AN UPPER BOUND FOR THE DETERMINANT OF A MATRIX WITH GIVEN ENTRY SUM AND SQUARE SUM

ORTWIN GASPER

Waltrop, Germany

HUGO PFOERTNER

Munich, Germany EMail: hugo@pfoertner.org

Freiburg, Germany EMail: mail@MarkusSigg.de

Received:	05 March, 2009
Accepted:	15 September, 2009
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	15A15, 15A45, 26D07.
Key words:	Determinant, Matrix Inequality, Hadamard's Determinant Theorem, Hadamard Matrix.
Abstract:	By deducing characterisations of the matrices which have maximal determinant in the set of matrices with given entry sum and square sum, we prove the inequal- ity $ \det M \leq \alpha (\beta - \delta)^{(n-1)/2}$ for real $n \times n$ -matrices M , where $n\alpha$ and $n\beta$ are the sum of the entries and the sum of the squared entries of M , respectively, and $\delta := (\alpha^2 - \beta)/(n-1)$, provided that $\alpha^2 \geq \beta$. This result is applied to find an upper bound for the determinant of a matrix whose entries are a permutation of an arithmetic progression.

journal of inequalities in pure and applied mathematics

Contents

1	Introduction	3
2	Conventions	4
3	Main Theorem	5
4	Application	13

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of **inequalities** in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

1. Introduction

Let $n \ge 2$ be a positive integer and $a = (a_1, \ldots, a_{n^2})$ a vector of real numbers. What is the maximal determinant D(a) of a matrix whose elements are a permutation of the entries of a? The answer is unknown even for the special case $a := (1, \ldots, n^2)$ if n > 6, see [4]. By computational optimisation using algorithms like tabu search, we have found matrices with the following determinants, which thus are lower bounds for $D(1, \ldots, n^2)$:

n	lower bound for $D(1, \ldots, n^2)$
2	10
3	412
4	40 800
5	6839492
6	1865999570
7	762150368499
8	440960274696935
9	346254605664223620
10	356944784622927045792

It would be nice to also have a good upper bound for $D(1, ..., n^2)$. We will show how to find an upper bound by treating the problem of determining D(a) as a continuous optimisation task. This is done by maximising the determinant under two equality contraints: by fixing the sum and the square sum of the matrix's entries.

Our result is a characterisation of the matrices with maximal determinant in the set of matrices with given entry sum and square sum, and a general inequality for the absolute value of the determinant of a matrix.

For the problem of finding $D(1, ..., n^2)$, the upper bound derived in this way turns out to be quite sharp. So here we have an example where analytical optimisation gives valuable information about a combinatorial optimisation problem.

journal of inequalities in pure and applied mathematics

2. Conventions

Throughout this article, let n > 1 be a natural number and $N := \{1, ..., n\}$. *Matrix* always means a real $n \times n$ matrix, the set of which we denote by \mathbb{M} .

For $M \in \mathbb{M}$ and $i, j \in N$ we denote by M_i the *i*-th row of M, by M^j the *j*-th column of M, and by $M_{i,j}$ the entry of M at position (i, j). If M is a matrix or a row or a column of a matrix, then by s(M) we denote the sum of the entries of M and by q(M) the sum of their squares.

The identity matrix is denoted by I. By J we name the matrix which has 1 at all of its fields, while e is the column vector in \mathbb{R}^n with all entries being 1. Matrices of the structure xI+yJ will play an important role, so we state some of their properties:

Lemma 2.1. Let $x, y \in \mathbb{R}$ and M := xI + yJ. Then we have:

- *I*. det $M = x^{n-1}(x + ny)$
- 2. *M* is invertible if and only if $x \notin \{0, -ny\}$.
- 3. If M is invertible, then $M^{-1} = \frac{1}{x}I \frac{y}{x(x+ny)}J$.

Proof. Since $J = ee^T$, it holds that

$$Me = (xI + yee^T)e = (x + ye^Te)e = (x + ny)e \quad \text{and} \quad Mv = (xI + yee^T)v = xv$$

for all $v \in \mathbb{R}^n$ with $v \perp e$. Hence M has the eigenvalue x with multiplicity n - 1 and the simple eigenvalue x + ny. This shows (1). (2) is an immediate consequence of (1). (3) can be verified by a straight calculation.

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

3. Main Theorem

Let $\alpha, \beta \in \mathbb{R}$ with $\beta > 0$ and $\mathbb{M}_{\alpha,\beta} := \{M \in \mathbb{M} : s(M) = n\alpha, q(M) = n\beta\}$. Furthermore, let

$$\delta := \frac{\alpha^2 - \beta}{n - 1}.$$

In the proof of the following lemma, matrices are specified whose determinants will later turn out to be the greatest possible:

Lemma 3.1.

1. $\mathbb{M}_{\alpha,\beta} \neq \emptyset$ if and only if $\alpha^2 \leq n\beta$. If $\alpha^2 \leq n\beta$, then there exists an $M \in \mathbb{M}_{\alpha,\beta}$ with

$$\det M = \alpha (\beta - \delta)^{\frac{n-1}{2}}.$$

- 2. If $\alpha^2 \leq \beta$, then there exists an $M \in \mathbb{M}_{\alpha,\beta}$ with $\det M = \beta^{\frac{n}{2}}$.
- 3. There exists an $M \in \mathbb{M}_{\alpha,\beta}$ with det $M \neq 0$ if and only if $\alpha^2 < n\beta$.

Proof. (1) Suppose $\mathbb{M}_{\alpha,\beta} \neq \emptyset$, say $M \in \mathbb{M}_{\alpha,\beta}$. Reading M and J as elements of \mathbb{R}^{n^2} , the Cauchy inequality shows that

$$\alpha^{2} = \frac{1}{n^{2}} \left(\sum_{i,j=1}^{n} M_{i,j} \right)^{2}$$

= $\frac{1}{n^{2}} \langle M, J \rangle^{2}$
 $\leq \frac{1}{n^{2}} \|M\|_{2}^{2} \|J\|_{2}^{2} = \sum_{i,j=1}^{n} M_{i,j}^{2} = n\beta$

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

Title Page		
Contents		
44	••	
◀	Þ	
Page 5 of 18		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

For the other implication suppose $\alpha^2 \leq n\beta$, i. e. $\beta \geq \delta$, and set $\gamma := (\beta - \delta)^{\frac{1}{2}}$ and $M := \gamma I + \frac{1}{n}(\alpha - \gamma)J$. Then $M \in \mathbb{M}_{\alpha,\beta}$, and by Lemma 2.1

$$\det M = \gamma^{n-1} \left(\gamma + n \frac{1}{n} (\alpha - \gamma) \right) = \gamma^{n-1} \alpha = \alpha (\beta - \delta)^{\frac{n-1}{2}}.$$

(2) Let $\alpha^2 \leq \beta$. First suppose $\alpha \geq 0$, so $\gamma := \frac{1}{2} \left(\frac{3\alpha}{\sqrt{\beta}} - 1 \right)$ gives $\gamma^2 \leq 1$. Set

$$A := \begin{pmatrix} \alpha & \sqrt{\beta - \alpha^2} \\ -\sqrt{\beta - \alpha^2} & \alpha \end{pmatrix} \quad \text{and} \quad B := \sqrt{\beta} \begin{pmatrix} \gamma & \sqrt{1 - \gamma^2} & 0 \\ -\sqrt{1 - \gamma^2} & \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Then $s(A) = 2\alpha$, $q(A) = 2\beta$, det $A = \beta$, $s(B) = 3\alpha$, $q(B) = 3\beta$, det $B = \beta^{\frac{3}{2}}$. In the case of n = 2k with $k \in \mathbb{N}$, use k copies of A to build the block matrix

$$M := \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix},$$

which has the required properties. In the case of n = 2k + 1 with $k \in \mathbb{N}$, use k - 1 copies of A to build the block matrix

$$M := \begin{pmatrix} A & & & \\ & \ddots & & \\ & & A & \\ & & & B \end{pmatrix}$$

,

which again fulfills the requirements.

In the case of $\alpha < 0$, an $M' \in \mathbb{M}_{-\alpha,\beta}$ with det $M' = \beta^{\frac{n}{2}}$ exists. For even n, the matrix $M := -M' \in \mathbb{M}_{\alpha,\beta}$ has the requested determinant, while for odd n swapping two rows of -M' gives the desired matrix M.

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

(3) If $\alpha^2 < n\beta$, then the existence of an $M \in \mathbb{M}_{\alpha,\beta}$ with det $M \neq 0$ is proved by (1) in the case of $\alpha \neq 0$ and by (2) in the case of $\alpha = 0$. For $\alpha^2 = n\beta$ and $M \in \mathbb{M}_{\alpha,\beta}$, the calculation in (1) shows that $\langle M, J \rangle = ||M||_2 ||J||_2$. However, this equality holds only if M is a scalar multiple of J, so we have det M = 0 because of det J = 0. \Box

For $\alpha^2 \leq \beta$ we have given two types of matrices in Lemma 3.1, the first one having the determinant $\alpha(\beta - \delta)^{\frac{n-1}{2}}$, the second one with the determinant $\beta^{\frac{n}{2}}$. The proof of Theorem 3.3 below will use the fact that for $\alpha^2 < \beta$ the determinant of the first type is strictly smaller than that of the second type. Indeed, the following stronger statement holds:

Lemma 3.2. Let $\alpha^2 \leq n\beta$. Then $|\alpha|(\beta - \delta)^{\frac{n-1}{2}} \leq \beta^{\frac{n}{2}}$ with equality if and only if $\alpha^2 = \beta$.

Proof. This is obvious for $\alpha = 0$, so let $\alpha \neq 0$. With $f(x) := x \left(\frac{n-x}{n-1}\right)^{n-1}$ for $x \in [0, n]$ we have

$$|\alpha|(\beta-\delta)^{\frac{n-1}{2}}\beta^{-\frac{n}{2}} = \sqrt{f\left(\frac{\alpha^2}{\beta}\right)}.$$

The proof is completed by applying the AM-GM inequality to $f(x)^{1/n}$:

$$f(x)^{\frac{1}{n}} = \left(x\left(\frac{n-x}{n-1}\right)^{n-1}\right)^{\frac{1}{n}} \le \frac{x+(n-1)\frac{n-x}{n-1}}{n} = 1$$

with equality if and only if $x = \frac{n-x}{n-1}$, i. e. if and only if x = 1.

If $\alpha^2 < n\beta$, then by Lemma 3.1 there exists an $M \in \mathbb{M}_{\alpha,\beta}$ with det $M \neq 0$, and, by possibly swapping two rows of M, det M > 0 can be achieved. As $\mathbb{M}_{\alpha,\beta}$ is compact, the determinant function assumes a maximum value on $\mathbb{M}_{\alpha,\beta}$. The next

journal of inequalities in pure and applied mathematics

issn: 1443-5756

theorem, which is essentially due to O. Gasper, shows that this maximum value is given by the determinants noted in Lemma 3.1:

Theorem 3.3. Let $\alpha^2 < n\beta$ and $M \in \mathbb{M}_{\alpha,\beta}$ with maximal determinant. Then if $\alpha^2 \leq \beta$: $\begin{cases} (1) & MM^T = \beta I \\ (2) & \det M = \beta^{\frac{n}{2}} \end{cases}$ if $\alpha^2 \geq \beta$: $\begin{cases} (3) & s(M_i) = s(M^j) = \alpha \text{ for all } i, j \in N \\ (4) & MM^T = (\beta - \delta)I + \delta J \\ (5) & \det M = |\alpha|(\beta - \delta)^{\frac{n-1}{2}} \end{cases}$

Proof. From Lemma 3.1, we know that $\det M > 0$. The matrix M solves an extremum problem with equality contraints

(P)
$$\begin{cases} \det X \longrightarrow \max \\ s(X) = n\alpha \\ q(X) = n\beta \end{cases} \quad (X \in \mathbb{M}^*),$$

where \mathbb{M}^* is the set of invertible matrices. The Lagrange function of (P) is given by

$$L(X, \lambda, \mu) = \det X - \lambda(s(X) - n\alpha) - \mu(q(X) - n\beta),$$

so there exist $\lambda, \mu \in \mathbb{R}$ with $\frac{d}{dM_{i,j}}L(M,\lambda,\mu) = 0$ for all $i, j \in N$. It is well known that

$$\left(\frac{d}{dM_{i,j}}\det M\right)_{i,j} = \left(\det M\right) \left(M^T\right)^{-1}$$

(see e. g. [1], 10.6), thus we get $(\det M) (M^T)^{-1} - \lambda M - 2\mu J = 0$, i. e.

(3.1)
$$(\det M)I = \lambda M M^T + 2\mu J M^T$$

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

Suppose $\lambda = 0$. Then

$$\left(\det M\right)^n = \det(2\mu J M^T) = \det(2\mu J) \det M = 0 \det M = 0$$

by applying the determinant function to (3.1). This contradicts det M > 0. Hence

As MM^T has diagonal elements $q(M_1), \ldots, q(M_n)$, and JM^T has diagonal elements $s(M_1), \ldots, s(M_n)$, we get

$$n \det M = \lambda q(M) + 2\mu s(M) = \lambda n\beta + 2\mu n\alpha$$

by applying the trace function to (3.1), consequently

(3.3)
$$\det M = \lambda \beta + 2\mu \alpha.$$

The symmetry of $(\det M)I$ and the symmetry of λMM^T in (3.1) show that μJM^T is symmetric as well. As all rows of JM^T are identical, namely equal to $(s(M_1), \ldots, s(M_n))$, we obtain

$$(3.4) \qquad \qquad \mu s(M_1) = \dots = \mu s(M_n).$$

In the following, we inspect the cases $\mu = 0$ and $\mu \neq 0$ and prove:

(3.5)
$$\begin{cases} \mu = 0 \implies \alpha^2 \le \beta \land (1) \land (2), \\ \mu \ne 0 \implies \alpha^2 \ge \beta \land (3) \land (4) \land (5). \end{cases}$$

Case $\mu = 0$: Then (3.3) reads det $M = \lambda\beta$, so taking (3.2) into account and dividing (3.1) by λ gives $\beta I = MM^T$, i.e. (1). Part (2) follows by applying the determinant

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

function to (1). Using the Cauchy inequality and the fact that $(1/\sqrt{\beta}) M$ is orthogonal and thus an isometry w.r.t. the euclidean norm $\|\cdot\|_2$, we get:

(3.6)

$$\alpha^{2} = \frac{1}{n^{2}} \left(\sum_{i=1}^{n} s(M_{i}) \right)^{2}$$

$$\leq \frac{1}{n^{2}} n \sum_{i=1}^{n} s(M_{i})^{2}$$

$$= \frac{1}{n} ||Me||_{2}^{2} = \frac{1}{n} \beta ||e||_{2}^{2} = \frac{1}{n} \beta n = \beta.$$

Case $\mu \neq 0$: Then $s(M_1) = \cdots = s(M_n)$ by (3.4). The identity

 $s(M_1) + \dots + s(M_n) = s(M) = n\alpha$

shows that $s(M_i) = \alpha$ for all $i \in N$. Taking into account that the determinant is invariant against matrix transposition, this proves (3). Furthermore, $JM^T = \alpha J$, and (3.1) becomes

(3.7)
$$\lambda M M^T = (\det M) I - 2\mu \alpha J,$$

hence

$$q(M_i) = (MM^T)_{i,i} = \frac{1}{\lambda} (\det M - 2\mu\alpha)$$

for all $i \in N$, and $q(M_1) = \cdots = q(M_n)$. With

$$q(M_1) + \dots + q(M_n) = q(M) = n\beta,$$

this shows that

(3.8)
$$(MM^T)_{i,i} = q(M_i) = \beta \quad \text{for all } i \in N.$$

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

Let $i, j \in N$ with $i \neq j$. Equation (3.7) gives $(MM^T)_{i,k} = -\frac{1}{\lambda}2\mu\alpha$ for all $k \in N \setminus \{i\}$, and we get

$$\beta + (n-1)(MM^{T})_{i,j} = (MM^{T})_{i,i} + \sum_{k \neq i} (MM^{T})_{i,k}$$
$$= \sum_{k=1}^{n} (MM^{T})_{i,k}$$
$$= \sum_{k=1}^{n} \sum_{p=1}^{n} M_{i,p} M_{k,p}$$
$$= \sum_{p=1}^{n} M_{i,p} s(M^{p})$$
$$= \sum_{p=1}^{n} M_{i,p} \alpha = s(M_{i}) \alpha = \alpha^{2},$$

SO

(3.9)
$$(MM^T)_{i,j} = \frac{\alpha^2 - \beta}{n-1} = \delta$$

Equations (3.8) and (3.9) together prove (4). With Lemma 2.1, this yields

$$(\det M)^2 = \det(MM^T) = (\beta - \delta)^{n-1}(\beta - \delta + n\delta) = \alpha^2(\beta - \delta)^{n-1},$$

and taking the square root gives (5). Suppose that $\alpha^2 < \beta$. Then by Lemma 3.1 there exists an $M' \in \mathbb{M}_{\alpha,\beta}$ with det $M' = \beta^{\frac{n}{2}}$, and by Lemma 3.2,

$$\det M = |\alpha|(\beta - \delta)^{\frac{n-1}{2}} < \beta^{\frac{n}{2}} = \det M',$$

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

which contradicts the maximality of det M. Hence $\alpha^2 \ge \beta$.

We have now proved (3.5) and are ready to deduce the statements of the theorem: If $\alpha^2 < \beta$, then (3.5) shows that $\mu = 0$ and thus (1) and (2). If $\alpha^2 > \beta$, then (3.5) shows that $\mu \neq 0$ and thus (3), (4) and (5). Finally suppose that $\alpha^2 = \beta$. Then $\delta = 0$, hence (1) \iff (4) and (2) \iff (5). If $\mu \neq 0$, then (3.5) shows (3), (4) and (5), from which (1) and (2) follow. If $\mu = 0$, then (3.5) shows (1) and (2), from which (4) and (5) follow. It remains to prove (3) in the case of $\alpha^2 = \beta$ and $\mu = 0$. To this purpose, look at (3.6) again, where $\alpha^2 = \beta$ means equality in the Cauchy inequality, which tells us that $(s(M_1), \ldots, s(M_n))$ is a scalar multiple of e, hence $s(M_1) = \cdots = s(M_n)$, and (3) follows as in the case $\mu \neq 0$.

journal of inequalities in pure and applied mathematics

4. Application

The following is a more application-oriented extract of Theorem 3.3:

Proposition 4.1. Let $M \in \mathbb{M}$, $\alpha := \frac{1}{n}s(M)$, $\beta := \frac{1}{n}q(M)$ and $\delta := \frac{\alpha^2 - \beta}{n-1}$. Then:

$$\begin{aligned} \alpha^2 < \beta &\implies |\det M| \le \beta^{\frac{n}{2}} \\ \alpha^2 = \beta &\implies |\det M| \le |\alpha|(\beta - \delta)^{\frac{n-1}{2}} = \beta^{\frac{n}{2}} \\ \alpha^2 > \beta &\implies |\det M| \le |\alpha|(\beta - \delta)^{\frac{n-1}{2}} < \beta^{\frac{n}{2}} \end{aligned}$$

Proof. This is clear if det M = 0. In the case of det $M \neq 0$, we get $\alpha^2 < n\beta$ by Lemma 3.1, and the stated inequalities are true by Lemma 3.2 and Theorem 3.3.

For $M \in \mathbb{M}$ with $|M_{i,j}| \leq 1$ for all $i, j \in N$, Proposition 4.1 tells us that

(4.1)
$$|\det M| \le \beta^{\frac{n}{2}} = \left(\frac{1}{n}\sum_{i,j=1}^{n}M_{i,j}^{2}\right)^{\frac{n}{2}} \le \left(\frac{1}{n}\sum_{i,j=1}^{n}1\right)^{\frac{n}{2}} = n^{\frac{n}{2}},$$

which is simply the determinant theorem of Hadamard [3]. If $M_{i,j} \in \{-1, 1\}$ for all $i, j \in N$ and $|\det M| = n^{n/2}$, i. e. M is a Hadamard matrix, then Proposition 4.1 shows that $\alpha^2 \leq \beta$ must hold. For a Hadamard matrix M, the value s(M) is called the *excess* of M. Since $q(M) = n^2$ in the case of $M_{i,j} \in \{-1, 1\}$, Proposition 4.1 yields an upper bound for the excess, known as Best's inequality [2]:

(4.2)
$$M$$
 is a Hadamard matrix $\implies s(M) \le n^{\frac{3}{2}}$

The results (4.1) and (4.2), which both can be proved more directly, are mentioned here just as by-products of Proposition 4.1. In the following, we are interested only

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

in the case $\alpha^2 \ge \beta$, where the inequality

 $|\det M| \le |\alpha|(\beta - \delta)^{\frac{n-1}{2}} =: g(M)$

holds. Note that Lemma 3.2 states that $g(M) < \beta^{\frac{n}{2}}$ is true for $\alpha^2 < \beta$ also, but $|\det M|$ is not necessarily bounded by g(M) in this situation:

$$M := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $|\det M| = 1$, $g(M) = 0$

We are now going to apply Proposition 4.1 to the problem stated in the introduction. This problem is a special case of finding an upper bound for the determinant of matrices whose entries are a permutation of an arithmetic progression:

Proposition 4.2. Let p, q be real numbers with q > 0 and M a matrix whose entries are a permutation of the numbers $p, p + q, \ldots, p + (n^2 - 1)q$. Set

$$r := \frac{p}{q} + \frac{n^2 - 1}{2}$$
 and $\varrho := \frac{n^3 + n^2 + n + 2}{12}$

Then

$$|\det M| \le n^{\frac{n}{2}}q^n \left(r^2 + \frac{n^4 - 1}{12}\right)^{\frac{n}{2}}$$

and

$$r^2 > \varrho \implies |\det M| \le n^n q^n |r| \varrho^{\frac{n-1}{2}} < n^{\frac{n}{2}} q^n \left(r^2 + \frac{n^4 - 1}{12}\right)^{\frac{n}{2}}.$$

Proof. For $\alpha := \frac{1}{n}s(M)$ and $\beta := \frac{1}{n}q(M)$ a calculation shows that $\alpha^2 - \beta = n(n-1)q^2(r^2 - \varrho)$, hence $(\alpha^2 > \beta \iff r^2 > \varrho)$. The bounds noted in Proposition 4.1 yield the asserted inequalities for $|\det M|$.

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of inequalities in pure and applied mathematics

Corollary 4.3. If M is a matrix whose entries are a permutation of $1, \ldots, n^2$, then

$$|\det M| \le n^n \frac{n^2 + 1}{2} \left(\frac{n^3 + n^2 + n + 1}{12}\right)^{\frac{n-1}{2}}$$

Proof. Apply Proposition 4.2 to (p,q) := (1,1). For $r = (n^2 + 1)/2$ it is easy to see that $r^2 > \rho$, which yields the stated bound.

Comparing the lower bounds for $D(1, ..., n^2)$ noted in the introduction with the upper bounds resulting from rounding down the values given by Corollary 4.3 shows that the quality of these upper bounds is quite convincing:

n	determinant of best known matrix	upper bound given by Corollary 4.3
2	10	11
3	412	450
4	40800	41 021
5	6839492	6865625
6	1865999570	1867994210
7	762150368499	762539814814
8	440960274696935	441077015225642
9	346254605664223620	346335386150480625
10	356944784622927045792	357017114947987625629

These are the record matrices R(n) corresponding to the noted determinants:

$$R(2) = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}, \qquad R(3) = \begin{pmatrix} 9 & 3 & 5 \\ 4 & 8 & 1 \\ 2 & 6 & 7 \end{pmatrix}, \qquad R(4) = \begin{pmatrix} 12 & 13 & 6 & 2 \\ 3 & 8 & 16 & 7 \\ 14 & 1 & 9 & 10 \\ 5 & 11 & 4 & 15 \end{pmatrix},$$

journal of inequalities in pure and applied mathematics

$$R(5) = \begin{pmatrix} 25 & 15 & 9 & 11 & 4 \\ 7 & 24 & 14 & 3 & 17 \\ 6 & 12 & 23 & 20 & 5 \\ 10 & 13 & 2 & 22 & 19 \\ 16 & 1 & 18 & 8 & 21 \end{pmatrix}, \qquad R(6) = \begin{pmatrix} 36 & 24 & 21 & 17 & 5 & 8 \\ 3 & 35 & 25 & 15 & 23 & 11 \\ 13 & 7 & 34 & 16 & 10 & 31 \\ 14 & 22 & 2 & 33 & 12 & 28 \\ 20 & 4 & 19 & 29 & 32 & 6 \\ 26 & 18 & 9 & 1 & 30 & 27 \end{pmatrix}, \\ R(7) = \begin{pmatrix} 46 & 42 & 15 & 2 & 27 & 24 & 18 \\ 9 & 48 & 36 & 30 & 7 & 14 & 31 \\ 39 & 11 & 44 & 34 & 13 & 29 & 5 \\ 26 & 22 & 17 & 41 & 47 & 1 & 21 \\ 20 & 8 & 40 & 6 & 33 & 23 & 45 \\ 4 & 28 & 19 & 25 & 38 & 49 & 12 \\ 32 & 16 & 3 & 37 & 10 & 35 & 43 \end{pmatrix}, \qquad R(8) = \begin{pmatrix} 1 & 12 & 20 & 52 & 40 & 50 & 53 & 32 \\ 4 & 35 & 3 & 14 & 43 & 15 & 45 & 61 \\ 57 & 25 & 14 & 9 & 23 & 11 & 38 & 29 \\ 28 & 22 & 55 & 4 & 64 & 41 & 18 & 27 \\ 25 & 36 & 42 & 34 & 5 & 48 & 7 & 63 \\ 19 & 60 & 33 & 56 & 46 & 6 & 16 & 24 \\ 59 & 39 & 9 & 37 & 30 & 58 & 21 & 8 \\ 30 & 20 & 79 & 53 & 49 & 71 & 40 & 25 & 2 \\ 56 & 50 & 8 & 27 & 42 & 60 & 81 & 4 & 41 \\ 23 & 14 & 54 & 63 & 11 & 18 & 72 & 44 & 70 \\ 1 & 38 & 32 & 21 & 65 & 66 & 22 & 48 & 76 \\ 45 & 74 & 31 & 80 & 17 & 46 & 5 & 24 & 47 \\ 15 & 77 & 35 & 39 & 51 & 16 & 59 & 69 & 9 \\ 64 & 52 & 75 & 13 & 57 & 6 & 28 & 19 & 55 \end{pmatrix},$$

$$R(10) = \begin{pmatrix} 1 & 2 & 61 & 84 & 81 & 82 & 39 & 54 & 41 & 60 \\ 53 & 57 & 3 & 65 & 94 & 20 & 91 & 22 & 66 & 33 \\ 46 & 63 & 47 & 4 & 45 & 78 & 83 & 28 & 13 & 98 \\ 79 & 42 & 49 & 71 & 5 & 95 & 51 & 10 & 77 & 26 \\ 17 & 75 & 87 & 58 & 30 & 6 & 38 & 27 & 86 & 80 \\ 68 & 93 & 76 & 50 & 85 & 56 & 7 & 37 & 14 & 19 \\ 100 & 16 & 31 & 35 & 62 & 34 & 8 & 64 & 67 & 88 \\ 21 & 72 & 29 & 9 & 48 & 73 & 43 & 97 & 89 & 25 \\ 69 & 15 & 99 & 32 & 44 & 24 & 90 & 74 & 40 & 18 \\ 52 & 70 & 23 & 96 & 11 & 36 & 55 & 92 & 12 & 59 \end{pmatrix}$$

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

journal of **inequalities** in pure and applied mathematics

Calculating the matrix MM^T for each record matrix M reveals that MM^T has roughly the structure $(\beta - \delta)I + \delta J$ that was noted in Theorem 3.3 for the optimal matrices of the corresponding real optimisation problem.

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

References

- [1] D.S. BERNSTEIN, *Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory*, Princeton University Press, 2005.
- [2] M.R. BEST, The excess of a Hadamard matrix. *Nederl. Akad. Wet., Proc. Ser. A*, **80** (1977), 357–361.
- [3] J. HADAMARD, Résolution d'une question relative aux déterminants, *Darboux Bull.*, (2) XVII (1893), 240–246.
- [4] N.J.A. SLOANE, The Online Encyclopedia of Integer Sequences, id:A085000. [ONLINE: http://www.research.att.com/~njas/sequences/ A085000].

Upper Bound for the Determinant of a Matrix Ortwin Gasper, Hugo Pfoertner and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

Title Page		
Contents		
44	••	
◀		
Page 18 of 18		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics