(1− β)− (1− β)]2x2
}

=
(1− β)2(1 + t)

β2 + (1− β)2t
{[(1− β)y − β + β2 − (1− β)2t]2

+ [2β(1− β)− (1− β)]2t}

≡ g(t, y),

wheret = x2 > 0 andy ≤ −n(1 + t)/2. Since

∂g

∂y
=

(1− β)3(1 + t)

β2 + (1− β)2t
[(1− β)y − β + β2 − (1− β)2t]2 < 0,

we have

g(t, y) ≥ g
(
t,−n

2
(1 + t)

)
≡ h(t).

Note that

h(t) =
(1− β)3(1 + t)2

β2 + (1− β)2t

[
t
(n

2
+ 1− β

)2

+
(n

2
+ β

)2
]

.

Also it is clear thath′(−1) = 0 and the other two roots ofh′(t) = 0 are given by

2a(1− β)2t2 + [3aβ2 + b(1− β)2]t + [(a + 2b)β2 − (1− β)2b] = 0,

wherea = (n/2 + 1− β)2 andb = (n/2 + β)2. Sincet0 is the positive root of this equation we

haveh(t) ≥ h(t0) and hence

|Φ(ix, y; z)|2 ≥ h(t0).

DefineΩ = {w; |w| < ρ}. ThenΦ(p(z), zp′(z); z) ∈ Ω andΦ(ix, y; z) 6∈ Ω for all realx and

y ≤ −n(1 + x2)/2, z ∈ 4. Therefore by an application of Lemma 1.3, the result follows.�

If we taken = 1, β = 0, we havet0 =
√

73−1
36

and therefore we have the following:

Corollary 2.6. [3] If f(z) ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ < ρ, z ∈ 4,

whereρ2 = 827+73
√

73
288

, thenf(z) ∈ S∗.
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