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ABSTRACT. In this paper we find some lower and upper bounds of the formnHn−c for the func-
tion π(n), in whichHn =

∑n
k=1

1
k . Then, we considerH(x) = Ψ(x+ 1) + γ as generalization

of Hn, such thatΨ(x) = d
dx log Γ(x) andγ is Euler constant; this extension has been intro-

duced for the first time by J. Sándor and it helps us to find some lower and upper bounds of the
form x

Ψ(x)−c for the functionπ(x) and using these bounds, we show thatΨ(pn) ∼ log n, when
n→∞ is equivalent with the Prime Number Theorem.
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1. I NTRODUCTION

As usual, letP be the set of all primes andπ(x) = #P ∩ [2, x]. If Hn =
∑n

k=1
1
k
, then easily

we have:

(1.1) γ + log n < Hn < 1 + log n (n > 1),

in which γ is the Euler constant. So,Hn = log n + O(1) and considering the prime number

theorem [2], we obtain:

π(n) =
n

Hn + O(1)
+ o

(
n

log n

)
.
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Thus, comparing n
Hn+O(1)

with π(n) seems to be a nice problem. In 1959, L. Locker-Ernst [4]

affirms that n
Hn− 3

2

, is very close toπ(n) and in 1999, L. Panaitopol [6], proved that forn ≥ 1429

it is actually a lower bound forπ(n).

In this paper we improve Panaitopol’s result by provingn
Hn−a

< π(n) for everyn ≥ 3299,

in which a ≈ 1.546356705. Also, we find same upper bound forπ(n). Then we consider

generalization ofHn as a real value function, which has been studied by J. Sándor [7] in 1988;

for x > 0 let Ψ(x) = d
dx

log Γ(x), in which Γ(x) =
∫∞

0
e−ttx−1dt, is the well-known gamma

function [1]. SinceΓ(x + 1) = xΓ(x) andΓ(1) = −γ, we haveHn = Ψ(n + 1) + γ, and this

relation led him to define:

(1.2)

H : (0,∞) −→ R,

H(x) = Ψ(x + 1) + γ,

as a natural generalization ofHn, and more naturally, it motivated us to find some bounds for

π(x) concerningΨ(x). In our proofs, we use the obvious relation:

(1.3) Ψ(x + 1) = Ψ(x) +
1

x
.

Also, we need some bounds of the form x
log x−1− c

log x
, which we yield them by using the following

known sharp bounds [3], forπ(x):

(1.4)
x

log x

(
1 +

1

log x
+

1.8

log2 x

)
≤ π(x) (x ≥ 32299),

and

(1.5) π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)
(x ≥ 355991).

Finally, using the above mentioned bounds concerningπ(x), we show thatΨ(pn) ∼ log n,

whenn →∞ is equivalent with the Prime Number Theorem. To do this, we need the following

bounds [3], forpn:

(1.6) log n + log2 n− 1 +
log2 n− 2.25

log n
≤ pn

n
≤ log n + log2 n− 1 +

log2 n− 1.8

log n
,

in which the left hand side holds forn ≥ 2 and the right hand side holds forn ≥ 27076. Also,

by log2 n we meanlog log n and base of all logarithms ise.

2. BOUNDS OF THE FORM x
log x−1− c

log x

Lower Bounds.We are going to find suitable values ofa, in which x
log x−1− a

log x
≤ π(x). Con-

sidering (1.4) and lettingy = log x, we should study the inequality

1

y − 1− a
y

≤ 1

y

(
1 +

1

y
+

9

5y2

)
,

which is equivalent with
y4

y2 − y − a
≤ y2 + y +

9

5
,
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and supposingy2 − y − a > 0, it will be equivalent with(
4

5
− a

)
y2 −

(
a +

9

5

)
y − 9a

5
≥ 0,

and this forces4
5
− a > 0, or a < 4

5
. Let a = 4

5
− ε for someε > 0. Therefore we should study

1

y − 1−
4
5
−ε

y

≤ 1

y

(
1 +

1

y
+

9

5y2

)
,

which is equivalent with:

(2.1)
25εy2 + (25ε− 65)y + (45ε− 36)

5y3
(
5y2 − 5y + (5ε− 4)

) ≥ 0.

The equation25εy2+(25ε−65)y+(45ε−36) = 0 has discriminant25∆1 with ∆1 = 169+14ε−
155ε2, which is non-negative for−1 ≤ ε ≤ 169

155
and the greater root of it, isy1 = 13−5ε+

√
∆1

10ε
.

Also, the equation5y2 − 5y + (5ε − 4) = 0 has discriminant∆2 = 105 − 100ε, which is

non-negative forε ≤ 21
20

and the greater root of it, isy2 = 1
2

+
√

∆2

10
. Thus, (2.1) holds for every

0 < ε ≤ min{169
155

, 21
20
} = 21

20
, with y ≥ max

0<ε≤ 21
20

{y1, y2} = y1. Therefore, we have proved the

following theorem.

Theorem 2.1.For every0 < ε ≤ 21
20

, the inequality:

x

log x− 1−
4
5
−ε

log x

≤ π(x),

holds for all:

x ≥ max

{
32299, e

13−5ε+
√

169+14ε−155ε2

10ε

}
.

Corollary 2.2. For everyx ≥ 3299, we have:

x

log x− 1 + 1
4 log x

≤ π(x).

Proof. Taking ε = 21
20

in above theorem, we yield the result forx ≥ 32299. For 3299 ≤ x ≤
32298, we check it by a computer; to do this, consider the following program in MapleV soft-

ware’s worksheet:

restart:

with(numtheory):

for x from 32298 by -1 while

evalf(pi(x)-x/(log(x)-1+1/(4*log(x))))>0

do x end do;

Running this program, it starts checking the result fromx = 32298 and verify it, untilx = 3299.

This completes the proof. �
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Upper Bounds.Similar to lower bounds, we should search suitable values ofb, in whichπ(x) ≤
x

log x−1− b
log x

. Considering (1.5) and lettingy = log x, we should study

1

y

(
1 +

1

y
+

251

100y2

)
≤ 1

y − 1− b
y

.

Assumingy2 − y − b > 0, it will be equivalent with(
151

100
− b

)
y2 −

(
b +

251

100

)
y − 251b

100
≤ 0,

which forcesb ≥ 151
100

. Let b = 151
100

+ ε for someε ≥ 0. Therefore we should study

1

y

(
1 +

1

y
+

251

100y2

)
≤ 1

y − 1−
151
100

+ε

y

,

which is equivalent with:

(2.2)
10000εy2 + (10000ε + 40200)y + (25100ε + 37901)

100y3
(
100y2 − 100y − (100ε + 151)

) ≥ 0.

The quadratic equation in the numerator of (2.2), has discriminant40000∆1 with ∆1 = 40401−
17801ε− 22600ε2, which is non-negative for−40401

22600
≤ ε ≤ 1 and the greater root of it, isy1 =

−201−50ε+
√

∆1

100ε
. Also, the quadratic equation in denominator of it, has discriminant1600∆2 with

∆2 = 44 + 25ε, which is non-negative for−44
25
≤ ε and the greater root of it, isy2 = 1

2
+
√

∆2

5
.

Thus, (2.2) holds for every0 ≤ ε ≤ min{1, +∞} = 1, with y ≥ max
0≤ε≤1

{y1, y2} = y2. Finally,

we note that for0 ≤ ε ≤ 1, the functiony2(ε) is strictly increasing and so,

6 < e
1
2
+
√

44
5 = ey2(0) ≤ ey2(ε) ≤ ey2(1) = e

1
2
+
√

69
5 < 9.

Therefore, we obtain the following theorem.

Theorem 2.3.For every0 ≤ ε ≤ 1, we have:

π(x) ≤ x

log x− 1−
151
100

+ε

log x

(x ≥ 355991).

Corollary 2.4. For everyx ≥ 7, we have:

π(x) ≤ x

log x− 1− 151
100 log x

.

Proof. Takingε = 0 in above theorem, yields the result forx ≥ 355991. For7 ≤ x ≤ 35991 it

has been checked by computer [5]. �

3. BOUNDS OF THE FORM n
Hn−c

AND x
Ψ(x)−c

Theorem 3.1.

(i) For everyn ≥ 3299, we have:
n

Hn − a
< π(n),

in whicha = γ + 1− 1
4 log 3299

≈ 1.5463567.
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(ii) For everyn ≥ 9, we have:

π(n) <
n

Hn − b
,

in whichb = 2 + 151
100 log 7

≈ 2.77598649.

Proof. Forn ≥ 3299, we have

γ + log n ≥ a + log n− 1 +
1

4 log n
,

and considering this with the left hand side of (1.1), we obtainn
Hn−a

< n
log n−1+ 1

4 log n

and this

inequality with Corollary 2.2, yields the first part of theorem.

Forn ≥ 9, we have

b + log n− 1− 151

100 log n
> 1 + log n

and considering this with the right hand side of (1.1), we obtain n
log n−1− 151

100 log n

< n
Hn−b

. Con-

sidering this, with Corollary 2.4, completes the proof. �

Theorem 3.2.

(i) For everyx ≥ 3299, we have:

x

Ψ(x)− A
< π(x),

in whichA = 1− Ψ(3299)
3298

− 3299
13192 log 3299

≈ 0.9666752780.

(ii) For everyx ≥ 9, we have:

π(x) <
x

Ψ(x)−B
,

in whichB = 2 + 151
100 log 7

− γ ≈ 2.198770832.

Proof. Let Hx be the step function defined byHx = Hn for n ≤ x < n + 1. Considering (1.2),

we haveH(x− 1) < Hx ≤ H(x).

Forx ≥ 3299, by considering part (i) of the previous theorem, we have:

π(x) >
x

Hx − a
≥ x

H(x)− a
=

x

Ψ(x + 1) + γ − a
.

Thus, by considering (1.3), we obtain:

π(x) >
x− 1

Ψ(x) + 1
x

+ γ − a
≥ x− 1

Ψ(x) + 1
3299

+ γ − a
≥ x

Ψ(x)− A
,

in whichA = Ψ(3299)− 3299
3298

(
Ψ(3299) + 1

3299
+ γ − a

)
= 1− Ψ(3299)

3298
− 3299

13192 log 3299
.

Forx ≥ 9, by considering second part of previous theorem, we obtain:

π(x) <
x + 1

Hx+1 − b
<

x

H(x− 1)− b
=

x

Ψ(x) + γ − b
=

x

Ψ(x)−B
,

in whichB = b− γ = 2 + 151
100 log 7

− γ, and this completes the proof. �
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4. AN EQUIVALENT FOR THE PRIME NUMBER THEOREM

Theorem 3.2, seems to be nice; because using it, for everyx ≥ 3299 we obtain:

(4.1)
x

π(x)
+ A < Ψ(x) <

x

π(x)
+ B.

Moreover, considering this inequality with (1.4) and (1.5), we yield the following bounds for

x ≥ 355991:
log x

1 + 1
log x

+ 2.51
log2 x

+ A < Ψ(x) <
log x

1 + 1
log x

+ 1.8
log2 x

+ B.

Also, by puttingx = pn, nth prime in (4.1), forn ≥ 463 we yield that:

(4.2)
pn

n
+ A < Ψ(pn) <

pn

n
+ B.

Considering this inequality with (1.6), for everyn ≥ 27076 we obtain:

log n + log2 n + A− 1 +
log2 n− 2.25

log n

< Ψ(pn) < log n + log2 n + B − 1 +
log2 n− 1.8

log n
.

This inequality is a very strong form of an equivalent of the Prime Number Theorem (PNT),

which assertsπ(x) ∼ x
log x

and is equivalent withpn ∼ n log n (see [1]). In this section, we

have another equivalent as follows:

Theorem 4.1.Ψ(pn) ∼ log n, whenn →∞ is equivalent with the Prime Number Theorem.

Proof. First suppose PNT. Thus, we havepn = n log n + o(n log n). Also, (4.2) yields that

Ψ(pn) = pn

n
+ O(1). Therefore, we have:

Ψ(pn) =
n log n + o(n log n)

n
+ O(1) = log n + o(log n).

Conversely, supposeΨ(pn) = log n + o(log n). By solving (4.2) according topn, we obtain:

nΨ(pn)−Bn < pn < nΨ(pn)− An.

Therefore, we have:

pn = nΨ(pn) + O(n) = n
(
log n + o(log n)

)
+ O(n) = n log n + o(n log n),

which, this is PNT. �
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