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Abstract: By deducing characterisations of the matrices which have maximal determinant
in the set of matrices with given entry sum and square sum, we prove the inequal-
ity |det M | ≤ |α|(β − δ)(n−1)/2 for realn× n-matricesM , wherenα andnβ
are the sum of the entries and the sum of the squared entries ofM , respectively,
andδ := (α2 − β)/(n− 1), provided thatα2 ≥ β. This result is applied to find
an upper bound for the determinant of a matrix whose entries are a permutation
of an arithmetic progression.
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1. Introduction

Let n ≥ 2 be a positive integer anda = (a1, . . . , an2) a vector of real numbers. What
is the maximal determinantD(a) of a matrix whose elements are a permutation of
the entries ofa? The answer is unknown even for the special casea := (1, . . . , n2) if
n > 6, see [4]. By computational optimisation using algorithms like tabu search, we
have found matrices with the following determinants, which thus are lower bounds
for D(1, . . . , n2):

n lower bound forD(1, . . . , n2)
2 10
3 412
4 40 800
5 6 839 492
6 1 865 999 570
7 762 150 368 499
8 440 960 274 696 935
9 346 254 605 664 223 620

10 356 944 784 622 927 045 792

It would be nice to also have a good upper bound forD(1, . . . , n2). We will
show how to find an upper bound by treating the problem of determiningD(a) as
a continuous optimisation task. This is done by maximising the determinant under
two equality contraints: by fixing the sum and the square sum of the matrix’s entries.

Our result is a characterisation of the matrices with maximal determinant in the
set of matrices with given entry sum and square sum, and a general inequality for
the absolute value of the determinant of a matrix.

For the problem of findingD(1, . . . , n2), the upper bound derived in this way
turns out to be quite sharp. So here we have an example where analytical optimisa-
tion gives valuable information about a combinatorial optimisation problem.
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2. Conventions

Throughout this article, letn > 1 be a natural number andN := {1, . . . , n}. Matrix
always means a realn× n matrix, the set of which we denote byM.

For M ∈ M andi, j ∈ N we denote byMi the i-th row of M , by M j the j-th
column ofM , and byMi,j the entry ofM at position(i, j). If M is a matrix or a
row or a column of a matrix, then bys(M) we denote the sum of the entries ofM
and byq(M) the sum of their squares.

The identity matrix is denoted byI. By J we name the matrix which has1 at all
of its fields, whilee is the column vector inRn with all entries being1. Matrices of
the structurexI+yJ will play an important role, so we state some of their properties:

Lemma 2.1. Letx, y ∈ R andM := xI + yJ . Then we have:

1. det M = xn−1(x + ny)

2. M is invertible if and only ifx 6∈ {0,−ny}.

3. If M is invertible, thenM−1 = 1
x
I − y

x(x+ny)
J .

Proof. SinceJ = eeT , it holds that

Me = (xI +yeeT )e = (x+yeT e)e = (x+ny)e and Mv = (xI +yeeT )v = xv

for all v ∈ Rn with v ⊥ e. HenceM has the eigenvaluex with multiplicity n − 1
and the simple eigenvaluex + ny. This shows (1). (2) is an immediate consequence
of (1). (3) can be verified by a straight calculation.
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3. Main Theorem

Let α, β ∈ R with β > 0 andMα,β := {M ∈ M : s(M) = nα, q(M) = nβ}.
Furthermore, let

δ :=
α2 − β

n− 1
.

In the proof of the following lemma, matrices are specified whose determinants
will later turn out to be the greatest possible:

Lemma 3.1.

1. Mα,β 6= ∅ if and only ifα2 ≤ nβ. If α2 ≤ nβ, then there exists anM ∈ Mα,β

with
det M = α(β − δ)

n−1
2 .

2. If α2 ≤ β, then there exists anM ∈ Mα,β with det M = β
n
2 .

3. There exists anM ∈ Mα,β with det M 6= 0 if and only ifα2 < nβ.

Proof. (1) SupposeMα,β 6= ∅, sayM ∈ Mα,β. ReadingM andJ as elements of
Rn2

, the Cauchy inequality shows that

α2 =
1

n2

(
n∑

i,j=1

Mi,j

)2

=
1

n2
〈M, J〉2

≤ 1

n2
‖M‖2

2 ‖J‖
2
2 =

n∑
i,j=1

M2
i,j = nβ.
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For the other implication supposeα2 ≤ nβ, i. e. β ≥ δ, and setγ := (β − δ)
1
2

andM := γI + 1
n
(α− γ)J . ThenM ∈ Mα,β, and by Lemma2.1

det M = γn−1
(
γ + n 1

n
(α− γ)

)
= γn−1α = α(β − δ)

n−1
2 .

(2) Letα2 ≤ β. First supposeα ≥ 0, soγ := 1
2

(
3α√

β
− 1
)

givesγ2 ≤ 1. Set

A :=

(
α

√
β − α2

−
√

β − α2 α

)
and B :=

√
β

 γ
√

1− γ2 0

−
√

1− γ2 γ 0
0 0 1

 .

Thens(A) = 2α, q(A) = 2β, det A = β, s(B) = 3α, q(B) = 3β, det B = β
3
2 . In

the case ofn = 2k with k ∈ N, usek copies ofA to build the block matrix

M :=

A
.. .

A

 ,

which has the required properties. In the case ofn = 2k + 1 with k ∈ N, usek − 1
copies ofA to build the block matrix

M :=


A

...
A

B

 ,

which again fulfills the requirements.
In the case ofα < 0, anM ′ ∈ M−α,β with det M ′ = β

n
2 exists. For evenn, the

matrixM := −M ′ ∈ Mα,β has the requested determinant, while for oddn swapping
two rows of−M ′ gives the desired matrixM .
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(3) If α2 < nβ, then the existence of anM ∈ Mα,β with det M 6= 0 is proved by (1)
in the case ofα 6= 0 and by (2) in the case ofα = 0. Forα2 = nβ andM ∈ Mα,β,
the calculation in (1) shows that〈M, J〉 = ‖M‖2 ‖J‖2. However, this equality holds
only if M is a scalar multiple ofJ , so we havedet M = 0 because ofdet J = 0.

For α2 ≤ β we have given two types of matrices in Lemma3.1, the first one
having the determinantα(β − δ)

n−1
2 , the second one with the determinantβ

n
2 . The

proof of Theorem3.3 below will use the fact that forα2 < β the determinant of
the first type is strictly smaller than that of the second type. Indeed, the following
stronger statement holds:

Lemma 3.2. Let α2 ≤ nβ. Then|α|(β − δ)
n−1

2 ≤ β
n
2 with equality if and only if

α2 = β.

Proof. This is obvious forα = 0, so letα 6= 0. With f(x) := x
(

n−x
n−1

)n−1
for

x ∈ [0, n] we have

|α|(β − δ)
n−1

2 β−
n
2 =

√
f
(

α2

β

)
.

The proof is completed by applying the AM-GM inequality tof(x)1/n:

f(x)
1
n =

(
x

(
n− x

n− 1

)n−1
) 1

n

≤
x + (n− 1)n−x

n−1

n
= 1

with equality if and only ifx = n−x
n−1

, i. e. if and only ifx = 1.

If α2 < nβ, then by Lemma3.1 there exists anM ∈ Mα,β with det M 6= 0,
and, by possibly swapping two rows ofM , det M > 0 can be achieved. AsMα,β

is compact, the determinant function assumes a maximum value onMα,β. The next

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Upper Bound for the Determinant
of a Matrix

Ortwin Gasper, Hugo Pfoertner
and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

Title Page

Contents

JJ II

J I

Page 8 of 18

Go Back

Full Screen

Close

theorem, which is essentially due to O. Gasper, shows that this maximum value is
given by the determinants noted in Lemma3.1:

Theorem 3.3.Letα2 < nβ andM ∈ Mα,β with maximal determinant. Then

if α2 ≤ β:

{
(1) MMT = βI

(2) det M = β
n
2

if α2 ≥ β:


(3) s(Mi) = s(M j) = α for all i, j ∈ N

(4) MMT = (β − δ)I + δJ

(5) det M = |α|(β − δ)
n−1

2

Proof. From Lemma3.1, we know thatdet M > 0. The matrixM solves an ex-
tremum problem with equality contraints

(P)


det X −→ max

s(X) = nα

q(X) = nβ

(X ∈ M∗),

whereM∗ is the set of invertible matrices. The Lagrange function of (P) is given by

L(X, λ, µ) = det X − λ(s(X)− nα)− µ(q(X)− nβ),

so there existλ, µ ∈ R with d
dMi,j

L(M, λ, µ) = 0 for all i, j ∈ N . It is well known
that (

d

dMi,j

det M

)
i,j

= (det M) (MT )
−1

(see e. g. [1], 10.6), thus we get(det M) (MT )
−1 − λM − 2µJ = 0, i. e.

(3.1) (det M)I = λMMT + 2µJMT .
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Supposeλ = 0. Then

(det M)n = det(2µJMT ) = det(2µJ) det M = 0 det M = 0

by applying the determinant function to (3.1). This contradictsdet M > 0. Hence

(3.2) λ 6= 0.

As MMT has diagonal elementsq(M1), . . . , q(Mn), andJMT has diagonal ele-
mentss(M1), . . . , s(Mn), we get

n det M = λq(M) + 2µs(M) = λnβ + 2µnα

by applying the trace function to (3.1), consequently

(3.3) det M = λβ + 2µα.

The symmetry of(det M)I and the symmetry ofλMMT in (3.1) show that
µJMT is symmetric as well. As all rows ofJMT are identical, namely equal to
(s(M1), . . . , s(Mn)), we obtain

(3.4) µs(M1) = · · · = µs(Mn).

In the following, we inspect the casesµ = 0 andµ 6= 0 and prove:

(3.5)

{
µ = 0 =⇒ α2 ≤ β ∧ (1) ∧ (2),

µ 6= 0 =⇒ α2 ≥ β ∧ (3) ∧ (4) ∧ (5).

Caseµ = 0: Then (3.3) readsdet M = λβ, so taking (3.2) into account and dividing
(3.1) by λ givesβI = MMT , i. e. (1). Part (2) follows by applying the determinant
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function to (1). Using the Cauchy inequality and the fact that
(
1
/√

β
)
M is orthog-

onal and thus an isometry w.r.t. the euclidean norm‖ · ‖2, we get:

α2 =
1

n2

(
n∑

i=1

s(Mi)

)2

(3.6)

≤ 1

n2
n

n∑
i=1

s(Mi)
2

=
1

n
‖Me‖2

2 =
1

n
β‖e‖2

2 =
1

n
βn = β.

Caseµ 6= 0: Thens(M1) = · · · = s(Mn) by (3.4). The identity

s(M1) + · · ·+ s(Mn) = s(M) = nα

shows thats(Mi) = α for all i ∈ N . Taking into account that the determinant is
invariant against matrix transposition, this proves (3). Furthermore,JMT = αJ ,
and (3.1) becomes

(3.7) λMMT = (det M)I − 2µαJ,

hence

q(Mi) = (MMT )i,i =
1

λ
(det M − 2µα)

for all i ∈ N , andq(M1) = · · · = q(Mn). With

q(M1) + · · ·+ q(Mn) = q(M) = nβ,

this shows that

(3.8) (MMT )i,i = q(Mi) = β for all i ∈ N.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Upper Bound for the Determinant
of a Matrix

Ortwin Gasper, Hugo Pfoertner
and Markus Sigg

vol. 10, iss. 3, art. 63, 2009

Title Page

Contents

JJ II

J I

Page 11 of 18

Go Back

Full Screen

Close

Let i, j ∈ N with i 6= j. Equation (3.7) gives (MMT )i,k = − 1
λ
2µα for all

k ∈ N \ {i}, and we get

β + (n− 1)(MMT )i,j = (MMT )i,i +
∑
k 6=i

(MMT )i,k

=
n∑

k=1

(MMT )i,k

=
n∑

k=1

n∑
p=1

Mi,p Mk,p

=
n∑

p=1

Mi,p s(Mp)

=
n∑

p=1

Mi,p α = s(Mi) α = α2,

so

(3.9) (MMT )i,j =
α2 − β

n− 1
= δ.

Equations (3.8) and (3.9) together prove (4). With Lemma2.1, this yields

(det M)2 = det(MMT ) = (β − δ)n−1(β − δ + nδ) = α2(β − δ)n−1,

and taking the square root gives (5). Suppose thatα2 < β. Then by Lemma3.1there
exists anM ′ ∈ Mα,β with det M ′ = β

n
2 , and by Lemma3.2,

det M = |α|(β − δ)
n−1

2 < β
n
2 = det M ′,
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which contradicts the maximality ofdet M . Henceα2 ≥ β.
We have now proved (3.5) and are ready to deduce the statements of the theorem:

If α2 < β, then (3.5) shows thatµ = 0 and thus (1) and (2). Ifα2 > β, then (3.5)
shows thatµ 6= 0 and thus (3), (4) and (5). Finally suppose thatα2 = β. Then
δ = 0, hence (1)⇐⇒ (4) and (2)⇐⇒ (5). If µ 6= 0, then (3.5) shows (3), (4) and
(5), from which (1) and (2) follow. Ifµ = 0, then (3.5) shows (1) and (2), from
which (4) and (5) follow. It remains to prove (3) in the case ofα2 = β andµ = 0.
To this purpose, look at (3.6) again, whereα2 = β means equality in the Cauchy
inequality, which tells us that(s(M1), . . . , s(Mn)) is a scalar multiple ofe, hence
s(M1) = · · · = s(Mn), and (3) follows as in the caseµ 6= 0.
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4. Application

The following is a more application-oriented extract of Theorem3.3:

Proposition 4.1. LetM ∈ M, α := 1
n
s(M), β := 1

n
q(M) andδ := α2−β

n−1
. Then:

α2 < β =⇒ | det M | ≤ β
n
2

α2 = β =⇒ | det M | ≤ |α|(β − δ)
n−1

2 = β
n
2

α2 > β =⇒ | det M | ≤ |α|(β − δ)
n−1

2 < β
n
2

Proof. This is clear ifdet M = 0. In the case ofdet M 6= 0, we getα2 < nβ by
Lemma3.1, and the stated inequalities are true by Lemma3.2and Theorem3.3.

ForM ∈ M with |Mi,j| ≤ 1 for all i, j ∈ N , Proposition4.1tells us that

(4.1) | det M | ≤ β
n
2 =

(
1

n

n∑
i,j=1

M2
i,j

)n
2

≤

(
1

n

n∑
i,j=1

1

)n
2

= n
n
2 ,

which is simply the determinant theorem of Hadamard [3]. If Mi,j ∈ {−1, 1} for all
i, j ∈ N and | det M | = nn/2, i. e. M is a Hadamard matrix, then Proposition4.1
shows thatα2 ≤ β must hold. For a Hadamard matrixM , the values(M) is called
theexcessof M . Sinceq(M) = n2 in the case ofMi,j ∈ {−1, 1}, Proposition4.1
yields an upper bound for the excess, known as Best’s inequality [2]:

(4.2) M is a Hadamard matrix =⇒ s(M) ≤ n
3
2

The results (4.1) and (4.2), which both can be proved more directly, are mentioned
here just as by-products of Proposition4.1. In the following, we are interested only
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in the caseα2 ≥ β, where the inequality

| det M | ≤ |α|(β − δ)
n−1

2 =: g(M)

holds. Note that Lemma3.2 states thatg(M) < β
n
2 is true forα2 < β also, but

| det M | is not necessarily bounded byg(M) in this situation:

M :=

(
1 0
0 −1

)
, | det M | = 1 , g(M) = 0.

We are now going to apply Proposition4.1 to the problem stated in the introduc-
tion. This problem is a special case of finding an upper bound for the determinant of
matrices whose entries are a permutation of an arithmetic progression:

Proposition 4.2. Letp, q be real numbers withq > 0 andM a matrix whose entries
are a permutation of the numbersp, p + q, . . . , p + (n2 − 1)q. Set

r :=
p

q
+

n2 − 1

2
and % :=

n3 + n2 + n + 1

12
.

Then

| det M | ≤ n
n
2 qn

(
r2 +

n4 − 1

12

)n
2

and

r2 > % =⇒ | det M | ≤ nnqn |r|%
n−1

2 < n
n
2 qn

(
r2 +

n4 − 1

12

)n
2

.

Proof. Forα := 1
n
s(M) andβ := 1

n
q(M) a calculation shows thatα2 − β = n(n−

1)q2(r2 − %), hence(α2 > β ⇐⇒ r2 > %). The bounds noted in Proposition4.1
yield the asserted inequalities for| det M |.
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Corollary 4.3. If M is a matrix whose entries are a permutation of1, . . . , n2, then

| det M | ≤ nn n2 + 1

2

(
n3 + n2 + n + 1

12

)n−1
2

.

Proof. Apply Proposition4.2to (p, q) := (1, 1). Forr = (n2 + 1)/2 it is easy to see
thatr2 > %, which yields the stated bound.

Comparing the lower bounds forD(1, . . . , n2) noted in the introduction with the
upper bounds resulting from rounding down the values given by Corollary4.3shows
that the quality of these upper bounds is quite convincing:

n determinant of best known matrixupper bound given by Corollary4.3
2 10 11
3 412 450
4 40 800 41 021
5 6 839 492 6 865 625
6 1 865 999 570 1 867 994 210
7 762 150 368 499 762 539 814 814
8 440 960 274 696 935 441 077 015 225 642
9 346 254 605 664 223 620 346 335 386 150 480 625

10 356 944 784 622 927 045 792 357 017 114 947 987 625 629

These are the record matricesR(n) corresponding to the noted determinants:

R(2) =

(
4 2
1 3

)
, R(3) =

9 3 5
4 8 1
2 6 7

 , R(4) =


12 13 6 2
3 8 16 7
14 1 9 10
5 11 4 15

 ,
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R(5) =


25 15 9 11 4
7 24 14 3 17
6 12 23 20 5
10 13 2 22 19
16 1 18 8 21

 , R(6) =


36 24 21 17 5 8
3 35 25 15 23 11
13 7 34 16 10 31
14 22 2 33 12 28
20 4 19 29 32 6
26 18 9 1 30 27

 ,

R(7) =



46 42 15 2 27 24 18
9 48 36 30 7 14 31
39 11 44 34 13 29 5
26 22 17 41 47 1 21
20 8 40 6 33 23 45
4 28 19 25 38 49 12
32 16 3 37 10 35 43


, R(8) =



1 12 20 52 40 50 53 32
44 35 3 14 43 15 45 61
57 2 51 49 23 11 38 29
28 22 55 4 64 41 18 27
25 36 42 34 5 48 7 63
19 60 33 56 46 6 16 24
59 39 9 37 30 58 21 8
26 54 47 13 10 31 62 17


,

R(9) =



68 7 12 62 73 26 29 58 34
67 37 43 10 3 61 33 78 36
30 20 79 53 49 71 40 25 2
56 50 8 27 42 60 81 4 41
23 14 54 63 11 18 72 44 70
1 38 32 21 65 66 22 48 76
45 74 31 80 17 46 5 24 47
15 77 35 39 51 16 59 69 9
64 52 75 13 57 6 28 19 55


,

R(10) =



1 2 61 84 81 82 39 54 41 60
53 57 3 65 94 20 91 22 66 33
46 63 47 4 45 78 83 28 13 98
79 42 49 71 5 95 51 10 77 26
17 75 87 58 30 6 38 27 86 80
68 93 76 50 85 56 7 37 14 19
100 16 31 35 62 34 8 64 67 88
21 72 29 9 48 73 43 97 89 25
69 15 99 32 44 24 90 74 40 18
52 70 23 96 11 36 55 92 12 59


.
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Calculating the matrixMMT for each record matrixM reveals thatMMT has
roughly the structure(β − δ)I + δJ that was noted in Theorem3.3 for the optimal
matrices of the corresponding real optimisation problem.
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