

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 6, 2006

SOME INEQUALITIES ASSOCIATED WITH A LINEAR OPERATOR DEFINED FOR A CLASS OF ANALYTIC FUNCTIONS

S. R. SWAMY

P. G. DEPARTMENT OF COMPUTER SCIENCE **R. V. COLLEGE OF ENGINEERING** BANGALORE 560 059, KARNATAKA, INDIA mailtoswamy@rediffmail.com

Received 07 March, 2005; accepted 25 July, 2005 Communicated by H. Silverman

ABSTRACT. In this paper, we give a sufficient condition on a linear operator $L_p(a, c)g(z)$ which can guarantee that for α a complex number with $\operatorname{Re}(\alpha) > 0$,

$$\operatorname{Re}\left\{(1-\alpha)\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)} + \alpha\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \rho, \quad \rho < 1$$

in the unit disk E, implies

$$\operatorname{Re}\left\{\frac{L_{p}(a,c)f(z)}{L_{p}(a,c)g(z)}\right\} > \rho^{'} > \rho, \quad z \in E.$$

Some interesting applications of this result are also given.

Key words and phrases: Analytic functions, Differential subordination, Ruscheweyh derivatives, Linear operator.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION

Let A(p, n) denote the class functions f normalized by

(1.1)
$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k \qquad (p, n \in \mathbb{N} = \{1, 2, 3, ...\}),$$

which are analytic in the open unit disk $E = \{z : z \in C, |z| < 1\}.$

In particular, we set $A(p, 1) = A_p$ and $A(1, 1) = A_1 = A$. The Hadamard product (f * g)(z) of two functions f(z) given by (1.1) and g(z) given by

$$g(z) = z^p + \sum_{k=p+n}^{\infty} b_k z^k \qquad (p, n \in \mathbb{N}),$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

⁰⁶⁴⁻⁰⁵

is defined, as usual, by

$$(f * g)(z) = z^p + \sum_{k=p+n}^{\infty} a_k b_k z^k = (g * f)(z).$$

The Ruscheweyh derivative of f(z) of order $\delta + p - 1$ is defined by

(1.2)
$$D^{\delta+p-1}f(z) = \frac{z^p}{(1-z)^{\delta+p}} * f(z) \qquad (f \in A(p,n); \delta \in \mathbb{R} \setminus (-\infty, -p])$$

or, equivalently, by

(1.3)
$$D^{\delta+p-1}f(z) = z^p + \sum_{k=p+n}^{\infty} {\binom{\delta+k-1}{k-p}} a_k z^k,$$

where $f(z) \in A(p, n)$ and $\delta \in \mathbb{R} \setminus (-\infty, -p]$. In particular, if $\delta = l \in \mathbb{N} \bigcup \{0\}$, we find from (1.2) or (1.3) that

$$D^{l+p-1}f(z) = \frac{z^p}{(l+p-1)!} \frac{d^{l+k-1}}{dz^{l+p-1}} \left\{ z^{l-1}f(z) \right\}.$$

The author has proved the following result in [4].

Theorem A. Let α be a complex number satisfying $\operatorname{Re}(\alpha) > 0$ and $\rho < 1$. Let $\delta > -p, f, g \in A_p$ and

$$\operatorname{Re}\left\{\alpha \frac{D^{\delta+p-1}g(z)}{D^{\delta+p}g(z)}\right\} > \gamma, \quad 0 \le \gamma < \operatorname{Re}(\alpha), \ z \in E.$$

Then

$$\operatorname{Re}\left\{\frac{D^{\delta+p-1}f(z)}{D^{\delta+p-1}g(z)}\right\} > \frac{2\rho(\delta+p)+\gamma}{2(\delta+p)+\gamma}, \qquad z \in E,$$

whenever

$$\operatorname{Re}\left\{(1-\alpha)\frac{D^{\delta+p-1}f(z)}{D^{\delta+p-1}g(z)} + \alpha\frac{D^{\delta+p}f(z)}{D^{\delta+p}g(z)}\right\} > \rho, z \in E$$

The Pochhammer symbol $(\lambda)_k$ or the shifted factorial is given by $(\lambda)_0 = 1$ and $(\lambda)_k = \lambda(\lambda+1)(\lambda+2)\cdots(\lambda+k-1), k \in \mathbb{N}$. In terms of $(\lambda)_k$, we now define the function $\phi_p(a,c;z)$ by

$$\phi_p(a,c;z) = z^p + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} z^{k+p}, \qquad z \in E,$$

where $a \in \mathbb{R}, c \in \mathbb{R} \setminus z_0^-; z_0^- = \{0, -1, -2, ... \}.$

Saitoh [3] introduced a linear operator $L_P(a, c)$, which is defined by

(1.4)
$$L_p(a,c)f(z) = \phi_p(a,c,;z) * f(z), \qquad z \in E,$$

or, equivalently by

(1.5)
$$L_p(a,c)f(z) = z^p + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} a_{k+p} z^{k+p}, \qquad z \in E,$$

where $f(z) \in A_p, a \in \mathbb{R}, c \in \mathbb{R} \setminus z_0^-$.

For $f(z) \in A(p, n)$ and $\delta \in \mathbb{R} \setminus (-\infty, -p]$, we obtain

(1.6)
$$L_p(\delta + p, 1)f(z) = D^{\delta + p - 1}f(z),$$

which can easily be verified by comparing the definitions (1.3) and (1.5).

The main object of this paper is to present an extension of Theorem A to hold true for a linear operator $L_P(a, c)$ associated with the class A(p, n).

The basic tool in proving our result is the following lemma.

Lemma 1.1 (cf. Miller and Mocanu [2, p. 35, Theorem 2.3 i(i)]). Let Ω be a set in the complex plane C. Suppose that the function $\Psi : C^2 \times E \longrightarrow C$ satisfies the condition $\Psi(ix_2, y_1; z) \notin \Omega$ for all $z \in E$ and for all real x_2 and y_1 such that

(1.7)
$$y_1 \le -\frac{1}{2}n(1+x_2^2).$$

If $p(z) = 1 + c_n z^n + \cdots$ is analytic in E and for $z \in E$, $\Psi(p(z), zp'(z); z) \subset \Omega$, then $\operatorname{Re}(p(z)) > 0$ in E.

2. MAIN RESULTS

Theorem 2.1. Let α be a complex number satisfying $\operatorname{Re}(\alpha) > 0$ and $\rho < 1$. Let $a > 0, f, g \in A(p, n)$ and

(2.1)
$$\operatorname{Re}\left\{\alpha \frac{L_p(a,c)g(z)}{L_p(a+1,c)g(z)}\right\} > \gamma, \qquad 0 \le \gamma < \operatorname{Re}(\alpha), \quad z \in E.$$

Then

$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > \frac{2a\rho + n\gamma}{2a + n\gamma}, \quad z \in E,$$

whenever

(2.2)
$$\operatorname{Re}\left\{(1-\alpha)\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)} + \alpha\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \rho, \quad z \in E.$$

Proof. Let $\tau = (2a\rho + n\gamma)/(2a + n\gamma)$ and define the function p(z) by

(2.3)
$$p(z) = (1-\tau)^{-1} \left\{ \frac{L_p(a,c)f(z)}{L_p(a,c)g(z)} - \tau \right\}.$$

Then, clearly, $p(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + \cdots$ and is analytic in E. We set $u(z) = \alpha L_p(a,c)g(z)/L_p(a+1,c)g(z)$ and observe from (2.1) that $\operatorname{Re}(u(z)) > \gamma$, $z \in E$. Making use of the familiar identity

$$z(L_p(a,c)f(z))' = aL_p(a+1,c)f(z) - (a-p)L_p(a,c)f(z),$$

we find from (2.3) that

(2.4)
$$(1-\alpha)\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)} + \alpha\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)} = \tau + (1-\tau)\left[p(z) + \frac{u(z)}{a}zp'(z)\right].$$

If we define $\Psi(x, y; z)$ by

(2.5)
$$\Psi(x,y;z) = \tau + (1-\tau)\left(x + \frac{u(z)}{a}y\right),$$

then, we obtain from (2.2) and (2.4) that

$$\{\Psi(p(z), zp'(z); z) : |z| < 1\} \subset \Omega = \{w \in C : \operatorname{Re}(w) > \rho\}.$$

Now for all $z \in E$ and for all real x_2 and y_1 constrained by the inequality (1.7), we find from (2.5) that

$$\operatorname{Re}\{\Psi(ix_2, y_1; z)\} = \tau + \frac{(1-\tau)}{a} y_1 \operatorname{Re}(u(z))$$
$$\leq \tau - \frac{(1-\tau)n\gamma}{2a} \equiv \rho.$$

Hence $\Psi(ix_2, y_1; z) \notin \Omega$. Thus by Lemma 1.1, $\operatorname{Re}(p(z)) > 0$ and hence $\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > \tau$ in E. This proves our theorem.

Remark 2.2. Theorem A is a special case of Theorem 2.1 obtained by taking $a = \delta + p$ and c = n = 1, which reduces to Theorem 2.1 of [1], when p = 1.

Corollary 2.3. Let α be a real number with $\alpha \geq 1$ and $\rho < 1$. Let $a > 0, f, g \in A(p, n)$ and

$$\operatorname{Re}\left\{\frac{L_p(a,c)g(z)}{L_p(a+1,c)g(z)}\right\} > \gamma, \quad 0 \le \gamma < 1, \ z \in E.$$

Then

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \frac{\alpha(2a\rho+n\gamma)-(1-\rho)n\gamma}{\alpha(2a+n\gamma)}, \quad z \in E$$

whenever

$$\operatorname{Re}\left\{(1-\alpha)\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)} + \alpha\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \rho, \quad z \in E.$$

Proof. Proof follows from Theorem 2.1 (Since $\alpha \ge 1$).

In its special case when $\alpha = 1$, Theorem 2.1 yields:

Corollary 2.4. Let $a > 0, f, g \in A(p, n)$ and $\operatorname{Re}\left\{\frac{L_p(a,c)g(z)}{L_p(a+1,c)g(z)}\right\} > \gamma, 0 \le \gamma < 1$, then for $\rho < 1$,

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \rho, \quad z \in E,$$

implies

$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > \frac{2a\rho + n\gamma}{2a + n\gamma}, \quad z \in E.$$

If we set

$$v(z) = \frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)} - \left(\frac{1}{\alpha} - 1\right)\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)},$$

then for $a > 0, \alpha > 0$ and $\rho = 0$, Theorem 2.1 reduces to

 $\operatorname{Re}(v(z)) > 0, \quad z \in E$

implies

(2.6)
$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > \frac{n\alpha\gamma}{2a+n\alpha\gamma}, \qquad z \in E,$$

whenever $\operatorname{Re}(L_p(a,c)g(z)/L_p(a+1,c)g(z)) > \gamma, 0 \le \gamma < 1$. Let $\alpha \to \infty$. Then (2.6) is equivalent to

$$\operatorname{Re}\left\{\frac{L_{p}(a+1,c)f(z)}{L_{p}(a+1,c)g(z)} - \frac{L_{p}(a,c)f(z)}{L_{p}(a,c)g(z)}\right\} > 0 \text{ in } E$$

implies

$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > 1 \text{ in } E,$$

whenever $\operatorname{Re}(L_p(a,c)g(z)/L_p(a+1,c)g(z)) > \gamma, 0 \le \gamma < 1.$

In the following theorem we shall extend the above result, the proof of which is similar to that of Theorem 2.1.

Theorem 2.5. Let $a > 0, \rho < 1, f, g \in A(p, n)$ and $\operatorname{Re}\left\{\frac{l_p(a,c)g(z)}{L_p(a+1,c)g(z))}\right\} > \gamma, 0 \le \gamma < 1$.

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)} - \frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > -\frac{n\gamma(1-\rho)}{2a}, \qquad z \in E,$$

then

$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{L_p(a,c)g(z)}\right\} > \rho, \qquad z \in E,$$

and

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{L_p(a+1,c)g(z)}\right\} > \frac{\rho(2a+n\gamma)-n\gamma}{2a}, \qquad z \in E$$

Using Theorem 2.1 and Theorem 2.5, we can generalize and improve several other interesting results available in the literature by taking $g(z) = z^p$. We illustrate a few in the following theorem.

Theorem 2.6. *Let* a > 0, $\rho < 1$ *and* $f(z) \in A(p, n)$ *. Then*

(a) for α a complex number satisfying $\operatorname{Re}(\alpha) > 0$, we have

$$\operatorname{Re}\left\{(1-\alpha)\frac{L_p(a,c)f(z)}{z^p} + \alpha\frac{L_p(a+1,c)f(z)}{z^p}\right\} > \rho, \qquad z \in E,$$

implies

$$\operatorname{Re}\left\{\frac{L_p(a,c)f(z)}{z^p}\right\} > \frac{2a\rho + n\operatorname{Re}(\alpha)}{2a + n\operatorname{Re}(\alpha)}, \qquad z \in E.$$

(b) for α real and $\alpha \geq 1$, we have

$$\operatorname{Re}\left\{(1-\alpha)\frac{L_p(a,c)f(z)}{z^p} + \alpha\frac{L_p(a+1,c)f(z)}{z^p}\right\} > \rho, \quad \text{in } E$$

implies

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{z^p}\right\} > \frac{(2a+n)\rho + n(\alpha-1)}{2a+n\alpha} \quad in \ E$$

(c) for $z \in E$,

$$\operatorname{Re}\left\{\frac{L_{p}(a+1,c)f(z)}{z^{p}} - \frac{L_{p}(a,c)f(z)}{z^{p}}\right\} > -\frac{n(1-\rho)}{2a}$$

implies

$$\operatorname{Re}\left\{\frac{L_p(a+1,c)f(z)}{z^p}\right\} > \frac{(2a+n)\rho - n}{2a}$$

Remark 2.7. By taking $a = \delta + p, c = n = 1$ in Theorem 2.6 we obtain Theorem 1.6 of the author [4], which when p = 1 reduces to Theorem 2.3 of Bhoosnurmath and Swamy [1].

In a manner similar to Theorem 2.1, we can easily prove the following, which when r = 1 reduces to part (a) of Theorem 2.6.

Theorem 2.8. Let a > 0, r > 0, $\rho < 1$ and $f(z) \in A(p, n)$. Then for α a complex number with $\operatorname{Re}(\alpha) > 0$, we have

$$\operatorname{Re}\left\{\left(\frac{L_p(a,c)f(z)}{z^p}\right)^r\right\} > \frac{2a\rho r + n\operatorname{Re}(\alpha)}{2ar + n\operatorname{Re}(\alpha)}, \qquad z \in E,$$

whenever

$$\operatorname{Re}\left\{ (1-\alpha) \left(\frac{L_p(a,c)f(z)}{z^p} \right)^r + \alpha \left(\frac{L_p(a+1,c)f(z)}{z^p} \right) \left(\frac{L_p(a,c)f(z)}{z^p} \right)^{r-1} \right\} > \rho,$$

$$z \in E.$$

REFERENCES

- [1] S.S. BHOOSNARMATH AND S.R. SWAMY, Differential subordination and conformal mappings, *J. Math. Res. Expo.*, **14**(4) (1994), 493–498.
- [2] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations: Theory and Applications*, Series on Monographs and Text Books in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Besel, 2000.
- [3] H. SAITOH, A linear operator and its applications of first order differential subordinations, *Math. Japon.*, **44** (1996), 31–38.
- [4] S.R. SWAMY, Some studies in univalent functions, Ph.D thesis, Karnatak University, Dharwad, India, 1992, unpublished.