Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 1, Article 6, 2006

SOME INEQUALITIES ASSOCIATED WITH A LINEAR OPERATOR DEFINED FOR A CLASS OF ANALYTIC FUNCTIONS

S. R. SWAMY

P. G. Department of Computer Science
R. V. College of Engineering
Bangalore 560 059, Karnataka, India
mailtoswamy@rediffmail.com

Received 07 March, 2005; accepted 25 July, 2005
Communicated by H. Silverman

AbSTRACT. In this paper, we give a sufficient condition on a linear operator $L_{p}(a, c) g(z)$ which can guarantee that for α a complex number with $\operatorname{Re}(\alpha)>0$,

$$
\operatorname{Re}\left\{(1-\alpha) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}+\alpha \frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\rho, \quad \rho<1
$$

in the unit disk E, implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\rho^{\prime}>\rho, \quad z \in E .
$$

Some interesting applications of this result are also given.

Key words and phrases: Analytic functions, Differential subordination, Ruscheweyh derivatives, Linear operator.
2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION

Let $A(p, n)$ denote the class functions f normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k} \quad(p, n \in \mathbb{N}=\{1,2,3, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z: z \in C,|z|<1\}$.
In particular, we set $A(p, 1)=A_{p}$ and $A(1,1)=A_{1}=A$.
The Hadamard product $(f * g)(z)$ of two functions $f(z)$ given by (1.1) and $g(z)$ given by

$$
g(z)=z^{p}+\sum_{k=p+n}^{\infty} b_{k} z^{k} \quad(p, n \in \mathbb{N}),
$$

[^0]is defined, as usual, by
$$
(f * g)(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) .
$$

The Ruscheweyh derivative of $f(z)$ of order $\delta+p-1$ is defined by

$$
\begin{equation*}
D^{\delta+p-1} f(z)=\frac{z^{p}}{(1-z)^{\delta+p}} * f(z) \quad(f \in A(p, n) ; \delta \in \mathbb{R} \backslash(-\infty,-p]) \tag{1.2}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
D^{\delta+p-1} f(z)=z^{p}+\sum_{k=p+n}^{\infty}\binom{\delta+k-1}{k-p} a_{k} z^{k} \tag{1.3}
\end{equation*}
$$

where $f(z) \in A(p, n)$ and $\delta \in \mathbb{R} \backslash(-\infty,-p]$. In particular, if $\delta=l \in \mathbb{N} \bigcup\{0\}$, we find from (1.2) or (1.3) that

$$
D^{l+p-1} f(z)=\frac{z^{p}}{(l+p-1)!} \frac{d^{l+k-1}}{d z^{l+p-1}}\left\{z^{l-1} f(z)\right\} .
$$

The author has proved the following result in [4].
Theorem A. Let α be a complex number satisfying $\operatorname{Re}(\alpha)>0$ and $\rho<1$. Let $\delta>-p, f, g \in$ A_{p} and

$$
\operatorname{Re}\left\{\alpha \frac{D^{\delta+p-1} g(z)}{D^{\delta+p} g(z)}\right\}>\gamma, \quad 0 \leq \gamma<\operatorname{Re}(\alpha), z \in E .
$$

Then

$$
\operatorname{Re}\left\{\frac{D^{\delta+p-1} f(z)}{D^{\delta+p-1} g(z)}\right\}>\frac{2 \rho(\delta+p)+\gamma}{2(\delta+p)+\gamma}, \quad z \in E,
$$

whenever

$$
\operatorname{Re}\left\{(1-\alpha) \frac{D^{\delta+p-1} f(z)}{D^{\delta+p-1} g(z)}+\alpha \frac{D^{\delta+p} f(z)}{D^{\delta+p} g(z)}\right\}>\rho, z \in E .
$$

The Pochhammer symbol $(\lambda)_{k}$ or the shifted factorial is given by $(\lambda)_{0}=1$ and $(\lambda)_{k}=$ $\lambda(\lambda+1)(\lambda+2) \cdots(\lambda+k-1), k \in \mathbb{N}$. In terms of $(\lambda)_{k}$, we now define the function $\phi_{p}(a, c ; z)$ by

$$
\phi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+p}, \quad z \in E,
$$

where $a \in \mathbb{R}, c \in \mathbb{R} \backslash z_{0}^{-} ; z_{0}^{-}=\{0,-1,-2, \ldots\}$.
Saitoh [3] introduced a linear operator $L_{P}(a, c)$, which is defined by

$$
\begin{equation*}
L_{p}(a, c) f(z)=\phi_{p}(a, c, ; z) * f(z), \quad z \in E, \tag{1.4}
\end{equation*}
$$

or, equivalently by

$$
\begin{equation*}
L_{p}(a, c) f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} a_{k+p} z^{k+p}, \quad z \in E \tag{1.5}
\end{equation*}
$$

where $f(z) \in A_{p}, a \in \mathbb{R}, c \in \mathbb{R} \backslash z_{0}^{-}$.
For $f(z) \in A(p, n)$ and $\delta \in \mathbb{R} \backslash(-\infty,-p]$, we obtain

$$
\begin{equation*}
L_{p}(\delta+p, 1) f(z)=D^{\delta+p-1} f(z) \tag{1.6}
\end{equation*}
$$

which can easily be verified by comparing the definitions (1.3) and (1.5).
The main object of this paper is to present an extension of Theorem Ato hold true for a linear operator $L_{P}(a, c)$ associated with the class $A(p, n)$.

The basic tool in proving our result is the following lemma.
Lemma 1.1 (cf. Miller and Mocanu [2, p. 35, Theorem $2.3 \mathrm{i}(\mathrm{i})]$). Let Ω be a set in the complex plane C. Suppose that the function $\Psi: C^{2} \times E \longrightarrow C$ satisfies the condition $\Psi\left(i x_{2}, y_{1} ; z\right) \notin \Omega$ for all $z \in E$ and for all real x_{2} and y_{1} such that

$$
\begin{equation*}
y_{1} \leq-\frac{1}{2} n\left(1+x_{2}^{2}\right) . \tag{1.7}
\end{equation*}
$$

If $p(z)=1+c_{n} z^{n}+\cdots$ is analytic in E and for $z \in E, \Psi\left(p(z), z p^{\prime}(z) ; z\right) \subset \Omega$, then $\operatorname{Re}(p(z))>0$ in E.

2. Main Results

Theorem 2.1. Let α be a complex number satisfying $\operatorname{Re}(\alpha)>0$ and $\rho<1$. Let $a>0, f, g \in$ $A(p, n)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\alpha \frac{L_{p}(a, c) g(z)}{L_{p}(a+1, c) g(z)}\right\}>\gamma, \quad 0 \leq \gamma<\operatorname{Re}(\alpha), \quad z \in E . \tag{2.1}
\end{equation*}
$$

Then

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\frac{2 a \rho+n \gamma}{2 a+n \gamma}, \quad z \in E
$$

whenever

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\alpha) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}+\alpha \frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\rho, \quad z \in E . \tag{2.2}
\end{equation*}
$$

Proof. Let $\tau=(2 a \rho+n \gamma) /(2 a+n \gamma)$ and define the function $p(z)$ by

$$
\begin{equation*}
p(z)=(1-\tau)^{-1}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}-\tau\right\} \tag{2.3}
\end{equation*}
$$

Then, clearly, $p(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots$ and is analytic in E. We set $u(z)=$ $\alpha L_{p}(a, c) g(z) / L_{p}(a+1, c) g(z)$ and observe from (2.1) that $\operatorname{Re}(u(z))>\gamma, z \in E$. Making use of the familiar identity

$$
z\left(L_{p}(a, c) f(z)\right)^{\prime}=a L_{p}(a+1, c) f(z)-(a-p) L_{p}(a, c) f(z)
$$

we find from (2.3) that

$$
\begin{equation*}
(1-\alpha) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}+\alpha \frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}=\tau+(1-\tau)\left[p(z)+\frac{u(z)}{a} z p^{\prime}(z)\right] . \tag{2.4}
\end{equation*}
$$

If we define $\Psi(x, y ; z)$ by

$$
\begin{equation*}
\Psi(x, y ; z)=\tau+(1-\tau)\left(x+\frac{u(z)}{a} y\right) \tag{2.5}
\end{equation*}
$$

then, we obtain from (2.2) and (2.4) that

$$
\left\{\Psi\left(p(z), z p^{\prime}(z) ; z\right):|z|<1\right\} \subset \Omega=\{w \in C: \operatorname{Re}(w)>\rho\}
$$

Now for all $z \in E$ and for all real x_{2} and y_{1} constrained by the inequality (1.7), we find from (2.5) that

$$
\begin{aligned}
\operatorname{Re}\left\{\Psi\left(i x_{2}, y_{1} ; z\right)\right\} & =\tau+\frac{(1-\tau)}{a} y_{1} \operatorname{Re}(u(z)) \\
& \leq \tau-\frac{(1-\tau) n \gamma}{2 a} \equiv \rho .
\end{aligned}
$$

Hence $\Psi\left(i x_{2}, y_{1} ; z\right) \notin \Omega$. Thus by Lemma 1.1. $\operatorname{Re}(p(z))>0$ and hence $\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\tau$ in E. This proves our theorem.
Remark 2.2. Theorem A is a special case of Theorem 2.1 obtained by taking $a=\delta+p$ and $c=n=1$, which reduces to Theorem 2.1 of [1], when $p=1$.

Corollary 2.3. Let α be a real number with $\alpha \geq 1$ and $\rho<1$. Let $a>0, f, g \in A(p, n)$ and

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) g(z)}{L_{p}(a+1, c) g(z)}\right\}>\gamma, \quad 0 \leq \gamma<1, z \in E
$$

Then

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\frac{\alpha(2 a \rho+n \gamma)-(1-\rho) n \gamma}{\alpha(2 a+n \gamma)}, \quad z \in E
$$

whenever

$$
\operatorname{Re}\left\{(1-\alpha) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}+\alpha \frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\rho, \quad z \in E
$$

Proof. Proof follows from Theorem 2.1(Since $\alpha \geq 1$).
In its special case when $\alpha=1$, Theorem 2.1 yields:
Corollary 2.4. Let $a>0, f, g \in A(p, n)$ and $\operatorname{Re}\left\{\frac{L_{p}(a, c) g(z)}{L_{p}(a+1, c) g(z)}\right\}>\gamma, 0 \leq \gamma<1$, then for $\rho<1$,

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\rho, \quad z \in E
$$

implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\frac{2 a \rho+n \gamma}{2 a+n \gamma}, \quad z \in E
$$

If we set

$$
v(z)=\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}-\left(\frac{1}{\alpha}-1\right) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}
$$

then for $a>0, \alpha>0$ and $\rho=0$, Theorem 2.1 reduces to

$$
\operatorname{Re}(v(z))>0, \quad z \in E
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\frac{n \alpha \gamma}{2 a+n \alpha \gamma}, \quad z \in E \tag{2.6}
\end{equation*}
$$

whenever $\operatorname{Re}\left(L_{p}(a, c) g(z) / L_{p}(a+1, c) g(z)\right)>\gamma, 0 \leq \gamma<1$. Let $\alpha \rightarrow \infty$.
Then (2.6) is equivalent to

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}-\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>0 \text { in } E
$$

implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>1 \text { in } E
$$

whenever $\operatorname{Re}\left(L_{p}(a, c) g(z) / L_{p}(a+1, c) g(z)\right)>\gamma, 0 \leq \gamma<1$.
In the following theorem we shall extend the above result, the proof of which is similar to that of Theorem 2.1

Theorem 2.5. Let $a>0, \rho<1, f, g \in A(p, n)$ and $\operatorname{Re}\left\{\frac{l_{p}(a, c) g(z)}{\left.L_{p}(a+1, c) g(z)\right)}\right\}>\gamma, 0 \leq \gamma<1$.
If

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}-\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>-\frac{n \gamma(1-\rho)}{2 a}, \quad z \in E,
$$

then

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right\}>\rho, \quad z \in E,
$$

and

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{L_{p}(a+1, c) g(z)}\right\}>\frac{\rho(2 a+n \gamma)-n \gamma}{2 a}, \quad z \in E .
$$

Using Theorem 2.1 and Theorem 2.5, we can generalize and improve several other interesting results available in the literature by taking $g(z)=z^{p}$. We illustrate a few in the following theorem.

Theorem 2.6. Let $a>0, \rho<1$ and $f(z) \in A(p, n)$. Then
(a) for α a complex number satisfying $\operatorname{Re}(\alpha)>0$, we have

$$
\operatorname{Re}\left\{(1-\alpha) \frac{L_{p}(a, c) f(z)}{z^{p}}+\alpha \frac{L_{p}(a+1, c) f(z)}{z^{p}}\right\}>\rho, \quad z \in E,
$$

implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a, c) f(z)}{z^{p}}\right\}>\frac{2 a \rho+n \operatorname{Re}(\alpha)}{2 a+n \operatorname{Re}(\alpha)}, \quad z \in E .
$$

(b) for α real and $\alpha \geq 1$, we have

$$
\operatorname{Re}\left\{(1-\alpha) \frac{L_{p}(a, c) f(z)}{z^{p}}+\alpha \frac{L_{p}(a+1, c) f(z)}{z^{p}}\right\}>\rho, \quad \text { in } E
$$

implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{z^{p}}\right\}>\frac{(2 a+n) \rho+n(\alpha-1)}{2 a+n \alpha} \quad \text { in } E
$$

(c) for $z \in E$,

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{z^{p}}-\frac{L_{p}(a, c) f(z)}{z^{p}}\right\}>-\frac{n(1-\rho)}{2 a}
$$

implies

$$
\operatorname{Re}\left\{\frac{L_{p}(a+1, c) f(z)}{z^{p}}\right\}>\frac{(2 a+n) \rho-n}{2 a} .
$$

Remark 2.7. By taking $a=\delta+p, c=n=1$ in Theorem 2.6 we obtain Theorem 1.6 of the author [4], which when $p=1$ reduces to Theorem 2.3 of Bhoosnurmath and Swamy [1].

In a manner similar to Theorem 2.1, we can easily prove the following, which when $r=1$ reduces to part (a) of Theorem 2.6.

Theorem 2.8. Let $a>0, r>0, \rho<1$ and $f(z) \in A(p, n)$.Then for α a complex number with $\operatorname{Re}(\alpha)>0$, we have

$$
\operatorname{Re}\left\{\left(\frac{L_{p}(a, c) f(z)}{z^{p}}\right)^{r}\right\}>\frac{2 a \rho r+n \operatorname{Re}(\alpha)}{2 a r+n \operatorname{Re}(\alpha)}, \quad z \in E,
$$

whenever

$$
\operatorname{Re}\left\{(1-\alpha)\left(\frac{L_{p}(a, c) f(z)}{z^{p}}\right)^{r}+\alpha\left(\frac{L_{p}(a+1, c) f(z)}{z^{p}}\right)\left(\frac{L_{p}(a, c) f(z)}{z^{p}}\right)^{r-1}\right\}>\rho,
$$

$z \in E$.

References

[1] S.S. BHOOSNARMATH AND S.R. SWAMY, Differential subordination and conformal mappings, J. Math. Res. Expo., 14(4) (1994), 493-498.
[2] S.S. MILLER and P.T. MOCANU, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Besel, 2000.
[3] H. SAITOH, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31-38.
[4] S.R. SWAMY, Some studies in univalent functions, Ph.D thesis, Karnatak University, Dharwad, India, 1992, unpublished.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 064-05

