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1. INTRODUCTION

Let (z4,...,2,) and(y,...,y,) be two sequences of real numbers in nonincreasing order.
The sequence majorizesy if

7 7
S re= Y u
k=1 k=1

fori =1,...,n with equality fori = n. Majorization is a partial order on the set of nonincreas-

ing sequences having the same sum and it plays a large role in the theory of inequalities dating
back to the work of I. Schuf[7]. Indeed a functiétix, ..., x,) of n real variables is said to

be Schur conve¥ F'(x) > F(y) whenever the sequenegamajorizesy. Marshall and Olkin[6]
catalog many functions and results of this type with particular emphasis on statistical inequal-
ities. As a simple example, take the product functiofx) = [[;_, zx. If =,y aren-tuples

of nonnegative real numbers andriimajorizesy, thenF'(z) < F(y). Thatis,—F is a Schur
convex function. In particular, i = (z, ..., z) thenz majorizesy and therefore the product of

n nonnegative numbers with fixed mean is maximized when all of them are equal to the mean
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2 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

z. Another way to state this well-known elementary result is that the product of a sequence
of nonnegative reals with fixed mearattains a maximum when the variancewat zero.

Now suppose that the variance .ofis also fixed. In this paper, we define a partial order
(variance majorization) on the set of sequencésving a fixed meaanda fixed variance. We
obtain a monotonicity result similar to the one above for sequences in which one is variance-
majorized by the other. In particular the maximum value of the product of a sequence of non-
negative reals with fixed mean and fixed variance is attained when the sequence takes on only
two valuesa < 4 and the multiplicity of3 is 1. This simple consequence of the main theorem

is known as Cohn’s Inequality[1]: if, ..., x,, are nonnegative reals then
[[zx<am's,
k=1
wherea and 3 are chosen so that the sequences (z4,...,x,) and(a,...,a, 3) have the

same means and the same variances.

2. MAJORIZATION AND VARIANCE MAJORIZATION
LetJ (3%') be the set of nondecreasing (strictly increasing) sequend®s in
J={zeR" 1<y <---<uz,}
P ={reR" 2y <1y <+ <1y}

The variance majorization order involves the variances of leading subsequencesaf So
letz[i] = (x4, ..., ;) be the leading subsequencewdbr i = 1, ..., n. Note thatz[i] consists
of the: smallest components af We denote the mean ofi] by

2l = (1) Yo,

and the variance af|:] by

Var(afi]) = (1/i) 3 (e — 2[1])”.

k=1
2.1. Definitions of Variance Majorization and Majorization.

Definition 2.1 (Variance Majorization) Let x = (z1,...,2,) andy = (y1,...,y,) be se-
quences of real numbers Insuch thatt = y and Valz) = Var(y). We say that: is variance
majorizedby y (or y variance majorizes), if

Var(z[i]) < Var(yli]),
fori =2,...n. Wewritexvényoryvﬁx.
For fixed meann and variance > 0, variance majorization is a partial order on the set
S(m,v) ={x € J:x =m,Var[x] = v},

which is the intersection df with the sphere ifR™ centered ain(1, 1, . .., 1) with radius\/nv,
and the hyperplane through(1, 1, ..., 1) orthogonal to the vectar, 1,...,1).
By contrast, majorization is a partial order of the set of nonincreasing sequences

D={zeR:z1>2z> >z}
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VARIANCE-MAJORIZATION 3

Definition 2.2 (Majorization) Letx = (z4,...,z,) andy = (yi,...,y,) be sequences i®
such thatt = y. We say that: is majorizedby y (or y majorizesr), if

x[i] < ylil,
fori =1,...,n. Inthis case we write Y Y.

The definition of majorization is usually given in this equivalent form:

) 7
Sn<Su
k=1 k=1

fori =1,...,n with equality fori = n.

2.2. Least and Greatest Sequences with Respect to the Variance Majorization OrdeRe-
turning now to the variance majorization order, there is a least element and a greatest element
in S(m, v) for eachm andv > 0.

Lemma 2.1. Letm andv > 0 be real numbers and let
Tmin = (..., a1, 1)
Tmax = (Oémﬂz, e ,52)7

where
a; =m—+/v/(n—1)
Br=m++(n—1v
ag=m—+/(n—1)v
Bo =m+/v/(n—1).

Thenz i, Tmax € S(m,v) and

v vm
Tmin = T < Lmax;

forall z € S(m,v).
Figurg 2.1 shows the Hasse diagram for the variance majorization partial order for all integral

sequences of length six with sum 0 and sum of squares equal to 30. In thiszgases
(=1,—1,—1,-1,-1,5) andzma = (—5,1,1,1,1,1).

By contrast, the least and greatest elemen® im{z : £ = m} with respect to the majoriza-
tion order argz, ..., z) and(nz, 0, ...,0).

3. VARIANCE M ONOTONE FUNCTIONS AND SCHUR CONVEX FUNCTIONS
Let 7 be a closed interval iR and letF'(xy,...,z,) be a real-valued function defined on
ynim.
Definition 3.1 (Variance Monotone)The functionZ' is variance monotone increasimp JN "
if
v =y = F(z) < F(y),

forall x,y € INI". If —F is variance monotone increasing, we say tha variance monotone
decreasing
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{-5,1,1,1,1,1)

{(-4,-1,0,0, 2, 3} -4,-1,-1,2,2,2) (-4,-2,1,1,2,2}

LA

{-3,-2,0,0,1, 4} {-3,-1,-1,-1,3, 3} {-3,-3,1,1,1, 3} {-3,-3,0,2,22

V==Y

(-2,-2,-1,-1,2,4} -2,-2,-2,1,1,4) {(-2,-2,-2,0,3,3}

{-1,-1,-1,-1,-1,5}

Figure 2.1: Variance majorization partial order for integral sequences|n, 30).

Definition 3.2 (Schur Convex) The functionF' is Schur conveen® N " if

maj

r <y = F(r) < F(y),
forallz,y e ® N 1"
3.1. The Main Result. The next theorem is the main result.

Theorem 3.1. Let I be a closed interval ilR™, and letF'(z,. .., z,) be a continuous, real-
valued function o N I™ that is differentiable on the interior af N 1™ with gradientV F(z) =

(Fi(2),..., F,(2)). Suppose that
Fy(2) — Fi(z) < Fs(2) — Fy(2) 5> F.(2) — F,1(2)

29 — 21 a 23 — 29 o Zn = Zn-1

(3.1)

for all z € 3% N I"™. ThenF is variance monotone increasing 6m 1", that is
xRy = F(z)< F(y).
forall z,y € 3N 1™
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For functions of the formF(z) = ¢(z1) + --- + ¢(z,), Theoren] 3]1 specializes to the
following corollary:

Corollary 3.2. Let¢(t) be a continuous, real-valued function on a closed intefvalich that
¢ is twice-differentiable on the interior dfand¢” is nonincreasing. Then the function

F(.Il, e wrrL) = ¢(SL’1) T+ +¢('Tn>
is variance monotone increasing on the set of nondecreasing sequené¢egimt is,

=y = @)+ -+ (@) < byr) + -+ dlyn),
forall z,y € 3N 1™

It turns out thatS(m,v) C I™ when the interval = [m —V(n—=1v,m+/(n— 1)?})}
(see Corollary 4]8). Thus the sequenegs, andz,,;, (described in Lemmfa 2.1) are ifi. So,
if I is variance monotone increasing ®m /", then the maximum and minimum values/of
are attained at,,,x andx,;,,. This means we can bourfd(x) by expressions involving only
the mean and variance of

Corollary 3.3. Letm andv > 0 be real numbers anfl = [m —v/(n—1v,m++/(n— 1)1;} :
Let ' be a variance monotone increasing functionon /™. Then

F(alv"'valvﬁl) S F(l’) S F(O[g,ﬁg,...,ﬁg),
for all z € S(m,v), wherea,, 31, as, 3, are defined as in Lemna 2.1.

3.2. Schur Convex Functions. By comparison, the following theorem by Schur is the result
analogous to Theorem 3.1 for majorization. It plays the central role in the theory of majorization
inequalities:

Theorem 3.4([[7]). Let F(z) be a continuous, real-valued function @nthat is differentiable
on in the interior of®. Then

maj

v’y = Flz) < Fy),
forall =,y € © if and only if
(3.2) Fi(z) 2 Fa(z) 2 -+ > Fu(2),
for all z in the interior of®.
The result analogous to Corolldgry B.2 for majorization is known as Karamata’s Theorem:

Corollary 3.5 ([4]). Let¢ be a continuous, real-valued function on a closed intef\v&lich that
¢ is twice differentiable on the interior dfand¢” is nonnegative. Then

maj

v <y = ¢(@)+ -+ (@) < dyr) + -+ Ayn),
forall z,y e DN 1"

4. SOME VARIANCE MONOTONE AND SCHUR CONVEX FUNCTIONS

In this section, we give a short list of some common functions that are monotone in both
the regular majorization and variance majorization orders. And we give as corollaries some
samples of the kinds of inequalities one can obtain from Cordllafy 3.3.
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4.1. Elementary Symmetric Functions. Let E}(z) denote théth elementary symmetric func-
tion of the sequence = (zy,...,2,) € R™

Z) = Z’ZilziQ T g
where the sum is taken over all setskahdices withl < i; < --- < 4, < n.
Theorem 4.1. Let F}, be thekth elementary symmetric function. Then
r <y = FEp(y) < Ex(x),

vm Ek+1<$> Ek+1(y)
T <Yy = < ,
Y Ei(z) = Eily)

forall z,y € 3N [0, 00)".

The next corollary is obtained from Corolldry B.3 by evaluating the elementary symmetric
function £}, at ., andz, ..

Corollary 4.2. Letz € 3N [0,00)". ThenA(v, m, k) < Er(z) < B(v,m, k), where

A, m, k) = Ep(@max) = (Z) (m+ \/I)k 1 (m—(’f‘l) nil)

B(U,m,k):Ek(xmm):(Z> (m— nil)“(mﬂk—l) nil)

The inequality analogous to Theorém|4.1 for (regular) majorization is given next:
Theorem 4.3([6), p. 80])

maj

r <y = Ek(y> Ek()

maj

T <y =

forall z,y € ® N[0, 00)".

4.2. Moment Functions. Let p be a positive real number and lett) = ¢”. The pth moment
function ofz € [0, c0)™ is given by

My(z) = 20+ + 28,
The following results are applications of Corollarjies]| 3.5 3.2
Theorem 4.4.Let M, be thepth moment function. Then

maj

r <y = My(zx) < M,(y), forp e (—o0,0] U1, 00)

maj

r <y = M,(y) < M,y(zx), forp € [0,1],
forall z,y € ® N[0,00)" and
x ‘i?y = M,(xz) < My(y), forp € (—o0,0] U [L,2]
v <y = My(y) < My(z), forp € [0,1] U 2, 00),
forall x,y € 3N 0, 00)".

Again we obtain bounds of/,(x), which depend only on the mean and variance,dfom
Corollary[3.3:
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Corollary 4.5. Letz € 3N [0, 00)™ with meanm are variancev. Let

A, 0, p) =My (min) =(n = 1) (m — nzl)p + (m+ /= m)p
B(m, v,p):Mp(xmax):<m —+/(n— 1)U>p +(n—1) (m - \/zy’.

Then
A(m,v,p) < My(x) < B(m,v,p), for p € (—00,0) U [1,2]
and
B(m,v,p) < My(x) < A(m,v,p), forp € [0,1] U [2, oc).
4.3. Entropy Function. Theentropyfunction is defined for: € [0, c0)™ by
H(z) = —(x1logzy + -+ - + x, log x,).

Letting ¢(t) = —tlogt, we havep”(t) = —1/t, which is nonpositive and increasing {inoo).
Thus —¢ satisfies the conditions of Corollaries 3.2 3.5. Thus we have the following in-
equalities:

Theorem 4.6. Let H be the entropy function. Then
v <y = H(y) < H),

forall z,y € 3N [0, 00)", and

maj

v <y = H(y) < H(z),
forall z,y € ® N[0, 00)".

4.4, Coordinates of z. The smallest and the largest coordinates of a sequence are variance
monotone decreasing.

Lemma4.7.Letx,y € 3. Then
xgy = x; >y andz, > y,.

We call this result a lemma because it is a part of the proof of Theprem 3.1 rather than a
consequence of it.

When combined with Corollary 3.3, Lemma }.7 gives bounds for the smallest and largest
coordinates of a sequenceSiim, v) in terms ofm andu:

Corollary 4.8. Letz = (4,...,x,) be a sequence ii(m, v). Then

m—yn—1v < 2z < m—y/v/(n—1)
m++/v/(n—1) < z, < m++/(n—1)v.

Applying Corollary[4.8 to the eigenvalues of a symmetric matrix, we recover an equivalent
form of an inequality of Wolkowicz and Styanl[8, Theorem 2.1] that bounds the maximum
and minimum eigenvalues by expressions involving only the trace and Euclidean norm of the
matrix:

Corollary 4.9. LetG be a symmetric matrix with eigenvalugs< --- < \,,.. Then
MO 1 A /allGIP = (G2 < Ay < MO 4 V21 A]IGTE = (i(G))?

n ny/n—1 n

WE) _ a1 /llGIE — (@) < A\ < 1@ — L /4l[GIP — (r(G))=.

n n
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Corollary[4.9 follows from the fact that the meanand variance of the eigenvalues can be
expressed in terms of the trace and Euclidean rg@ of G as follows:

tr(G)

n
1

== N —m)?

v nZ( m)

1
= — (Z )\12 — 2771)\Z + m2)
n 7

1

= E(tr(GQ) — nm?)
= 5 (nllGIP ~ (G)?)

5. RESTRICTING S(m,v) TO AN INTERVAL

Lemmg 2.1 guarantees that there is a least and a greatest elensént,in) with respect to
the variance majorization order. Now we restrict theset, v) to an intervall = [m —J, m +
], with ¢, 3 > 0, containingm. From Corollary 4.8, we have

[m—m,m—i— v/(n—l)]nCS(m,U)C[m—\/m,m—l— (n—l)vr.

Soif eithero, 5 < \/v/(n — 1), thenS(m,v) N I™ = (. However, ifS(m,v) N I™ is not empty,
then it contains a least element, but it may not contain a greatest element.

Lemma 5.1. Letm andv > 0 be real numbers. Let be the intervall = [m — §, m + 3] such
that.S(m,v) N I™ is not empty. Then there exist unique real numbers § < a <y <m+ [
and an integed < j < n — 1 such that the sequence

n 1

j I

Lmin = (a,...,a,’y,?n—i—ﬁ,...,m+® GS(m,U)ﬂln.

vim
Moreoverz,,;,, < z forall z € S(m,v) N I".

Example 5.1.Letn = 5. The least element ifi(0, 1944/5)N[—36, 24]° is (—18, —18, —12, 24, 24).
There is no greatest elementsii0, 1944/5) N [—36, 24]°. See Sectioh 67.

The situation for restricting the sequences to a closed interval is a little different for ma-
jorization. There is always a least element and a greatest im|[m, M|". The sequence
(z,...,T) € DN [m, M]"is the least element. The greatest element with respect to majoriza-
tion takes at most three values for its coordinates, two of which are the end points of the closed
interval. That is, the greatest element in for majorizatio®in [m, M|" is of the form

(M,...,M,0,m,...,m).
A discussion of restricting the majorization order to an interval is givehlin [5] @and [6, page
132].
6. PROOFS

The main technique used in the proofs is to express the sequeritas lmear combinations
of a special basis fdR"”, the so-called Helmert basis.
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6.1. Helmert basis. The purpose of this section is to describe the relationship between the
coordinates of an-tuplex € R™ and the coordinates afwith respect to the so-called Helmert
basis forR"™ (see[6, p. 47] for a discussion of the Helmert basis). Heémert basidor R" is
defined as follows:

1
w@:%(m,. 1)
1
w; = E(—1,1,07,0>
1
U}Z = %(—1, —1,2,0, ,O)
T 1 Z
w; = <_17 ) ]-7@70 70)
i(i+ 1)
T 1
w! = ————(—1,...,-1,n—1).
(n—1)n
It is clear that{w, w1, ..., w,_1} is an orthonormal basis f@&". Thus every vector € R" is

a linear combination: = 22;3 arwy. The Helmert coefficient, is determined by the mean
7 of the sequence. Specifically,ay = v/nz. The other Helmert coefficients;, ..., a,_; are
related to the variance, partial variances, and order of the coordinates of

Lemma 6.1. Letx be a sequence of real numbers with= Zz;é arwy. Then
Var(ali) = ~(at + -+ a?.),
fori=2,...,n. In particular,
Var(z) = %( T4+ +ad).

Proof. Sincea;, = x - wy,

i—1 i—1
E 2 E T T
k=1 k=1

x (L — (1/1)J;) & Opy) 2"
= (Z vy — (1D fﬂk)2>

= ¢Var(x[i]).

The: x i identity matrix is denoted by; andJ; denotes the x i matrix all of whose entries are
one. The fact thay ;| wlwy = I; — (1/4).J; follows from a simple inductive argument. O

Let z = > a;w;. In the next definition and lemma, we give necessary and sufficient con-
ditions on the sequende,, ..., a,_1) for the sequence to be nondecreasing. (Clearly, the
coefficienta, does not influence the relative ordering of the coordinates)of
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Definition 6.1 (Admissible Sequence)let o = (ay,...,a,_1) be a sequence of nonnegative
real numbers. Thea is admissiblaf

(6.1) (i = Diciy <i(i + 1oy,

for2<i<n-—1.

Lemma 6.2. Letx = (z4,...,z,) be a vector inR™ and a, ... ,a,_; be scalars such that

T = Z?:_Ol a;w;. The following conditions are equivalent:
(1) x is nondecreasing.
(2) a; > 0,fori =1,...,n — 1, and the sequeneg? = (a?,...,a?_,) is admissible.
(3) the kth component of;_,w; — a;w;_1 IS nonnegative for alk # ¢ and nonpositive for
k = .

Proof. Let1 < i < n — 1. Thenzy — 21 = v/2a4, and

et = o, [ —=Dai a;
T Vil 1) <\/(z’—1)i \/i(i+1)>
_ (1+ 1Day B (1 —1)a;_4
Vili+1) /(i = 1)
(6.2) = (Vi s — VG~ Dia )

for i > 2. Thusz is nondecreasing if and only if, > 0, fori = 1,...,n — 1 anda® is
admissible. So Conditions 1 apd 2 are equivalent.
Now let (a;_jw; — a;w;_1 ), be thek component ofi;_;w; — a;w;_1. Then

(-l ik <,
Vi(i+1) /(1)
i1 (i=1)ai—1 ; .
o i(i - - )y If k: =1,
(6.3) (ai—lwi — aiwi_l)k — 4\/1(2—5—1) \/(Z—l)z
—A if k=it
i(i+1)
L0 Jfk >0+ 1.

To prove that Conditiop]2 implies Conditipfn 3, suppose that 0 fori =1,....,n — 1 and
thata® is admissible. It is clear from Equat.3) thiat_w; — a;w;_), > 0forall k # i
and that(ai,lwi — Cliwi,1>i S 0.

Conversely, suppose that Conditign 3 holds. Witk= 3,7 = 2 in Equation [(6.B), we get
a; > 0. With & = 1 < i we get that® is admissible and; > 0 for all i. Thus Conditior) P
holds. O

6.2. Proof of Theorem[3.1 and Lemma 4.]7.Let I be a differentiable, real-valued function on
J N I™ satisfying Inequality[(3]1). Let, y be nondecreasing sequences’irsuch thatt = ,

Var(z) = Var(y) andz = y. Let

n—1

r = QWi
k=0
n—1

Yy = bkwk7
k=0

for scalarsu, by, k =0,...,n — 1, and let
a? = (a,...,d>_)), b = @3, 02 ,).
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Sincez = 7, we havea, = by. By Lemmd 6.Ra;, b, > 0fork =1,...,n — 1, a® andb®
are admissible, and by Lemrale.1

i

(6.4) > ap < Zbk
k=1

k=1
for 1 <i < n — 1 with equality in Inequality[(6}4) fof = n — 1 since Vafz) = Var(y).
Next define a path(t) = (¢, c(t)1, ..., c(t),—1) froma to b by ¢y = ay = by, and
(b = /(1 — t)ad + 117,

fort € [0,1] andk = 1,...,n — 1. Thenc(t)® = (1 — t)a® + tb@, from which it follows
thatc® is admissible and that

) 7

[
doar <Y et <> OB,
1 k=1

k=1 k=

fori=1,...,n— 1.
Now define a path(¢) from x to y by

i
L

2(t) = agwo + Y  c(t)rwg.
1

B
Il

Sincec(t), > 0 andc(t)? is admissiblez(t) is a nondecreasing sequence.

Let j be the smallest index for whichy # b,. Thenc(t), = a; for k < j andc(t); > 0 for
t > 0. Itis easy to verify that/(t), = (b7 — a})/c(t)x (unlessc(t), = 0). Thus the tangent
vectorz/(t) is given by

n—1

6.5) 2(t)=>

[\

bi — ay
c(t)

— (1 - a?) (_ﬂ_a_ﬂ) +(b§+1+b?+2—a§+1_a§+2)( e a_+3)

Wi,

G G+l Ci+2  Cj+3
Wy — Wiy —
2 2 2 2 2 2 n—2 n—1
+"'+(b1+62+"'+bn1_011_0/2_"'_@”1)( — )7
Cp—2 Cp—1

for ¢ > 0. It follows from Inequality [(6.1) that/(¢) is a nonnegative linear combination of the
vectorsf?—:l1 — % fori=j+1,...,n—1

We now show that(t) € I™ for all ¢ € [0, 1]. Indeed, both the first and the last coordinates
of z(t) are nonincreasing functions af Thus

y1=2(1)1 <z2(t) < 2(t)s <+ < 2(t)n < 2(0)5 = 0.

Sincey,, x, € I, z(t) € I" and thusF'(z(t)) is defined for alk € [0, 1]. To see that(t); and
z(t),, are decreasing, we examine the first and last coordinates of the v%igtlbrs 2. The
first coordinate is

—1 1
+ ;
\/ (Z — 1)iCi_1 \/’i(i + 1)Cz
which is nonpositive since®® is an admissible sequence. Thi&); < 0 andz(t); is nonin-
creasing irt. This proves the first part of Lemrma #.7.
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The last coordinate dgﬁ — % is zero unlesg = n — 1 and in that case it is

—(n—1)
V(n—1)ne,_y
which is also nonpositive. Thugt),, is nonincreasing. This proves the other part of Lemma

4.2

Finally to prove thatF'(z(t)) is an increasing function ity we show that

ar
— =VF-Z(t) >0
o= VE-2(1)
In view of Equation[(6.p), it suffices to show that
VE (wi‘l - %> >0,

Ci—1 &

fori=45+1,...,n—1.
Sincew;, is orthogonal to the all-ones vecter

VF. <wi‘1 - %) — (VF - Fe) - (wi‘l - %> .

Ci—1 % Ci—1 Ci

Foreach = 1,...,n — 1 define a functionk’; onJ** N I" by
Fia(z) = Fi(2)

Ri+1 — %4

Ki(z) =

Fj(z)—Fi(2)
2j—2;

Now leti < j. Then is a convex combination & (z) fork =i,...,7 — 1

j—1

Fj(z) — Fi(2) _ Z 2kl — ZkKk(z).

Zj — %4 Py Zj — %
Thus by Condition[(3]1),
Fj(z) B E(Z) < K(Z)
Zj Zi -
and so

Fj(2) = Fi(2) < (2 — 2:) Ki(2)
foralli < jandz € 35t N I™.
Sincec(t)® is an admissible sequence, Le 6.2 guarantees that all compongnts-of

o are nonpositive except thith component. Of course thith component oV F' — Fje is zero.
It follows that

(VF — Fe) - (w“ - %) > Ki(2)(z — ze) - (“’“ - %)

Ci—1 C; Ci—1 &
Wi;—1 w;
Ci—1 G
=0.

The last equality holds because= ZZ;; crwy IS clearly orthogonal téjfj —

We have shown tha- > 0, for z € 7 N [™ andt € (0,1). ThusF(z(t)) is an increasing
function oft. SoF(z) = F(2(0)) < F(2(1)) = F(y).
By the continuity ofF’, F' is variance monotone increasing dm /™.
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6.3. Proof of Corollary Let () be a continuous, real-valued function on a closed interval
I such thaty(t) is twice-differentiable on the interior dfand¢”(¢) is nonincreasing of. Letz

be an increasing sequencel/ih Leti be an integer satisfyng< i < n— 1. By the mean-value
theorem, there exists in the intervalz; < & < z;;1 such that

¢/(ZH‘_1) = 925"(2’1') — 68,
Zi41 Zi

Inequality [3.1) follows sincé; < & < -+ < &,_1, ¢” is nonincreasing, anfl;(z) = ¢/(z;).

6.4. Proof of Theorem([4.]. Since E»(z) and E (z) are constant oi¥(m, v), we assume that
k > 3. Leti be an integer satisfyingg < : < n — 1 and IetE,(:’Z“) be thekth elementary

symmetric polynomial of the — 2 variableszy, zs, ..., z;_1, Zi12,..., 2,. Then
Ew(2) = BXY 4 (24 20 BT 4 iz BTV,

Thus
OE(z)  OE(2) pli+)

azi - _(ZH—I - Zl) k—2

0zi1

1 aEk(Z’) aEk<Z> . E(i7i+1)
Zit1 Zi azl+1 azl

for all = € 3N [0,00]". But the sequence is nondecreasing s&. " > E“ for i —

1,...,n — 1. It follows from Theorenj 3]1 that £ (=) is variance monotone increasing. Thus
Ey(z) is variance monotone decreasing. This proves the first inequality in Thgorem 4.1.

To prove that the functio’(z) = E.1(z)/Ex(z) is variance monotone increasing, we must
show that Inequality (3]1) holds. It suffices to show that

Fy(z) — Fi(2) - F3(z) — FQ(Z)

and so

29 — 21 - 23 — 29
We write E), for the kth elementary symmetric function of, ..., z, and E;. for the kth ele-
mentary symmetric function af;, . . ., z,,. Then

(6.6) Ex=Ej+ (z1+2+2)E_+ (2122 + 2123 + 2223) By + iz By
It follows that

0 [ Eypq
Fi=—|[—
! 8,21 < Ek >

1
— E[EkE]/C — Ek+1E]/€_1 + (22 + 23)(EkE]/<;—]_ - Ek+1E’/€—2)
k
+ 2923(ELE)_y — B EL_5).
Thus P ]
2 1 _ —— [EkEl/q—l _ Ek-i—lE]/g—Q + zg(ElgE,;_Q — Ek+1E]/€_3)} .
22— 21 Ek
Similarly,
Fy — F 1 /
- 2 = T2 [EkEllcfl — BBy + 21 (BB, — Ek+1Ek73)} )
Z3 — 22 Ek
so that

FQ—Fl F3_F2 zZ3 — 21
Z9 — 21 23 — 29 E,%

(EkEI/cf2 - Ek-‘rlEl/cf?))'
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Sincez; —z; andE} are positive, it remains to show th&} E;,_, — Ey.1 E}._, is nonnegative,
which can be rewritten using Equatidn (6.6) as

By o — Epnby g = (ELE)_o — EI;+1EI/973> + (21 + 22+ ) (B By — EI/cE;cfZi)

+ (122 + 212 + 222) (Bp o By — Ep 1 By ).

Each of the expressions fii. above are nonnegative. These weak inequalities follow from a
simple counting argument. Or we can use an old result in Hardy, Littlewood and Polya [3, p.
52]:

z€0,00)"ands >r = E, 1E, > E,E, 4,
withr=kFk—2ands=k+ 1,k k—1
6.5. Proof of Lemma[5.1. We may assume that = 0 so that/ = -4, 3].

Let = € R™ with meanz = 0. There exist real numbers = (ay,...,a,_1) such that
z=Y""""a;w; Thenz € S(0,v) if and only if a satisfies the following conditions:

a; > 0, forall i
(6.7) a?) is admissible
Z?_ll ai = nv.
Let z € S(0,v). The only vector amongy, ..., w,_; having a nonzerath coordinate is

w,_1. Thus
n—1

Zn = Ap—1-

To computez; in terms ofag, notice that the first coordinate of eaeh is —1/1/k(k + 1). So

- Z m
Thusz € " if and only if
(6.8) (n—1)a2_, <nf?,
and

(6.9)

Zm

Next, we establish another inequality for the sequenadeswhich z = > a,w, € S(0,v)N
I". Sincea® is admissible and Inequality (6.8) holds, we have

207 < 6a3 < - < k(k+1)a; <--- < (n—1na>_, <n?p
Thus

1 1
. 2 < 202 | Z
(6.10) a, <n°f {k ? 1},

fork=1,...,n—1.
We now definé = (b1, ..., b,_1) so that it satisfies Conditions (6.7) and so that for all other
a satisfying Conditiond (6]7), we have

(6.11) ibi < i:ai,
k=1 k=1
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fori =1,...,n — 1. In view of the fact thad ;| a} = nv = 31| b?, the inequalities above
are equivalent to

n—1 n—1
(6.12) doap< B

k=i+1 k=i+1
fori=0,...,n—2.
We begin by specifying the integgr The function
, 1 1]
16y = |21
J
is decreasing in with
F(1) = ng? {1 .
f(n)=0.

We also have from Inequality (6.[10) that

1 = 1
v = ﬁZaz <npB* [1 — ﬁ] = f(1).
k=1

Thus there exist$ < j < n such that

1 1 1 1
A 2l — -2 < L D
(6.13) " L+1 n} vl [J n}
Define the sequence of nonnegative réais (by, ...,b, 1) as follows:
1 1
(6.14) b? = n?p? {f— 1] , fori=75+1,....,n—1
Z
bj=0, fori=1,...,5—1.

It is clear that

Z b: = nv.
To check thabt® is admissible, notice that
i(i 4+ )b = n?3% = (i + 1)(i + 2)b7,,,
fori=j5+1,...,n—2. Also

5408 =56+ 1) [ =t (5 - )]
<00 i (53 (5 2)]

_ 71252
=+ DG+ 2
The inequality follows from the choice gfin Inequality [6.18). Of course = i(i + 1)b? <

(i +1)(i +2)b2,, fori = 1,...,5 — 1. Thusb® is admissible. It follows thab satisfies
Conditions[(6.).
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Next we show that Inequalities (6]12) hold. So supposedhat (ay,...,a,_1) Satisfies
Conditions[(6.J7) and (68). Then from Inequality (§.10) we get

Fori > j we have

2 22"1 1
> = 5 1)

k=i+1

1 n—1 n—1
> a<) a > b
k=i+1 =1 k=i+1
So Inequality[(6.T2) holds far< j too.
Now let
n—1
Lmin = Zbk‘wk
k=1
j nfjfl
We now show that = =, = (@, ..., Q,7, 3, ..,6) for some—§ < a < v < (3. From

the proof of Lemma 6]2 we have,, = z; if and only if i(i — 1)b7 , = i(i + 1)b?. For

i=1,. ]—1wehaveb_0 Soxy = - =z; = a. Andi(i — 1)b7_; = i(i + 1)b? for
1= + 2 —1. Soz,yy = --- = z,, = 3. The last equality follows from the choice of
bp_1.

We now show that-6 < «. SinceS(0,v) N I™ is nonempty, let € S(0,v) N I™ and let
z = Y7 " a;w; for some nonnegative reais= (as, .. .,a,_1). Then

a
5 < = — I —
Sa=-2 i(i+1)
We will show that

(6.16) Z 0 +1

from which it follows that—§ < « and hence that,;, € 1".
We begin with the following identity:

—_

71—

(- bz>) |
1
Then

n—1 n—2 7
_ai—b; 1 1
(6.17) (— — —) (ai = b}),
i=1 k=1

1 : 2 2

£
Il

PErERVA Z—i-l) Ci  Cit1

where
i =i+ 1)(a; + b;),
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fori =1,...,n — 2. Both sequences?® andb® are admissible. Thus

Ci = \/ Z(Z + 1)(@1 + bz) S \/ (Z + 1)(Z + 2)(@,‘_&_1 + b,‘_:,_l) = Ci+1,
fori =1,...,n — 2. Itfollows thatl/c; — 1/c;41 > 0. Inequalities[(6.1]1) hold so that the
expression on the right-hand side of Equatfon (6.17) is nonnegative. Therefore Inefuality (6.16)
holds. This proves thatd < a. It follows thatz,,;, € I™.
Finally, we show that,;, is unique. Let

— ——
Y= (ala"'aa1771767"'75) € S(O,’l})ﬂ[n,

where—j < a; < vy, < 5. We begin the proof that = z,,;, = y by showing that = ;.
From the definition ob we have

61:"':bj,1:0.
Sincey, = --- = y; = a; we have
a; = = Q-1 — 0
But
-1 -1
(6.18) <) ap =0,
k=1 k=1
andb;, > 0,s0l —1 <.
We now show thaj < |.
Sincey; 1 = -+ = yn, We have
L+ 1)+ 2)al2+1 ={l+1)(l+ 2)@,2+2 == (n—1)na:_, =n*p%
In addition,
(F+ DU +2)bj = (G +2) [+ 3 =+ = (n— L)nby_y =nf"
Then
1 1
2 _ 2232 | -
a, = ko k41|’
fork=101+1,...,n—1,and
1 1
2 —n232 |2 -
N sl

fork=j4+1,....,n—1.
Supposé < j. Thena, = by, k =1,...,j 4+ 1 anda; > b;. This contradicts the fact that

a; < by.
k=j k=j

Thereforej <landsoj=lorj=1—1.
Supposg = [ — 1.Then from Inequality{(6.18) we have = 0 andy = «. Since

Zj:ai < XJ: b? =0,
k=1 k=1

we haven; = 0 and soy; = «;, which contradicts the assumption that< ;. It follows that
j=I.
To finish the proof of uniqueness, we show that b. This follows immediately since

ak:kaO,
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fork=1,...,j—landfork=j+41,....,n—1,and>}_| a} = 37| a}. Thusa; = b; and
soa = b. It follows thatz,,;, = v.

6.6. Proof of Lemma [2.1. Let 2, = (av,...,a1,/31) be defined as in the statement of

Lemm. Clearly, VA, [i]) = 0,fori = 2,...,n—1. Thuszy, = x,forallz € S(m,v).
The argument fot,.x = (a2, fa, . . ., F2) IS more involved. Leb, andb = (by,...,b,_1) be
the coordinates aof,,,., in the Helmert basis:

Tmax = (2, B2, ..., B2) = bowo + bywy + - -+ + by 1wy, 1.

Since the second througtth coordiates of:,,,, are the same, the admissible sequebiée
satisfies:

207 = 6b5 = 1203 = --- = (n — 1)nb?_,.
Now letz € S(m,v) with
T = aoWo + a1wy + -+ + Ap—1Wp—1.

We must show that

(6.19) S <SR,
k=1

k=1
fori =1,...,n — 1. We need the next lemma to finish the proof.
Lemma6.3.Letr = (r,...,r,) be an admissible sequence of nonnegative real numbers with
> rp =t. Lets = (s1,...,s,) be the unique sequence of nonnegative reals with
251 =689 = 1253 =--- =m(m + 1)s,,

and>  sx =t. Then
7 )
PILEDIER
k=1 k=1
fori=1,...,m.

Equation[(6.1D) follows from Lemnja 6.3 with = n — 1, = a?, s = b®, andt = nw.

Proof. (Lemmal6.3 The condition on the sum and for admissibility can be expressed in matrix
form as follows:) " r, = t andr is admissible if and only if the first: — 1 coordinates of’'r
are nonnegative and the last coordinatg ishere

[ —tl tQ 0 tee 0

0 —to 13 0o -- 0

T = 0 0 —t; tig 0

0 0 : . .

0 0 _tm—l tm
11 1 1]

andt; = i(i + 1). We can express this condition symbolically as
_ +m—1
Tr = [ ' ] ,

where+,,_; is a vector inR™~! with nonnegative components.
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From the definition ok we have
_ Om—l
Ts = { ¢ ] ,
where0,,_; is the zero vector ilR™~1. SoTr > T's. (The inequalities are coordinate-wise.)
Now let P be them x m lower triangular matrix with ones on and below the main diagonal.
Then

1

ri+r
Pr 1.2

r+ro+ -+
We must show thaPr < Ps.
Let Q = P~!. Then( is the lower triangular matrix with diagonal entries equal to 1 and
subdiagonal entries equal tol. All other entries are zero:

1 0 0 - 0
—1 1 0O --- 0
Q= 0 . :
0 -1 10
O -+ 0 —-11
Next observe thdf'Q) is the tridiagonal matrix:
[ —q2 tg 0 te 0 0 i
o —q3 tz3 - 0 0
_ 0 I3 —q 0 0 . Uy U
0 0 ZSmfl —Adm tm
| 0 0 0 0 1]

wheret; = i(i + 1), q; = t;_1 + t; = 2i?, Uy isthe(m — 1) x (m — 1) submatrix of7’'Q in the
upper left corner, and = (0, ...,0,t,,)*. Thus(TQ)~! = PT~! has the following form:
Ut w]

-1
PT _{Om_l |

for somew € R™ 1.
Next we show that-U; is a symmetric M-matrix. LeD be then x n diagonal matrix with
diagonal entried /2,1/3,...,1/(n+ 1). Then

2 -1 0 --- 0 07
-1 2 -1 --- 0 0
o -1 2 - 0 O

—DUlD - . . . )
o o0 o0 -1 2 -1
O 0 0 0 -1 2

which is positive definite. It follows that U; is also positive definite and hence an M-matrix.
Thus all of the entries df/; ! are negative. (Se&l[2], Theorem 2.5.3.)

i LU w] [ w
Pr=PT Tr—{oml 1 / <t ik
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But

. -1 . Ufl w Om_1 . w
Ps=PT Ts-{oml 1 y =t e

Thus,Pr < Ps. O

6.7. Example[5.1. First we show that = (—18,—18,—12,24,24) is the least element in
S(0,1944/5) N [—36, 24]° with respect to the variance majorization order. We will construct the
coordinates of = bywg + bywy + bows + b3ws + byw, in the Helmert basisy, w1, ws, ws, wy.

The mean ot is 0 sob, = 0. To compute the other coordinates we first determine the index
J, which is defined in Equation (6.]L3):

5. 242 L_l g%gggf 1_1 ’
j+1 5 D Jj 5
soj = 2. Now from Equations (6.14) we have:
b1 :O,

1 1
b2 =1944 —5%2.24% |- — - | =24

11

b3 = 5% - 247 {5—5} = 1200,
11

b; = 5% - 247 [g—ﬂ = 720.

Then

zZ=V 2411}2 + VvV 1200?1]3 + vV 7201{]4
=2(=1,-1,2,0,0) + 10(—1, -1, —1,3,0) + 6(—1,—1,—1, -1, 4)
— (—18,—18, —12,24,24).

Next we show thats(0,1944/5) N [—36, 24]° has no greatest element. Suppose there is an

elementw € S(0,1944/5) such thatr < w for all = € S(0,1944/5) N [—36,24]5. We will
prove thatw ¢ [—36, 24)°.

The vectorst = (—36,0,0,18,18) andy = (—36,0,6,6,24) are both inS(0,1944/5) N
[—36,24]°. Sox,y Zw. To express:, y in terms of their coordinates in the Helmert basis for
R5, let H be theb x 5 matrix whose columns are the Helmert basiskor

o o oﬁl“ﬁl“

|
o o él“§|H§|’d
osh-oh sk
o vl ol ol o
|

Bl 8- - -5
o o o [e) [e)

=
I
S-S5 - 51

Then the coordinate vectors ©fy with respect to the Helmert basis are

a=xH = (0,18V2,6V6,15v3,9V5)
b=yH = (0,18v2,8V6,8V3,12V/5).

J. Inequal. Pure and Appl. Math?(3) Art. 79, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

VARIANCE-MAJORIZATION 21

Thus
a® = (0,648,216, 675, 405)
b = (0,648, 384,192, 720).
The partial sums oi® andb® are
a® : (0, 648, 864, 1539, 1944)

b : (0, 648, 1032, 1224, 1944)
The maximum of each of the five partial sums is
(0,648,1032, 1539, 1944)

and the sequence with these partial sums is

¢ = (0,648, 384, 507, 405).
Thus the least upper bound.ofy is

cH' = (-37,-1,5,15,18).
Now letw be a sequence ifi(0, 1944/5) such that S wforallve S(0,1944/5). Expressw
in terms of the Helmert basis; = ) _ d;w;, for nonnegativel;. Then

i

S @andy <3
k=1 k=1 k=1

k=1
fori=1,...,n —1sothat

i

Y@< ijdi,
k=1

k=1
fori = 1,...,n — 1. Thus(-37,—1,5,15,18) = w and by Lemm7w1 < =37. So
w & [—36,24]°.
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