
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 79, 2006

A VARIANCE ANALOG OF MAJORIZATION AND SOME ASSOCIATED
INEQUALITIES

MICHAEL G. NEUBAUER AND WILLIAM WATKINS

DEPARTMENT OFMATHEMATICS

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

NORTHRIDGE, CA 91330
michael.neubauer@csun.edu

bill.watkins@csun.edu
URL: www.csun.edu/˜vcmth006

Received 03 March, 2006; accepted 21 March, 2006
Communicated by I. Olkin

ABSTRACT. We introduce a partial order, variance majorization, onRn, which is analogous to
the majorization order. A new class of monotonicity inequalities, based on variance majorization
and analogous to Schur convexity, is developed.
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1. I NTRODUCTION

Let (x1, . . . , xn) and(y1, . . . , yn) be two sequences of real numbers in nonincreasing order.
The sequencex majorizesy if

i∑
k=1

xk ≥
i∑

k=1

yk,

for i = 1, . . . , n with equality fori = n. Majorization is a partial order on the set of nonincreas-
ing sequences having the same sum and it plays a large role in the theory of inequalities dating
back to the work of I. Schur [7]. Indeed a functionF (x1, . . . , xn) of n real variables is said to
beSchur convexif F (x) ≥ F (y) whenever the sequencex majorizesy. Marshall and Olkin [6]
catalog many functions and results of this type with particular emphasis on statistical inequal-
ities. As a simple example, take the product functionF (x) =

∏n
k=1 xk. If x, y aren-tuples

of nonnegative real numbers and ifx majorizesy, thenF (x) ≤ F (y). That is,−F is a Schur
convex function. In particular, ify = (x̄, . . . , x̄) thenx majorizesy and therefore the product of
n nonnegative numbers with fixed mean is maximized when all of them are equal to the mean
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2 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

x̄. Another way to state this well-known elementary result is that the product of a sequencex
of nonnegative reals with fixed meanx̄ attains a maximum when the variance ofx is zero.

Now suppose that the variance ofx is also fixed. In this paper, we define a partial order
(variance majorization) on the set of sequencesx having a fixed meananda fixed variance. We
obtain a monotonicity result similar to the one above for sequences in which one is variance-
majorized by the other. In particular the maximum value of the product of a sequence of non-
negative reals with fixed mean and fixed variance is attained when the sequence takes on only
two valuesα < β and the multiplicity ofβ is 1. This simple consequence of the main theorem
is known as Cohn’s Inequality [1]: ifx1, . . . , xn are nonnegative reals then

n∏
k=1

xk ≤ αn−1β,

whereα andβ are chosen so that the sequencesx = (x1, . . . , xn) and(α, . . . , α, β) have the
same means and the same variances.

2. M AJORIZATION AND VARIANCE M AJORIZATION

Let I (Ist) be the set of nondecreasing (strictly increasing) sequences inRn:

I = {x ∈ Rn : x1 ≤ x2 ≤ · · · ≤ xn}
Ist = {x ∈ Rn : x1 < x2 < · · · < xn}.

The variance majorization order involves the variances of leading subsequences ofx ∈ I. So
let x[i] = (x1, . . . , xi) be the leading subsequence ofx for i = 1, . . . , n. Note thatx[i] consists
of thei smallest components ofx. We denote the mean ofx[i] by

x[i] = (1/i)
i∑

k=1

xk,

and the variance ofx[i] by

Var(x[i]) = (1/i)
i∑

k=1

(xk − x[i])2.

2.1. Definitions of Variance Majorization and Majorization.

Definition 2.1 (Variance Majorization). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be se-
quences of real numbers inI such that̄x = ȳ and Var(x) = Var(y). We say thatx is variance
majorizedby y (or y variance majorizesx), if

Var(x[i]) ≤ Var(y[i]),

for i = 2, . . . n. We writex
vm
≺ y or y

vm
� x.

For fixed meanm and variancev ≥ 0, variance majorization is a partial order on the set

S(m, v) = {x ∈ I : x̄ = m, Var[x] = v},

which is the intersection ofI with the sphere inRn centered atm(1, 1, . . . , 1) with radius
√

nv,
and the hyperplane throughm(1, 1, . . . , 1) orthogonal to the vector(1, 1, . . . , 1).

By contrast, majorization is a partial order of the set of nonincreasing sequences

D = {z ∈ R : z1 ≥ z2 ≥ · · · ≥ zn}.
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VARIANCE-MAJORIZATION 3

Definition 2.2 (Majorization). Let x = (x1, . . . , xn) andy = (y1, . . . , yn) be sequences inD
such that̄x = ȳ. We say thatx is majorizedby y (or y majorizesx), if

x[i] ≤ y[i],

for i = 1, . . . , n. In this case we writex
maj
≺ y.

The definition of majorization is usually given in this equivalent form:
i∑

k=1

xk ≤
i∑

k=1

yk,

for i = 1, . . . , n with equality fori = n.

2.2. Least and Greatest Sequences with Respect to the Variance Majorization Order.Re-
turning now to the variance majorization order, there is a least element and a greatest element
in S(m, v) for eachm andv ≥ 0.

Lemma 2.1. Letm andv ≥ 0 be real numbers and let

xmin = (α1, . . . , α1, β1)

xmax = (α2, β2, . . . , β2),

where

α1 = m−
√

v/(n− 1)

β1 = m +
√

(n− 1)v

α2 = m−
√

(n− 1)v

β2 = m +
√

v/(n− 1).

Thenxmin, xmax ∈ S(m, v) and

xmin

vm
≺ x

vm
≺ xmax,

for all x ∈ S(m, v).

Figure 2.1 shows the Hasse diagram for the variance majorization partial order for all integral
sequences of length six with sum 0 and sum of squares equal to 30. In this case,xmin =
(−1,−1,−1,−1,−1, 5) andxmax = (−5, 1, 1, 1, 1, 1).

By contrast, the least and greatest elements inD∩{x : x̄ = m} with respect to the majoriza-
tion order are(x̄, . . . , x̄) and(nx̄, 0, . . . , 0).

3. VARIANCE M ONOTONE FUNCTIONS AND SCHUR CONVEX FUNCTIONS

Let I be a closed interval inR and letF (x1, . . . , xn) be a real-valued function defined on
I ∩ In.

Definition 3.1 (Variance Monotone). The functionF is variance monotone increasingonI∩In

if
x

vm
≺ y =⇒ F (x) ≤ F (y),

for all x, y ∈ I∩In. If −F is variance monotone increasing, we say thatF is variance monotone
decreasing.
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4 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Variance-majorization 5

8-1, -1, -1, -1, -1, 5<

8-2, -2, -1, -1, 2, 4< 8-2, -2, -2, 1, 1, 4<

8-3, -2, 0, 0, 1, 4<

8-2, -2, -2, 0, 3, 3<

8-3, -1, -1, -1, 3, 3<

8-4, -1, 0, 0, 2, 3<

8-3, -3, 1, 1, 1, 3< 8-3, -3, 0, 2, 2, 2<

8-4, -1, -1, 2, 2, 2< 8-4, -2, 1, 1, 2, 2<

8-5, 1, 1, 1, 1, 1<

Figure 1: Variance majorization partial order for integral sequences in S(0, 6)

Figure 2.1: Variance majorization partial order for integral sequences inS(0, 30).

Definition 3.2 (Schur Convex). The functionF is Schur convexonD ∩ In if

x
maj
≺ y =⇒ F (x) ≤ F (y),

for all x, y ∈ D ∩ In.

3.1. The Main Result. The next theorem is the main result.

Theorem 3.1. Let I be a closed interval inRn, and letF (z1, . . . , zn) be a continuous, real-
valued function onI∩ In that is differentiable on the interior ofI∩ In with gradient∇F (z) =
(F1(z), . . . , Fn(z)). Suppose that

(3.1)
F2(z)− F1(z)

z2 − z1

≥ F3(z)− F2(z)

z3 − z2

≥ · · · ≥ Fn(z)− Fn−1(z)

zn − zn−1

,

for all z ∈ Ist ∩ In. ThenF is variance monotone increasing onI ∩ In, that is

x
vm
≺ y =⇒ F (x) ≤ F (y).

for all x, y ∈ I ∩ In.
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VARIANCE-MAJORIZATION 5

For functions of the formF (z) = φ(x1) + · · · + φ(xn), Theorem 3.1 specializes to the
following corollary:

Corollary 3.2. Let φ(t) be a continuous, real-valued function on a closed intervalI such that
φ is twice-differentiable on the interior ofI andφ′′ is nonincreasing. Then the function

F (x1, . . . , xn) = φ(x1) + · · ·+ φ(xn)

is variance monotone increasing on the set of nondecreasing sequences inIn. That is,

x
vm
≺ y =⇒ φ(x1) + · · ·+ φ(xn) ≤ φ(y1) + · · ·+ φ(yn),

for all x, y ∈ I ∩ In.

It turns out thatS(m, v) ⊂ In when the intervalI =
[
m−

√
(n− 1)v, m +

√
(n− 1)v)

]
(see Corollary 4.8). Thus the sequencesxmax andxmin (described in Lemma 2.1) are inIn. So,
if F is variance monotone increasing onI ∩ In, then the maximum and minimum values ofF
are attained atxmax andxmin. This means we can boundF (x) by expressions involving only
the mean and variance ofx:

Corollary 3.3. Letm andv ≥ 0 be real numbers andI =
[
m−

√
(n− 1)v, m +

√
(n− 1)v

]
.

LetF be a variance monotone increasing function onI ∩ In. Then

F (α1, . . . , α1, β1) ≤ F (x) ≤ F (α2, β2, . . . , β2),

for all x ∈ S(m, v), whereα1, β1, α2, β2 are defined as in Lemma 2.1.

3.2. Schur Convex Functions.By comparison, the following theorem by Schur is the result
analogous to Theorem 3.1 for majorization. It plays the central role in the theory of majorization
inequalities:

Theorem 3.4([7]). Let F (z) be a continuous, real-valued function onD that is differentiable
on in the interior ofD. Then

x
maj
≺ y =⇒ F (x) ≤ F (y),

for all x, y ∈ D if and only if

(3.2) F1(z) ≥ F2(z) ≥ · · · ≥ Fn(z),

for all z in the interior ofD.

The result analogous to Corollary 3.2 for majorization is known as Karamata’s Theorem:

Corollary 3.5 ([4]). Letφ be a continuous, real-valued function on a closed intervalI such that
φ is twice differentiable on the interior ofI andφ′′ is nonnegative. Then

x
maj
≺ y =⇒ φ(x1) + · · ·+ φ(xn) ≤ φ(y1) + · · ·+ φ(yn),

for all x, y ∈ D ∩ In.

4. SOME VARIANCE M ONOTONE AND SCHUR CONVEX FUNCTIONS

In this section, we give a short list of some common functions that are monotone in both
the regular majorization and variance majorization orders. And we give as corollaries some
samples of the kinds of inequalities one can obtain from Corollary 3.3.
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6 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

4.1. Elementary Symmetric Functions. LetEk(z) denote thekth elementary symmetric func-
tion of the sequencez = (z1, . . . , zn) ∈ Rn:

Ek(z) =
∑

zi1zi2 · · · zik ,

where the sum is taken over all sets ofk indices with1 ≤ i1 < · · · < ik ≤ n.

Theorem 4.1.LetEk be thekth elementary symmetric function. Then

x
vm
≺ y =⇒ Ek(y) ≤ Ek(x),

x
vm
≺ y =⇒ Ek+1(x)

Ek(x)
≤ Ek+1(y)

Ek(y)
,

for all x, y ∈ I ∩ [0,∞)n.

The next corollary is obtained from Corollary 3.3 by evaluating the elementary symmetric
functionEk atxmin andxmax.

Corollary 4.2. Letx ∈ I ∩ [0,∞)n. ThenA(v, m, k) ≤ Ek(x) ≤ B(v, m, k), where

A(v, m, k) = Ek(xmax) =

(
n

k

)(
m +

√
v

n− 1

)k−1(
m− (k − 1)

√
v

n− 1

)
B(v, m, k) = Ek(xmin) =

(
n

k

)(
m−

√
v

n− 1

)k−1(
m + (k − 1)

√
v

n− 1

)
The inequality analogous to Theorem 4.1 for (regular) majorization is given next:

Theorem 4.3([6, p. 80]).

x
maj
≺ y =⇒ Ek(y) ≤ Ek(x)

x
maj
≺ y =⇒ Ek+1(y)

Ek(y)
≤ Ek+1(x)

Ek(x)
,

for all x, y ∈ D ∩ [0,∞)n.

4.2. Moment Functions. Let p be a positive real number and letφ(t) = tp. Thepth moment
function ofz ∈ [0,∞)n is given by

Mp(z) = zp
1 + · · ·+ zp

n.

The following results are applications of Corollaries 3.5 and 3.2:

Theorem 4.4.LetMp be thepth moment function. Then

x
maj
≺ y =⇒ Mp(x) ≤ Mp(y), for p ∈ (−∞, 0] ∪ [1,∞)

x
maj
≺ y =⇒ Mp(y) ≤ Mp(x), for p ∈ [0, 1],

for all x, y ∈ D ∩ [0,∞)n and

x
vm
≺ y =⇒ Mp(x) ≤ Mp(y), for p ∈ (−∞, 0] ∪ [1, 2]

x
vm
≺ y =⇒ Mp(y) ≤ Mp(x), for p ∈ [0, 1] ∪ [2,∞),

for all x, y ∈ I ∩ [0,∞)n.

Again we obtain bounds onMp(x), which depend only on the mean and variance ofx, from
Corollary 3.3:
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VARIANCE-MAJORIZATION 7

Corollary 4.5. Letx ∈ I ∩ [0,∞)n with meanm are variancev. Let

A(m, v, p)=Mp(xmin)=(n− 1)
(
m−

√
v

n−1

)p

+
(
m +

√
(n− 1)v

)p

B(m, v, p)=Mp(xmax)=
(
m−

√
(n− 1)v

)p

+ (n− 1)
(
m +

√
v

n−1

)p

.

Then
A(m, v, p) ≤ Mp(x) ≤ B(m, v, p), for p ∈ (−∞, 0) ∪ [1, 2]

and
B(m, v, p) ≤ Mp(x) ≤ A(m, v, p), for p ∈ [0, 1] ∪ [2,∞).

4.3. Entropy Function. Theentropyfunction is defined forx ∈ [0,∞)n by

H(x) = −(x1 log x1 + · · ·+ xn log xn).

Lettingφ(t) = −t log t, we haveφ′′(t) = −1/t, which is nonpositive and increasing on[0,∞).
Thus−φ satisfies the conditions of Corollaries 3.2 and 3.5. Thus we have the following in-
equalities:

Theorem 4.6.LetH be the entropy function. Then

x
vm
≺ y =⇒ H(y) ≤ H(x),

for all x, y ∈ I ∩ [0,∞)n, and

x
maj
≺ y =⇒ H(y) ≤ H(x),

for all x, y ∈ D ∩ [0,∞)n.

4.4. Coordinates of x. The smallest and the largest coordinates of a sequence are variance
monotone decreasing.

Lemma 4.7. Letx, y ∈ I. Then

x
vm
≺ y =⇒ x1 ≥ y1 andxn ≥ yn.

We call this result a lemma because it is a part of the proof of Theorem 3.1 rather than a
consequence of it.

When combined with Corollary 3.3, Lemma 4.7 gives bounds for the smallest and largest
coordinates of a sequence inS(m, v) in terms ofm andv:

Corollary 4.8. Letx = (x1, . . . , xn) be a sequence inS(m, v). Then

m−
√

(n− 1)v ≤ x1 ≤ m−
√

v/(n− 1)

m +
√

v/(n− 1) ≤ xn ≤ m +
√

(n− 1)v.

Applying Corollary 4.8 to the eigenvalues of a symmetric matrix, we recover an equivalent
form of an inequality of Wolkowicz and Styan [8, Theorem 2.1] that bounds the maximum
and minimum eigenvalues by expressions involving only the trace and Euclidean norm of the
matrix:

Corollary 4.9. LetG be a symmetric matrix with eigenvaluesλ1 ≤ · · · ≤ λn. Then

tr(G)
n

+ 1
n
√

n−1

√
n||G||2 − (tr(G))2 ≤ λn ≤ tr(G)

n
+

√
n−1
n

√
n||G||2 − (tr(G))2

tr(G)
n
−

√
n−1
n

√
n||G||2 − (tr(G))2 ≤ λ1 ≤ tr(G)

n
− 1

n
√

n−1

√
n||G||2 − (tr(G))2.
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8 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Corollary 4.9 follows from the fact that the meanm and variancev of the eigenvalues can be
expressed in terms of the trace and Euclidean norm||G|| of G as follows:

m =
tr(G)

n

v =
1

n

∑
i

(λi −m)2

=
1

n

(∑
i

λ2
i − 2mλi + m2

)
=

1

n
(tr(G2)− nm2)

=
1

n2

(
n||G||2 − tr(G)2

)
.

5. RESTRICTING S(m, v) TO AN I NTERVAL

Lemma 2.1 guarantees that there is a least and a greatest element inS(m, v) with respect to
the variance majorization order. Now we restrict the setS(m, v) to an intervalI = [m− δ,m +
β], with δ, β ≥ 0, containingm. From Corollary 4.8, we have[
m−

√
v/(n− 1), m +

√
v/(n− 1)

]n
⊂ S(m, v) ⊂

[
m−

√
(n− 1)v, m +

√
(n− 1)v

]n
.

So if eitherδ, β <
√

v/(n− 1), thenS(m, v)∩ In = ∅. However, ifS(m, v)∩ In is not empty,
then it contains a least element, but it may not contain a greatest element.

Lemma 5.1. Letm andv ≥ 0 be real numbers. LetI be the intervalI = [m− δ,m + β] such
thatS(m, v)∩ In is not empty. Then there exist unique real numbersm− δ ≤ α ≤ γ < m + β
and an integer1 ≤ j ≤ n− 1 such that the sequence

xmin = (

j︷ ︸︸ ︷
α, . . . , α, γ,

n−j−1︷ ︸︸ ︷
m + β, . . . ,m + β) ∈ S(m, v) ∩ In.

Moreoverxmin

vm
≺ x for all x ∈ S(m, v) ∩ In.

Example 5.1.Letn = 5. The least element inS(0, 1944/5)∩[−36, 24]5 is (−18,−18,−12, 24, 24).
There is no greatest element inS(0, 1944/5) ∩ [−36, 24]5. See Section 6.7.

The situation for restricting the sequences to a closed interval is a little different for ma-
jorization. There is always a least element and a greatest inD ∩ [m, M ]n. The sequence
(x̄, . . . , x̄) ∈ D ∩ [m, M ]n is the least element. The greatest element with respect to majoriza-
tion takes at most three values for its coordinates, two of which are the end points of the closed
interval. That is, the greatest element in for majorization inD ∩ [m, M ]n is of the form

(M, . . . , M, θ, m, . . . , m).

A discussion of restricting the majorization order to an interval is given in [5] and [6, page
132].

6. PROOFS

The main technique used in the proofs is to express the sequences inI as linear combinations
of a special basis forRn, the so-called Helmert basis.
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VARIANCE-MAJORIZATION 9

6.1. Helmert basis. The purpose of this section is to describe the relationship between the
coordinates of ann-tuplex ∈ Rn and the coordinates ofx with respect to the so-called Helmert
basis forRn (see [6, p. 47] for a discussion of the Helmert basis). TheHelmert basisfor Rn is
defined as follows:

wT
0 =

1√
n

(1, 1, . . . , 1)

wT
1 =

1√
2
(−1, 1, 0, . . . , 0)

wT
2 =

1√
6
(−1,−1, 2, 0, . . . , 0)

...

wT
i =

1√
i(i + 1)

(

i︷ ︸︸ ︷
−1, . . . ,−1, i, 0, . . . , 0)

...

wT
n−1 =

1√
(n− 1)n

(−1, . . . ,−1, n− 1).

It is clear that{w0, w1, . . . , wn−1} is an orthonormal basis forRn. Thus every vectorx ∈ Rn is
a linear combinationx =

∑n−1
k=0 akwk. The Helmert coefficienta0 is determined by the mean

x̄ of the sequencex. Specifically,a0 =
√

nx̄. The other Helmert coefficients,a1, . . . , an−1 are
related to the variance, partial variances, and order of the coordinates ofx.

Lemma 6.1. Letx be a sequence of real numbers withx =
∑n−1

k=0 akwk. Then

Var(x[i]) =
1

i
(a2

1 + · · ·+ a2
i−1),

for i = 2, . . . , n. In particular,

Var(x) =
1

n
(a2

1 + · · ·+ a2
n−1).

Proof. Sinceak = x · wk,

i−1∑
k=1

a2
k = x

(
i−1∑
k=1

wT
k wk

)
xT

= x ((Ii − (1/i)Ji)⊕ 0n−i) xT

=

(
i∑

k=1

x2
k − (1/i)(

i∑
k=1

xk)
2

)
= iVar(x[i]).

Thei× i identity matrix is denoted byIi andJi denotes thei× i matrix all of whose entries are
one. The fact that

∑i−1
k=1 wT

k wk = Ii − (1/i)Ji follows from a simple inductive argument. �

Let x =
∑

aiwi. In the next definition and lemma, we give necessary and sufficient con-
ditions on the sequence(a1, . . . , an−1) for the sequencex to be nondecreasing. (Clearly, the
coefficienta0 does not influence the relative ordering of the coordinates ofx.)
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10 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Definition 6.1 (Admissible Sequence). Let α = (α1, . . . , αn−1) be a sequence of nonnegative
real numbers. Thenα is admissibleif

(6.1) (i− 1)iαi−1 ≤ i(i + 1)αi,

for 2 ≤ i ≤ n− 1.

Lemma 6.2. Let x = (x1, . . . , xn) be a vector inRn and a0, . . . , an−1 be scalars such that
x =

∑n−1
i=0 aiwi. The following conditions are equivalent:

(1) x is nondecreasing.
(2) ai ≥ 0, for i = 1, . . . , n− 1, and the sequencea(2) = (a2

1, . . . , a
2
n−1) is admissible.

(3) thekth component ofai−1wi − aiwi−1 is nonnegative for allk 6= i and nonpositive for
k = i.

Proof. Let 1 ≤ i ≤ n− 1. Thenx2 − x1 =
√

2a1, and

xi+1 − xi =
iai√

i(i + 1)
−

(
(i− 1)ai−1√

(i− 1)i
− ai√

i(i + 1)

)

=
(i + 1)ai√

i(i + 1)
− (i− 1)ai−1√

(i− 1)i

=
1

i

(√
i(i + 1)ai −

√
(i− 1)iai−1

)
,(6.2)

for i ≥ 2. Thusx is nondecreasing if and only ifai ≥ 0, for i = 1, . . . , n − 1 anda(2) is
admissible. So Conditions 1 and 2 are equivalent.

Now let (ai−1wi − aiwi−1)k be thek component ofai−1wi − aiwi−1. Then

(6.3) (ai−1wi − aiwi−1)k =



− ai−1√
i(i+1)

+ ai√
(i−1)i

, if k < i,

− ai−1√
i(i+1)

− (i−1)ai−1√
(i−1)i

, if k = i,

iai−1√
i(i+1)

, if k = i + 1,

0 , if k > i + 1.

To prove that Condition 2 implies Condition 3, suppose thatai ≥ 0 for i = 1, . . . , n− 1 and
thata(2) is admissible. It is clear from Equation (6.3) that(ai−1wi − aiwi−1)k ≥ 0 for all k 6= i
and that(ai−1wi − aiwi−1)i ≤ 0.

Conversely, suppose that Condition 3 holds. Withk = 3, i = 2 in Equation (6.3), we get
a1 ≥ 0. With k = 1 < i we get thata(2) is admissible andai ≥ 0 for all i. Thus Condition 2
holds. �

6.2. Proof of Theorem 3.1 and Lemma 4.7.Let F be a differentiable, real-valued function on
I ∩ In satisfying Inequality (3.1). Letx, y be nondecreasing sequences inIn such that̄x = ȳ,

Var(x) = Var(y) andx
vm
≺ y. Let

x =
n−1∑
k=0

akwk

y =
n−1∑
k=0

bkwk,

for scalarsak, bk, k = 0, . . . , n− 1, and let

a(2) = (a2
1, . . . , a

2
n−1), b(2) = (b2

1, . . . , b
2
n−1).
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Sincex̄ = ȳ, we havea0 = b0. By Lemma 6.2,ak, bk ≥ 0 for k = 1, . . . , n − 1, a(2) andb(2)

are admissible, and by Lemma 6.1

(6.4)
i∑

k=1

a2
k ≤

i∑
k=1

b2
k,

for 1 ≤ i ≤ n− 1 with equality in Inequality (6.4) fori = n− 1 since Var(x) = Var(y).
Next define a pathc(t) = (c0, c(t)1, . . . , c(t)n−1) from a to b by c0 = a0 = b0, and

c(t)k =
√

(1− t)a2
k + tb2

k,

for t ∈ [0, 1] andk = 1, . . . , n − 1. Thenc(t)(2) = (1 − t)a(2) + tb(2), from which it follows
thatc(2) is admissible and that

i∑
k=1

a2
k ≤

i∑
k=1

c(t)2
k ≤

i∑
k=1

b2
k,

for i = 1, . . . , n− 1.
Now define a pathz(t) from x to y by

z(t) = a0w0 +
n−1∑
k=1

c(t)kwk.

Sincec(t)k ≥ 0 andc(t)(2) is admissible,z(t) is a nondecreasing sequence.
Let j be the smallest index for whichaj 6= bj. Thenc(t)k = ak for k < j andc(t)j > 0 for

t > 0. It is easy to verify thatc′(t)k = (b2
k − a2

k)/c(t)k (unlessc(t)k = 0). Thus the tangent
vectorz′(t) is given by

z′(t) =
n−1∑
k=j

b2
k − a2

k

c(t)k

wk(6.5)

= (b2
j − a2

j)

(
wj

cj

− wj+1

cj+1

)
+ (b2

j+1 + b2
j+2 − a2

j+1 − a2
j+2)

(
wj+2

cj+2

− wj+3

cj+3

)
+ · · ·+

(
b2
1 + b2

2 + · · ·+ b2
n−1 − a2

1 − a2
2 − · · · − a2

n−1

)(wn−2

cn−2

− wn−1

cn−1

)
,

for t > 0. It follows from Inequality (6.4) thatz′(t) is a nonnegative linear combination of the
vectorswi−1

ci−1
− wi

ci
, for i = j + 1, . . . , n− 1.

We now show thatz(t) ∈ In for all t ∈ [0, 1]. Indeed, both the first and the last coordinates
of z(t) are nonincreasing functions oft. Thus

y1 = z(1)1 ≤ z(t)1 ≤ z(t)2 ≤ · · · ≤ z(t)n ≤ z(0)n = xn.

Sincey1, xn ∈ I, z(t) ∈ In and thusF (z(t)) is defined for allt ∈ [0, 1]. To see thatz(t)1 and
z(t)n are decreasing, we examine the first and last coordinates of the vectorswi−1

ci−1
− wi

ci
. The

first coordinate is
−1√

(i− 1)ici−1

+
1√

i(i + 1)ci

,

which is nonpositive sincec(2) is an admissible sequence. Thusz′(t)1 ≤ 0 andz(t)1 is nonin-
creasing int. This proves the first part of Lemma 4.7.
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12 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

The last coordinate ofwi−1

ci−1
− wi

ci
is zero unlessi = n− 1 and in that case it is

−(n− 1)√
(n− 1)ncn−1

,

which is also nonpositive. Thusz(t)n is nonincreasing. This proves the other part of Lemma
4.7.

Finally to prove thatF (z(t)) is an increasing function int, we show that

dF

dt
= ∇F · z′(t) ≥ 0.

In view of Equation (6.5), it suffices to show that

∇F ·
(

wi−1

ci−1

− wi

ci

)
≥ 0,

for i = j + 1, . . . , n− 1.
Sincewk is orthogonal to the all-ones vectore,

∇F ·
(

wi−1

ci−1

− wi

ci

)
= (∇F − Fie) ·

(
wi−1

ci−1

− wi

ci

)
.

For eachi = 1, . . . , n− 1 define a functionKi onIst ∩ In by

Ki(z) =
Fi+1(z)− Fi(z)

zi+1 − zi

.

Now let i < j. ThenFj(z)−Fi(z)

zj−zi
is a convex combination ofKk(z) for k = i, . . . , j − 1:

Fj(z)− Fi(z)

zj − zi

=

j−1∑
k=i

zk+1 − zk

zj − zi

Kk(z).

Thus by Condition (3.1),
Fj(z)− Fi(z)

zj − zi

≤ Ki(z)

and so
Fj(z)− Fi(z) ≤ (zj − zi)Ki(z)

for all i < j andz ∈ Ist ∩ In.
Sincec(t)(2) is an admissible sequence, Lemma 6.2 guarantees that all components ofwi−1

ci−1
−

wi

ci
are nonpositive except theith component. Of course theith component of∇F −Fie is zero.

It follows that

(∇F − Fie) ·
(

wi−1

ci−1

− wi

ci

)
≥ Ki(z)(z − zke) ·

(
wi−1

ci−1

− wi

ci

)
= Kk(z)z ·

(
wi−1

ci−1

− wi

ci

)
= 0.

The last equality holds becausez =
∑n−1

k=j ckwk is clearly orthogonal towi−1

ci−1
− wi

ci
.

We have shown thatdF
dt
≥ 0, for z ∈ Ist ∩ In andt ∈ (0, 1). ThusF (z(t)) is an increasing

function oft. SoF (x) = F (z(0)) ≤ F (z(1)) = F (y).
By the continuity ofF , F is variance monotone increasing onI ∩ In.
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6.3. Proof of Corollary 3.2. Letφ(t) be a continuous, real-valued function on a closed interval
I such thatφ(t) is twice-differentiable on the interior ofI andφ′′(t) is nonincreasing onI. Letz
be an increasing sequence inIn. Let i be an integer satisfyng1 ≤ i ≤ n−1. By the mean-value
theorem, there existsξi in the intervalzi < ξi < zi+1 such that

φ′(zi+1)− φ′(zi)

zi+1 − zi

= φ′′(ξi).

Inequality (3.1) follows sinceξ1 ≤ ξ2 ≤ · · · ≤ ξn−1, φ′′ is nonincreasing, andFi(z) = φ′(zi).

6.4. Proof of Theorem 4.1. SinceE2(z) andE1(z) are constant onS(m, v), we assume that
k ≥ 3. Let i be an integer satisfying1 ≤ i ≤ n − 1 and letE(i,i+1)

k be thekth elementary
symmetric polynomial of then− 2 variablesz1, z2, . . . , zi−1, zi+2, . . . , zn. Then

Ek(z) = E
(i,i+1)
k + (zi + zi+1)E

(i,i+1)
k−1 + zizi+1E

(i,i+1)
k−2 .

Thus
∂Ek(z)

∂zi+1

− ∂Ek(z)

∂zi

= −(zi+1 − zi)E
(i,i+1)
k−2 ,

and so (
1

zi+1 − zi

)(
∂Ek(z)

∂zi+1

− ∂Ek(z)

∂zi

)
= −E

(i,i+1)
k−2 ,

for all z ∈ I ∩ [0,∞]n. But the sequencez is nondecreasing soE(i−1,i)
k−2 ≥ E

(i,i+1)
k−2 for i =

1, . . . , n− 1. It follows from Theorem 3.1 that−Ek(z) is variance monotone increasing. Thus
Ek(z) is variance monotone decreasing. This proves the first inequality in Theorem 4.1.

To prove that the functionF (z) = Ek+1(z)/Ek(z) is variance monotone increasing, we must
show that Inequality (3.1) holds. It suffices to show that

F2(z)− F1(z)

z2 − z1

≥ F3(z)− F2(z)

z3 − z2

.

We writeEk for thekth elementary symmetric function ofz1, . . . , zn andE ′
k for thekth ele-

mentary symmetric function ofz4, . . . , zn. Then

(6.6) Ek = E ′
k + (z1 + z2 + z3)E

′
k−1 + (z1z2 + z1z3 + z2z3)E

′
k−2 + z1z2z3E

′
k−3.

It follows that

F1 =
∂

∂z1

(
Ek+1

Ek

)
=

1

E2
k

[EkE
′
k − Ek+1E

′
k−1 + (z2 + z3)(EkE

′
k−1 − Ek+1E

′
k−2)

+ z2z3(EkE
′
k−2 − Ek+1E

′
k−3)].

Thus
F2 − F1

z2 − z1

= − 1

E2
k

[
EkE

′
k−1 − Ek+1E

′
k−2 + z3(E

′
kE

′
k−2 − Ek+1E

′
k−3)

]
.

Similarly,

F3 − F2

z3 − z2

= − 1

E2
k

[
EkE

′
k−1 − Ek+1E

′
k−2 + z1(E

′
kE

′
k−2 − Ek+1E

′
k−3)

]
,

so that
F2 − F1

z2 − z1

− F3 − F2

z3 − z2

=
z3 − z1

E2
k

(EkE
′
k−2 − Ek+1E

′
k−3).
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14 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Sincez3−z1 andE2
k are positive, it remains to show thatEkE

′
k−2−Ek+1E

′
k−3 is nonnegative,

which can be rewritten using Equation (6.6) as

EkE
′
k−2 − Ek+1E

′
k−3 = (E ′

kE
′
k−2 − E ′

k+1E
′
k−3) + (z1 + z2 + z3)(E

′
k−1E

′
k−2 − E ′

kE
′
k−3)

+ (z1z2 + z1z3 + z2z2)(E
′
k−2E

′
k−2 − E ′

k−1E
′
k−3).

Each of the expressions inE ′
r above are nonnegative. These weak inequalities follow from a

simple counting argument. Or we can use an old result in Hardy, Littlewood and Pólya [3, p.
52]:

z ∈ [0,∞)n ands > r =⇒ Es−1Er > EsEr−1,

with r = k − 2 ands = k + 1, k, k − 1.

6.5. Proof of Lemma 5.1. We may assume thatm = 0 so thatI = [−δ, β].
Let z ∈ Rn with meanz̄ = 0. There exist real numbersa = (a1, . . . , an−1) such that

z =
∑n−1

i=1 aiwi Thenz ∈ S(0, v) if and only if a satisfies the following conditions:

(6.7)

ai ≥ 0, for all i

a(2) is admissible∑n−1
i=1 a2

i = nv.

Let z ∈ S(0, v). The only vector amongw1, . . . , wn−1 having a nonzeronth coordinate is
wn−1. Thus

zn =

√
n− 1

n
an−1.

To computez1 in terms ofak, notice that the first coordinate of eachwk is−1/
√

k(k + 1). So

z1 = −
n−1∑
k=1

ak√
k(k + 1)

.

Thusz ∈ In if and only if

(6.8) (n− 1)a2
n−1 ≤ nβ2,

and

(6.9) −δ ≤ −
n−1∑
k=1

ak√
k(k + 1)

.

Next, we establish another inequality for the sequencesa for whichz =
∑

akwk ∈ S(0, v)∩
In. Sincea(2) is admissible and Inequality (6.8) holds, we have

2a2
1 ≤ 6a2

2 ≤ · · · ≤ k(k + 1)a2
k ≤ · · · ≤ (n− 1)na2

n−1 ≤ n2β2.

Thus

(6.10) a2
k ≤ n2β2

[
1

k
− 1

k + 1

]
,

for k = 1, . . . , n− 1.
We now defineb = (b1, . . . , bn−1) so that it satisfies Conditions (6.7) and so that for all other

a satisfying Conditions (6.7), we have

(6.11)
i∑

k=1

b2
k ≤

i∑
k=1

a2
k,
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for i = 1, . . . , n− 1. In view of the fact that
∑n−1

k=1 a2
k = nv =

∑n−1
k=1 b2

k, the inequalities above
are equivalent to

(6.12)
n−1∑

k=i+1

a2
k ≤

n−1∑
k=i+1

b2
k,

for i = 0, . . . , n− 2.
We begin by specifying the integerj. The function

f(j) := nβ2

[
1

j
− 1

n

]
,

is decreasing inj with

f(1) = nβ2

[
1− 1

n

]
f(n) = 0.

We also have from Inequality (6.10) that

v =
1

n

n−1∑
k=1

a2
k ≤ nβ2

[
1− 1

n

]
= f(1).

Thus there exists1 ≤ j ≤ n such that

(6.13) nβ2

[
1

j + 1
− 1

n

]
≤ v < nβ2

[
1

j
− 1

n

]
.

Define the sequence of nonnegative realsb = (b1, . . . , bn−1) as follows:

b2
i = n2β2

[
1

i
− 1

i + 1

]
, for i = j + 1, . . . , n− 1(6.14)

b2
j = nv − n2β2

[
1

j + 1
− 1

n

]
,(6.15)

bi = 0, for i = 1, . . . , j − 1.

It is clear that
n−1∑
k=1

b2
k = nv.

To check thatb(2) is admissible, notice that

i(i + 1)b2
i = n2β2 = (i + 1)(i + 2)b2

i+1,

for i = j + 1, . . . , n− 2. Also

j(j + 1)b2
j = j(j + 1)

[
nv − n2β2

(
1

j + 1
− 1

n

)]
≤ j(j + 1)

[
n2β2

(
1

j
− 1

n

)
− n2β2

(
1

j + 1
− 1

n

)]
= n2β2

= (j + 1)(j + 2)b2
j+1.

The inequality follows from the choice ofj in Inequality (6.13). Of course0 = i(i + 1)b2
i ≤

(i + 1)(i + 2)b2
i+1 for i = 1, . . . , j − 1. Thusb(2) is admissible. It follows thatb satisfies

Conditions (6.7).
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16 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Next we show that Inequalities (6.12) hold. So suppose thata = (a1, . . . , an−1) satisfies
Conditions (6.7) and (6.8). Then from Inequality (6.10) we get

n−1∑
k=i+1

a2
k ≤ n2β2

[
1

i + 1
− 1

n

]
.

For i ≥ j we have
n−1∑

k=i+1

b2
k = n2β2

n−1∑
k=i+1

[
1

k
− 1

k + 1

]
= n2β2

[
1

i + 1
− 1

n

]
.

So Inequality (6.12) holds fori ≥ j. For i < j,
n−1∑

k=i+1

a2
k ≤

n−1∑
k=1

a2
k = nv =

n−1∑
k=i+1

b2
k.

So Inequality (6.12) holds fori < j too.
Now let

xmin =
n−1∑
k=1

bkwk.

We now show thatx = xmin = (

j︷ ︸︸ ︷
α, . . . , α, γ,

n−j−1︷ ︸︸ ︷
β, . . . , β) for some−δ ≤ α ≤ γ < β. From

the proof of Lemma 6.2 we havexi+1 = xi if and only if i(i − 1)b2
i−1 = i(i + 1)b2

i . For
i = 1, . . . , j − 1 we havebi = 0. Sox1 = · · · = xj = α. And i(i − 1)b2

i−1 = i(i + 1)b2
i for

i = j + 2, . . . , n − 1. Soxj+2 = · · · = xn = β. The last equality follows from the choice of
bn−1.

We now show that−δ ≤ α. SinceS(0, v) ∩ In is nonempty, letz ∈ S(0, v) ∩ In and let
z =

∑n−1
i=1 aiwi for some nonnegative realsa = (a1, . . . , an−1). Then

−δ ≤ z1 = −
∑ ai√

i(i + 1)
.

We will show that

(6.16) 0 ≤
n−1∑
i=1

ai − bi√
i(i + 1)

,

from which it follows that−δ ≤ α and hence thatxmin ∈ In.
We begin with the following identity:

ai − bi =
1

ai + bi

(
i∑

k=1

(a2
k − b2

k)−
i−1∑
k=1

(a2
k − b2

k)

)
.

Then

(6.17)
n−1∑
i=1

ai − bi√
i(i + 1)

=
n−2∑
i=1

(
1

ci

− 1

ci+1

) i∑
k=1

(a2
k − b2

k),

where
ci =

√
i(i + 1)(ai + bi),
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for i = 1, . . . , n− 2. Both sequencesa(2) andb(2) are admissible. Thus

ci =
√

i(i + 1)(ai + bi) ≤
√

(i + 1)(i + 2)(ai+1 + bi+1) = ci+1,

for i = 1, . . . , n − 2. It follows that1/ci − 1/ci+1 ≥ 0. Inequalities (6.11) hold so that the
expression on the right-hand side of Equation (6.17) is nonnegative. Therefore Inequality (6.16)
holds. This proves that−δ ≤ α. It follows thatxmin ∈ In.

Finally, we show thatxmin is unique. Let

y = (
l︷ ︸︸ ︷

α1, . . . , α1, γ1,

n−l−1︷ ︸︸ ︷
β, . . . , β) ∈ S(0, v) ∩ In,

where−δ ≤ α1 ≤ γ1 < β. We begin the proof thatx = xmin = y by showing thatl = j.
From the definition ofb we have

b1 = · · · = bj−1 = 0.

Sincey1 = · · · = yl = α1 we have

a1 = · · · = al−1 = 0.

But

(6.18)
l−1∑
k=1

b2
k ≤

l−1∑
k=1

a2
k = 0,

andbj+1 > 0, sol − 1 ≤ j.
We now show thatj ≤ l.
Sinceyl+1 = · · · = yn, we have

(l + 1)(l + 2)a2
l+1 = (l + 1)(l + 2)a2

l+2 = · · · = (n− 1)na2
n−1 = n2β2.

In addition,

(j + 1)(j + 2)b2
j+1 = (j + 2)(j + 3)b2

j+2 = · · · = (n− 1)nbn−1 = n2β2.

Then

a2
k = n2β2

[
1

k
− 1

k + 1

]
,

for k = l + 1, . . . , n− 1, and

b2
k = n2β2

[
1

k
− 1

k + 1

]
,

for k = j + 1, . . . , n− 1.
Supposel < j. Thenak = bk, k = 1, . . . , j + 1 andaj > bj. This contradicts the fact that

n−1∑
k=j

a2
k ≤

n−1∑
k=j

b2
k.

Thereforej ≤ l and soj = l or j = l − 1.
Supposej = l − 1.Then from Inequality (6.18) we havebj = 0 andγ = α. Since

j∑
k=1

a2
k ≤

j∑
k=1

b2
j = 0,

we haveaj = 0 and soγ1 = α1, which contradicts the assumption thatα1 < γ1. It follows that
j = l.

To finish the proof of uniqueness, we show thata = b. This follows immediately since

ak = bk = 0,
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18 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

for k = 1, . . . , j − 1 and fork = j + 1, . . . , n− 1, and
∑n−1

k=1 a2
k =

∑n−1
k=1 a2

k. Thusaj = bj and
soa = b. It follows thatxmin = y.

6.6. Proof of Lemma 2.1. Let xmin = (α1, . . . , α1, β1) be defined as in the statement of

Lemma 2.1. Clearly, Var(xmin[i]) = 0, for i = 2, . . . , n−1. Thusxmin

vm
≺ x, for all x ∈ S(m, v).

The argument forxmax = (α2, β2, . . . , β2) is more involved. Letb0 andb = (b1, . . . , bn−1) be
the coordinates ofxmax in the Helmert basis:

xmax = (α2, β2, . . . , β2) = b0w0 + b1w1 + · · ·+ bn−1wn−1.

Since the second throughnth coordiates ofxmax are the same, the admissible sequenceb(2)

satisfies:
2b2

1 = 6b2
2 = 12b2

3 = · · · = (n− 1)nb2
n−1.

Now letx ∈ S(m, v) with

x = a0w0 + a1w1 + · · ·+ an−1wn−1.

We must show that

(6.19)
i∑

k=1

a2
i ≤

i∑
k=1

b2
i ,

for i = 1, . . . , n− 1. We need the next lemma to finish the proof.

Lemma 6.3. Letr = (r1, . . . , rm) be an admissible sequence of nonnegative real numbers with∑
rk = t. Lets = (s1, . . . , sm) be the unique sequence of nonnegative reals with

2s1 = 6s2 = 12s3 = · · · = m(m + 1)sm

and
∑

sk = t. Then
i∑

k=1

rk ≤
i∑

k=1

sk,

for i = 1, . . . ,m.

Equation (6.19) follows from Lemma 6.3 withm = n− 1, r = a(2), s = b(2), andt = nv.

Proof. (Lemma 6.3) The condition on the sum and for admissibility can be expressed in matrix
form as follows:

∑
rk = t andr is admissible if and only if the firstm − 1 coordinates ofTr

are nonnegative and the last coordinate ist, where

T =



−t1 t2 0 · · · 0
0 −t2 t3 0 · · · 0
...

...
. .. ...

...
0 0 −ti ti+1 0

0 0
... . ..

...
0 0 · · · −tm−1 tm
1 1 · · · 1 1


andti = i(i + 1). We can express this condition symbolically as

Tr =

[
+m−1

t

]
,

where+m−1 is a vector inRm−1 with nonnegative components.

J. Inequal. Pure and Appl. Math., 7(3) Art. 79, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


VARIANCE-MAJORIZATION 19

From the definition ofs we have

Ts =

[
0m−1

t

]
,

where0m−1 is the zero vector inRm−1. SoTr ≥ Ts. (The inequalities are coordinate-wise.)
Now letP be them×m lower triangular matrix with ones on and below the main diagonal.

Then

Pr =


r1

r1 + r2
...

r1 + r2 + · · ·+ rm

 .

We must show thatPr ≤ Ps.
Let Q = P−1. ThenQ is the lower triangular matrix with diagonal entries equal to 1 and

subdiagonal entries equal to−1. All other entries are zero:

Q =


1 0 0 · · · 0

−1 1 0 · · · 0

0
... ...

...
0 −1 1 0
0 · · · 0 −1 1

 .

Next observe thatTQ is the tridiagonal matrix:

TQ =



−q2 t2 0 · · · 0 0
t2 −q3 t3 · · · 0 0

0 t3 −q4
. .. 0 0

...
.. . . ..

0 0 tm−1 −qm tm
0 0 0 0 1


=

[
U1 u

0m−1 1

]
,

whereti = i(i + 1), qi = ti−1 + ti = 2i2, U1 is the(m− 1)× (m− 1) submatrix ofTQ in the
upper left corner, andu = (0, . . . , 0, tm)T . Thus(TQ)−1 = PT−1 has the following form:

PT−1 =

[
U−1

1 w
0m−1 1

]
,

for somew ∈ Rm−1.
Next we show that−U1 is a symmetric M-matrix. LetD be then × n diagonal matrix with

diagonal entries1/2, 1/3, . . . , 1/(n + 1). Then

−DU1D =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

... ...
0 0 0 −1 2 −1
0 0 0 0 −1 2

 ,

which is positive definite. It follows that−U1 is also positive definite and hence an M-matrix.
Thus all of the entries ofU−1

1 are negative. (See [2], Theorem 2.5.3.)

Pr = PT−1Tr =

[
U−1

1 w
0m−1 1

] [
+m−1

t

]
≤ t

[
w
1

]
.
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But

Ps = PT−1Ts =

[
U−1

1 w
0m−1 1

] [
0m−1

t

]
= t

[
w
1

]
.

Thus,Pr ≤ Ps. �

6.7. Example 5.1. First we show thatz = (−18,−18,−12, 24, 24) is the least element in
S(0, 1944/5)∩ [−36, 24]5 with respect to the variance majorization order. We will construct the
coordinates ofz = b0w0 + b1w1 + b2w2 + b3w3 + b4w4 in the Helmert basis,w0, w1, w2, w3, w4.

The mean ofz is 0 sob0 = 0. To compute the other coordinates we first determine the index
j, which is defined in Equation (6.13):

5 · 242

[
1

j + 1
− 1

5

]
≤ 1944

5
≤ 5 · 242

[
1

j
− 1

5

]
,

soj = 2. Now from Equations (6.14) we have:

b1 = 0,

b2
2 = 1944− 52 · 242

[
1

3
− 1

5

]
= 24,

b2
3 = 52 · 242

[
1

3
− 1

5

]
= 1200,

b2
4 = 52 · 242

[
1

3
− 1

4

]
= 720.

Then

z =
√

24w2 +
√

1200w3 +
√

720w4

= 2(−1,−1, 2, 0, 0) + 10(−1,−1,−1, 3, 0) + 6(−1,−1,−1,−1, 4)

= (−18,−18,−12, 24, 24).

Next we show thatS(0, 1944/5) ∩ [−36, 24]5 has no greatest element. Suppose there is an

elementw ∈ S(0, 1944/5) such thatx
vm
≺ w for all x ∈ S(0, 1944/5) ∩ [−36, 24]5. We will

prove thatw 6∈ [−36, 24]5.
The vectorsx = (−36, 0, 0, 18, 18) andy = (−36, 0, 6, 6, 24) are both inS(0, 1944/5) ∩

[−36, 24]5. Sox, y
vm
≺ w. To expressx, y in terms of their coordinates in the Helmert basis for

R5, let H be the5× 5 matrix whose columns are the Helmert basis forR5:

H =



1√
5
− 1√

2
− 1√

6
− 1√

12
− 1√

20
1√
5

1√
2
− 1√

6
− 1√

12
− 1√

20
1√
5

0 2√
6
− 1√

12
− 1√

20
1√
5

0 0 3√
12

− 1√
20

1√
5

0 0 0 4√
20


.

Then the coordinate vectors ofx, y with respect to the Helmert basis are

a = xH = (0, 18
√

2, 6
√

6, 15
√

3, 9
√

5)

b = yH = (0, 18
√

2, 8
√

6, 8
√

3, 12
√

5).
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Thus

a(2) = (0, 648, 216, 675, 405)

b(2) = (0, 648, 384, 192, 720).

The partial sums ofa(2) andb(2) are

a(2) : (0, 648, 864, 1539, 1944)

b(2) : (0, 648, 1032, 1224, 1944)
.

The maximum of each of the five partial sums is

(0, 648, 1032, 1539, 1944)

and the sequence with these partial sums is

c(2) = (0, 648, 384, 507, 405).

Thus the least upper bound ofx, y is

cHT = (−37,−1, 5, 15, 18).

Now letw be a sequence inS(0, 1944/5) such thatv
vm
≺ w for all v ∈ S(0, 1944/5). Expressw

in terms of the Helmert basis,w =
∑

diwi, for nonnegativedi. Then
i∑

k=1

a2
k ≤

i∑
k=1

d2
k and

i∑
k=1

b2
k ≤

i∑
k=1

d2
k,

for i = 1, . . . , n− 1 so that
i∑

k=1

c2
k ≤

i∑
k=1

d2
k,

for i = 1, . . . , n − 1. Thus(−37,−1, 5, 15, 18)
vm
≺ w and by Lemma 4.7,w1 ≤ −37. So

w 6∈ [−36, 24]5.
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