Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 1, Article 7, 2006

APPROXIMATION OF $\pi(x)$ BY $\Psi(x)$
MEHDI HASSANI
Institute for Advanced
Studies in Basic Sciences
P.O. Box 45195-1159

Zanjan, Iran.
mmhassany@srttu.edu
Received 07 March, 2005; accepted 25 August, 2005
Communicated by J. Sándor
Dedicated to Professor J. Rooin on the occasion of his 50th birthday

Abstract

In this paper we find some lower and upper bounds of the form $\frac{n}{H_{n}-c}$ for the function $\pi(n)$, in which $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then, we consider $H(x)=\Psi(x+1)+\gamma$ as generalization of H_{n}, such that $\Psi(x)=\frac{d}{d x} \log \Gamma(x)$ and γ is Euler constant; this extension has been introduced for the first time by J. Sándor and it helps us to find some lower and upper bounds of the form $\frac{x}{\Psi(x)-c}$ for the function $\pi(x)$ and using these bounds, we show that $\Psi\left(p_{n}\right) \sim \log n$, when $n \rightarrow \infty$ is equivalent with the Prime Number Theorem.

Key words and phrases: Primes, Harmonic series, Gamma function, Digamma function.

2000 Mathematics Subject Classification 11A41, 26D15, 33B15.

1. Introduction

As usual, let \mathbb{P} be the set of all primes and $\pi(x)=\# \mathbb{P} \cap[2, x]$. If $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$, then easily we have:

$$
\begin{equation*}
\gamma+\log n<H_{n}<1+\log n \quad(n>1) \tag{1.1}
\end{equation*}
$$

in which γ is the Euler constant. So, $H_{n}=\log n+O(1)$ and considering the prime number theorem [2], we obtain:

$$
\pi(n)=\frac{n}{H_{n}+O(1)}+o\left(\frac{n}{\log n}\right) .
$$

ISSN (electronic): 1443-5756
(C) 2006 Victoria University. All rights reserved.

I deem it my duty to thank P. Dusart, L. Panaitopol, M.R. Razvan and J. Sándor for sending or bringing me the references, respectively [3], [5) 6], [2] and [7].

065-05

Thus, comparing $\frac{n}{H_{n}+O(1)}$ with $\pi(n)$ seems to be a nice problem. In 1959, L. Locker-Ernst [4] affirms that $\frac{n}{H_{n}-\frac{3}{2}}$, is very close to $\pi(n)$ and in 1999, L. Panaitopol [6], proved that for $n \geq 1429$ it is actually a lower bound for $\pi(n)$.

In this paper we improve Panaitopol's result by proving $\frac{n}{H_{n}-a}<\pi(n)$ for every $n \geq 3299$, in which $a \approx 1.546356705$. Also, we find same upper bound for $\pi(n)$. Then we consider generalization of H_{n} as a real value function, which has been studied by J. Sándor [7] in 1988; for $x>0$ let $\Psi(x)=\frac{d}{d x} \log \Gamma(x)$, in which $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$, is the well-known gamma function [1]. Since $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma(1)=-\gamma$, we have $H_{n}=\Psi(n+1)+\gamma$, and this relation led him to define:

$$
\left\{\begin{array}{l}
H:(0, \infty) \longrightarrow \mathbb{R} \tag{1.2}\\
H(x)=\Psi(x+1)+\gamma
\end{array}\right.
$$

as a natural generalization of H_{n}, and more naturally, it motivated us to find some bounds for $\pi(x)$ concerning $\Psi(x)$. In our proofs, we use the obvious relation:

$$
\begin{equation*}
\Psi(x+1)=\Psi(x)+\frac{1}{x} . \tag{1.3}
\end{equation*}
$$

Also, we need some bounds of the form $\frac{x}{\log x-1-\frac{c}{\log x}}$, which we yield them by using the following known sharp bounds [3], for $\pi(x)$:

$$
\begin{equation*}
\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{1.8}{\log ^{2} x}\right) \leq \pi(x) \quad(x \geq 32299) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(x) \leq \frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{2.51}{\log ^{2} x}\right) \quad(x \geq 355991) \tag{1.5}
\end{equation*}
$$

Finally, using the above mentioned bounds concerning $\pi(x)$, we show that $\Psi\left(p_{n}\right) \sim \log n$, when $n \rightarrow \infty$ is equivalent with the Prime Number Theorem. To do this, we need the following bounds [3], for p_{n} :

$$
\begin{equation*}
\log n+\log _{2} n-1+\frac{\log _{2} n-2.25}{\log n} \leq \frac{p_{n}}{n} \leq \log n+\log _{2} n-1+\frac{\log _{2} n-1.8}{\log n} \tag{1.6}
\end{equation*}
$$

in which the left hand side holds for $n \geq 2$ and the right hand side holds for $n \geq 27076$. Also, by $\log _{2} n$ we mean $\log \log n$ and base of all logarithms is e.

2. BOUNDS OF THE FORM $\frac{x}{\log x-1-\frac{c}{\log x}}$

Lower Bounds. We are going to find suitable values of a, in which $\frac{x}{\log x-1-\frac{a}{\log x}} \leq \pi(x)$. Considering (1.4) and letting $y=\log x$, we should study the inequality

$$
\frac{1}{y-1-\frac{a}{y}} \leq \frac{1}{y}\left(1+\frac{1}{y}+\frac{9}{5 y^{2}}\right)
$$

which is equivalent with

$$
\frac{y^{4}}{y^{2}-y-a} \leq y^{2}+y+\frac{9}{5}
$$

and supposing $y^{2}-y-a>0$, it will be equivalent with

$$
\left(\frac{4}{5}-a\right) y^{2}-\left(a+\frac{9}{5}\right) y-\frac{9 a}{5} \geq 0
$$

and this forces $\frac{4}{5}-a>0$, or $a<\frac{4}{5}$. Let $a=\frac{4}{5}-\epsilon$ for some $\epsilon>0$. Therefore we should study

$$
\frac{1}{y-1-\frac{\frac{4}{5}-\epsilon}{y}} \leq \frac{1}{y}\left(1+\frac{1}{y}+\frac{9}{5 y^{2}}\right)
$$

which is equivalent with:

$$
\begin{equation*}
\frac{25 \epsilon y^{2}+(25 \epsilon-65) y+(45 \epsilon-36)}{5 y^{3}\left(5 y^{2}-5 y+(5 \epsilon-4)\right)} \geq 0 . \tag{2.1}
\end{equation*}
$$

The equation $25 \epsilon y^{2}+(25 \epsilon-65) y+(45 \epsilon-36)=0$ has discriminant $25 \Delta_{1}$ with $\Delta_{1}=169+14 \epsilon-$ $155 \epsilon^{2}$, which is non-negative for $-1 \leq \epsilon \leq \frac{169}{155}$ and the greater root of it, is $y_{1}=\frac{13-5 \epsilon+\sqrt{\Delta_{1}}}{10 \epsilon}$. Also, the equation $5 y^{2}-5 y+(5 \epsilon-4)=0$ has discriminant $\Delta_{2}=105-100 \epsilon$, which is non-negative for $\epsilon \leq \frac{21}{20}$ and the greater root of it, is $y_{2}=\frac{1}{2}+\frac{\sqrt{\Delta_{2}}}{10}$. Thus, 2.1 holds for every $0<\epsilon \leq \min \left\{\frac{169}{155}, \frac{21}{20}\right\}=\frac{21}{20}$, with $y \geq \max _{0<\epsilon \leq \frac{21}{20}}\left\{y_{1}, y_{2}\right\}=y_{1}$. Therefore, we have proved the following theorem.

Theorem 2.1. For every $0<\epsilon \leq \frac{21}{20}$, the inequality:

$$
\frac{x}{\log x-1-\frac{4}{5}-\epsilon} \leq \pi(x),
$$

holds for all:

$$
x \geq \max \left\{32299, e^{\frac{13-5 \epsilon+\sqrt{169+14 \epsilon-155 \epsilon^{2}}}{10 \epsilon}}\right\} .
$$

Corollary 2.2. For every $x \geq 3299$, we have:

$$
\frac{x}{\log x-1+\frac{1}{4 \log x}} \leq \pi(x) .
$$

Proof. Taking $\epsilon=\frac{21}{20}$ in above theorem, we yield the result for $x \geq 32299$. For $3299 \leq x \leq$ 32298, we check it by a computer; to do this, consider the following program in MapleV software's worksheet:
restart:
with(numtheory):
for x from 32298 by -1 while
$\operatorname{evalf}\left(p i(x)-x /\left(\log (x)-1+1 /\left(4^{*} \log (x)\right)\right)\right)>0$
do x end do;

Running this program, it starts checking the result from $x=32298$ and verify it, until $x=3299$. This completes the proof.

Upper Bounds. Similar to lower bounds, we should search suitable values of b, in which $\pi(x) \leq$ $\frac{x}{\log x-1-\frac{b}{\log x}}$. Considering (1.5) and letting $y=\log x$, we should study

$$
\frac{1}{y}\left(1+\frac{1}{y}+\frac{251}{100 y^{2}}\right) \leq \frac{1}{y-1-\frac{b}{y}}
$$

Assuming $y^{2}-y-b>0$, it will be equivalent with

$$
\left(\frac{151}{100}-b\right) y^{2}-\left(b+\frac{251}{100}\right) y-\frac{251 b}{100} \leq 0
$$

which forces $b \geq \frac{151}{100}$. Let $b=\frac{151}{100}+\epsilon$ for some $\epsilon \geq 0$. Therefore we should study

$$
\frac{1}{y}\left(1+\frac{1}{y}+\frac{251}{100 y^{2}}\right) \leq \frac{1}{y-1-\frac{\frac{151}{100}+\epsilon}{y}},
$$

which is equivalent with:

$$
\begin{equation*}
\frac{10000 \epsilon y^{2}+(10000 \epsilon+40200) y+(25100 \epsilon+37901)}{100 y^{3}\left(100 y^{2}-100 y-(100 \epsilon+151)\right)} \geq 0 \tag{2.2}
\end{equation*}
$$

The quadratic equation in the numerator of (2.2), has discriminant $40000 \Delta_{1}$ with $\Delta_{1}=40401-$ $17801 \epsilon-22600 \epsilon^{2}$, which is non-negative for $-\frac{40401}{22600} \leq \epsilon \leq 1$ and the greater root of it, is $y_{1}=$ $\frac{-201-50 \epsilon+\sqrt{\Delta_{1}}}{100 \epsilon}$. Also, the quadratic equation in denominator of it, has discriminant $1600 \Delta_{2}$ with $\Delta_{2}=44+25 \epsilon$, which is non-negative for $-\frac{44}{25} \leq \epsilon$ and the greater root of it, is $y_{2}=\frac{1}{2}+\frac{\sqrt{\Delta_{2}}}{5}$. Thus, 2.2 holds for every $0 \leq \epsilon \leq \min \{1,+\infty\}=1$, with $y \geq \max _{0 \leq \epsilon \leq 1}\left\{y_{1}, y_{2}\right\}=y_{2}$. Finally, we note that for $0 \leq \epsilon \leq 1$, the function $y_{2}(\epsilon)$ is strictly increasing and so,

$$
6<e^{\frac{1}{2}+\frac{\sqrt{44}}{5}}=e^{y_{2}(0)} \leq e^{y_{2}(\epsilon)} \leq e^{y_{2}(1)}=e^{\frac{1}{2}+\frac{\sqrt{69}}{5}}<9
$$

Therefore, we obtain the following theorem.
Theorem 2.3. For every $0 \leq \epsilon \leq 1$, we have:

$$
\pi(x) \leq \frac{x}{\log x-1-\frac{151}{\log x}+\epsilon} \quad(x \geq 355991)
$$

Corollary 2.4. For every $x \geq 7$, we have:

$$
\pi(x) \leq \frac{x}{\log x-1-\frac{151}{100 \log x}}
$$

Proof. Taking $\epsilon=0$ in above theorem, yields the result for $x \geq 355991$. For $7 \leq x \leq 35991$ it has been checked by computer [5].

3. BOUNDS OF THE FORM $\frac{n}{H_{n}-c}$ AND $\frac{x}{\Psi(x)-c}$

Theorem 3.1.

(i) For every $n \geq 3299$, we have:

$$
\frac{n}{H_{n}-a}<\pi(n)
$$

in which $a=\gamma+1-\frac{1}{4 \log 3299} \approx 1.5463567$.
(ii) For every $n \geq 9$, we have:

$$
\pi(n)<\frac{n}{H_{n}-b},
$$

in which $b=2+\frac{151}{100 \log 7} \approx 2.77598649$.
Proof. For $n \geq 3299$, we have

$$
\gamma+\log n \geq a+\log n-1+\frac{1}{4 \log n}
$$

and considering this with the left hand side of (1.1), we obtain $\frac{n}{H_{n}-a}<\frac{n}{\log n-1+\frac{1}{4 \log n}}$ and this inequality with Corollary 2.2, yields the first part of theorem.

For $n \geq 9$, we have

$$
b+\log n-1-\frac{151}{100 \log n}>1+\log n
$$

and considering this with the right hand side of (1.1), we obtain $\frac{n}{\log n-1-\frac{151}{100 \log n}}<\frac{n}{H_{n}-b}$. Considering this, with Corollary 2.4, completes the proof.

Theorem 3.2.

(i) For every $x \geq 3299$, we have:

$$
\frac{x}{\Psi(x)-A}<\pi(x)
$$

in which $A=1-\frac{\Psi(3299)}{3298}-\frac{3299}{13192 \log 3299} \approx 0.9666752780$.
(ii) For every $x \geq 9$, we have:

$$
\pi(x)<\frac{x}{\Psi(x)-B},
$$

in which $B=2+\frac{151}{100 \log 7}-\gamma \approx 2.198770832$.
Proof. Let H_{x} be the step function defined by $H_{x}=H_{n}$ for $n \leq x<n+1$. Considering (1.2), we have $H(x-1)<H_{x} \leq H(x)$.

For $x \geq 3299$, by considering part (i) of the previous theorem, we have:

$$
\pi(x)>\frac{x}{H_{x}-a} \geq \frac{x}{H(x)-a}=\frac{x}{\Psi(x+1)+\gamma-a} .
$$

Thus, by considering (1.3), we obtain:

$$
\pi(x)>\frac{x-1}{\Psi(x)+\frac{1}{x}+\gamma-a} \geq \frac{x-1}{\Psi(x)+\frac{1}{3299}+\gamma-a} \geq \frac{x}{\Psi(x)-A},
$$

in which $A=\Psi(3299)-\frac{3299}{3298}\left(\Psi(3299)+\frac{1}{3299}+\gamma-a\right)=1-\frac{\Psi(3299)}{3298}-\frac{3299}{13192 \log 3299}$.
For $x \geq 9$, by considering second part of previous theorem, we obtain:

$$
\pi(x)<\frac{x+1}{H_{x+1}-b}<\frac{x}{H(x-1)-b}=\frac{x}{\Psi(x)+\gamma-b}=\frac{x}{\Psi(x)-B},
$$

in which $B=b-\gamma=2+\frac{151}{100 \log 7}-\gamma$, and this completes the proof.

4. An Equivalent for the Prime Number Theorem

Theorem 3.2, seems to be nice; because using it, for every $x \geq 3299$ we obtain:

$$
\begin{equation*}
\frac{x}{\pi(x)}+A<\Psi(x)<\frac{x}{\pi(x)}+B . \tag{4.1}
\end{equation*}
$$

Moreover, considering this inequality with (1.4) and (1.5), we yield the following bounds for $x \geq 355991$:

$$
\frac{\log x}{1+\frac{1}{\log x}+\frac{2.51}{\log ^{2} x}}+A<\Psi(x)<\frac{\log x}{1+\frac{1}{\log _{x}}+\frac{1.8}{\log ^{2} x}}+B .
$$

Also, by putting $x=p_{n}, n^{t h}$ prime in (4.1), for $n \geq 463$ we yield that:

$$
\begin{equation*}
\frac{p_{n}}{n}+A<\Psi\left(p_{n}\right)<\frac{p_{n}}{n}+B . \tag{4.2}
\end{equation*}
$$

Considering this inequality with (1.6), for every $n \geq 27076$ we obtain:

$$
\begin{aligned}
\log n+\log _{2} n+A-1+\frac{\log _{2} n-2.25}{\log n} & \\
& <\Psi\left(p_{n}\right)<\log n+\log _{2} n+B-1+\frac{\log _{2} n-1.8}{\log n} .
\end{aligned}
$$

This inequality is a very strong form of an equivalent of the Prime Number Theorem (PNT), which asserts $\pi(x) \sim \frac{x}{\log x}$ and is equivalent with $p_{n} \sim n \log n$ (see [1]). In this section, we have another equivalent as follows:

Theorem 4.1. $\Psi\left(p_{n}\right) \sim \log n$, when $n \rightarrow \infty$ is equivalent with the Prime Number Theorem.
Proof. First suppose PNT. Thus, we have $p_{n}=n \log n+o(n \log n)$. Also, 4.2 yields that $\Psi\left(p_{n}\right)=\frac{p_{n}}{n}+O(1)$. Therefore, we have:

$$
\Psi\left(p_{n}\right)=\frac{n \log n+o(n \log n)}{n}+O(1)=\log n+o(\log n)
$$

Conversely, suppose $\Psi\left(p_{n}\right)=\log n+o(\log n)$. By solving (4.2) according to p_{n}, we obtain:

$$
n \Psi\left(p_{n}\right)-B n<p_{n}<n \Psi\left(p_{n}\right)-A n .
$$

Therefore, we have:

$$
p_{n}=n \Psi\left(p_{n}\right)+O(n)=n(\log n+o(\log n))+O(n)=n \log n+o(n \log n)
$$

which, this is PNT.

References

[1] M. ABRAMOWITZ and I.A. STEGUN, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972.
[2] H. DAVENPORT, Multiplicative Number Theory (Second Edition), Springer-Verlag, 1980.
[3] P. DUSART, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can., 21(2) (1999), 53-59.
[4] L. LOCKER-ERNST, Bemerkungen über die verteilung der primzahlen, Elemente der Mathematik XIV, 1 (1959), 1-5, Basel.
[5] L. PANAITOPOL, A special case of the Hardy-Littlewood conjecture, Math. Reports, 4(54)(3) (2002), 265-258.
[6] L. PANAITOPOL, Several approximation of $\pi(x)$, Math. Inequal. \& Applics., 2(3) (1999), 317-324.
[7] J. SÁNDOR, Remark on a function which generalizes the harmonic series, C. R. Acad. Bulgare Sci., 41(5) (1988), 19-21.

