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ABSTRACT. For some family of entire functions the estimates of growth on infinity are estab-
lished. In case when a function from this family coincides with exponent the inequality obtained
is precise.
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The object of our paper is to determine the order of growth to infinity of some family of entire
functions. For an arbitraryα > 0 we introduce the following function

(1) Φ(z, α) =
∞∑

k=0

zk

(k!)α
, α > 0, z ∈ C.

Note that
Φ(z, 1) = ez.

It is easy to show that ifα > 0 then the functionΦ(z, α) is defined by series (1) for allz in
the complex planeC.

Proposition 1. The radius of convergence of the series (1) is equal to infinity.

Proof. According to the Cauchy formula (see, e.g., [2, 2.6]) the radius of convergence of the
series

∞∑
n=0

cnz
n
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2 SHAVKAT A. A LIMOV AND ONUR ALP ILHAN

is equal to

R =
1

lim
n→∞

n
√
|cn|

.

In our casecn = (n!)−α. We may use the Stirling formula (see [2, 12.33]) in the following form

(2) n! =
√

2πn
(n

e

)n
(

1 +
θn

11n

)
, 0 < θn < 1, n = 1, 2, . . .

As a result we get

1
n
√
|cn|

= (n!)α/n

=

[√
2πn

(n

e

)n
(

1 +
θn

11n

)]α/n

=
(n

e

)α

(2π)α/2neα(ln n)/2n

(
1 +

θn

11n

)α/n

=
(n

e

)α

(1 + εn) →∞, n →∞,

whereεn = o(1), n →∞. �

Corollary 2. The functionΦ(z, α), α > 0, is entire function ofz.

The functionΦ(z, α) with α = 1
q

arises in estimates of the solutions of some Volterra type
integral equations with kernel fromLp, where 1

p
+ 1

q
= 1. We mention also the equation

with convolution on the circle which these functions satisfy. For two arbitrary2π-periodical
functionsf(θ) andg(θ) introduce their convolution

(f ∗ g)(θ) =
1

2π

∫ 2π

0

f(θ − ϕ)g(ϕ)dϕ.

If we denote

(3) fα(θ) = Φ(eiθ, α),

then it is easy to check that this function satisfies the following equation

(4) (fα ∗ fβ)(θ) = fα+β(θ), f1(θ) = exp eiθ.

It easy to show that every solution of equation (4) has the form (3).
It is well known that forΦ(z, α) the following formula

ln Φ(x, α) = αx1/α + o
(
x1/α

)
, x → +∞

is valid (see, e.g. [1, 4.1, Th. 68]). However, in some applications, an explicit estimate for the
error of the above asymptotic approximation is desirable.

We are going to prove the following inequality.

Theorem 3. Let0 < α ≤ 1. Then for allx ≥ 1 the inequality

(5) ln Φ(x, α) ≤ αx1/α +
1− α

α
ln x + ln(12α−2)

is valid.
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Remark 4. The order in estimate (5) is precise, at least whenα = 1/q, whereq is natural,
because in this case for allx ≥ 1 the inequality

(6) ln Φ(x, α) ≥ αx1/α

is true. As it easy to verify, forα = 1 the inequality (6) becomes equality.

At first we prove the inequality (5) forα = 1
q
, whereq is natural, and after that we use the

interpolation technique to prove it for allα, 0 < α ≤ 1.

Lemma 5. Let q be a natural number andQ(x) be the following polynomial

(7) Q(x) =

q−1∑
k=0

(k + 1)
xk

[(k + q)!]1/q
.

Then there exists a constantc1 ≤ 2 so that

(8)
∫ ∞

0

e−
1
q
tqQ(t)dt ≤ c1q

2.

Proof. It follows from (7) that the inequality

(9) Q(t) =

q∑
k=1

k
tk−1

[(k + q − 1)!]1/q
≤

q∑
k=1

ktk−1

is valid for all t > 0. Then

(10)
∫ 1

0

e−
1
q
tqQ(t)dt ≤

∫ 1

0

e−
1
q
tq

q∑
k=1

ktk−1dt ≤
q∑

k=1

k

∫ 1

0

tk−1dt =

q∑
k=1

1 = q.

Further, fort ≥ 1 it follows from (9) that

Q(t) ≤
q∑

k=1

ktk−1 ≤ tq−1

q∑
k=1

k = tq−1 q(q + 1)

2
.

Using this estimate we get

(11)
∫ ∞

1

e−
1
q
tqQ(t)dt ≤ q(q + 1)

2

∫ ∞

1

e−
1
q
tqtq−1dt =

q(q + 1)

2
e−1/q <

q(q + 1)

2
.

Taking into consideration (10) and (11) we may write∫ ∞

0

e−
1
q
tqQ(t)dt =

∫ 1

0

e−
1
q
tqQ(t)dt +

∫ ∞

1

e−
1
q
tqQ(t)dt ≤ q +

q(q + 1)

2
≤ 2q2,

and this inequality proves Lemma 5. �

We consider the auxiliary function

(12) Fq(x) =
∞∑

k=q

xk−q+1

(k!)1/q
, x ≥ 0.

Lemma 6. Let q ∈ N. Then with some constantc1 ≤ 2 the following inequality

(13) Fq(x) ≤ c1q
2e

1
q
xq

, x ≥ 0,

is valid.
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Proof. Consider the derivative of the function (12), which equals to

(14) F ′(x) =
∞∑

k=q

(k − q + 1)
xk−q

(k!)1/q
=

∞∑
k=0

(k + 1)
xk

[(k + q)!]1/q
.

By introducing the following polynomial

(15) Q(x) =

q−1∑
k=0

(k + 1)
xk

[(k + q)!]1/q
,

and comparing (14) and (15) we get

F ′(x)−Q(x) =
∞∑

k=q

(k + 1)
xk

[(k + q)!]1/q
.

Further we use the following equality
∞∑

k=q

(k + 1)
xk

[(k + q)!]1/q
= xq−1

∞∑
k=q

(k + 1)
xk−q+1

[(k + q)!]1/q
(16)

= xq−1

∞∑
k=q

Bk(q)
xk−q+1

(k!)1/q
,

where

Bk(q) =
k + 1

[(k + 1)(k + 2) · · · (k + q)]1/q
.

Hence, according to definition (12) and equality (16),

(17) F ′(x)−Q(x) = xq−1

∞∑
k=q

Bk(q)
xk−q+1

(k!)1/q
.

It is clear, thatBk(q) ≤ 1. Then it follows from equality (17) that

(18) F ′(x)−Q(x) ≤ xq−1F (x), x > 0.

In as much as

e
1
q
xq

[
e−

1
q
xq

F (x)
]′

= F ′(x)− xq−1F (x),

we get from the inequality (18) that[
e−

1
q
xq

F (x)
]′
≤ e−

1
q
xq

Q(x), x > 0.

By integrating this inequality and taking into consideration thatF (0) = 0 we get

e−
1
q
xq

F (x) ≤
∫ x

0

e−
1
q
tqQ(t)dt, x > 0.

According to Lemma 5 ∫ x

0

e−
1
q
tqQ(t)dt ≤ c1q

2, x > 0,

and consequently

F (x) ≤ c1q
2e

1
q
xq

, x > 0.

�
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Lemma 7. Let q be a natural number andP (x) be the following polynomial

(19) Pq(x) =

q−1∑
k=0

xk

(k!)1/q
.

Then the estimate

(20) Pq(x)e−
1
q
xq

≤ q, x > 0,

is valid.

Proof. It is clear that for anyp > 0 the maximum of the function

fp(x) = xpe−x, x ≥ 0,

equals to
max fp(x) = fp(p) = ppe−p.

Then

max
x≥0

xke−
1
q
xq

= qk/qmax
y≥0

yk/qe−y = qk/q

(
k

q

)k/q

e−k/q = kk/qe−k/q.

Hence,

(21)
xk

(k!)1/q
e−

1
q
xq

≤ kk/qe−k/q

(k!)1/q
.

Taking into account the Stirling formula (2)

(k!)1/q = (2πk)1/2qkk/qe−k/q

[
1 +

θk

11k

]1/q

≥ (2πk)1/2qkk/qe−k/q,

and using estimate (21) we get

xk

(k!)1/q
e−

1
q
xq

≤ kk/qe−k/q

(2πk)1/2qkk/qe−k/q
= (2πk)−1/2q ≤ 1.

Then according to definition (19)

Pq(x)e−
1
q
xq

=

q−1∑
k=0

xk

(k!)1/q
e−

1
q
xq

≤
q−1∑
k=0

1 = q.

�

Lemma 8. Letα = 1
q

andq ∈ N. Then with some constantc2 < 3 the following inequality

(22) Φ

(
x,

1

q

)
≤ c2q

2xq−1e
1
q
xq

, x ≥ 1,

is valid.

Proof. Obviously,

Φ

(
x,

1

q

)
=

∞∑
k=0

xk

(k!)1/q
=

q−1∑
k=0

xk

(k!)1/q
+ xq−1

∞∑
k=q

xk−q+1

(k!)1/q
, x ≥ 1.

Hence, taking into account definitions (12) and (19), we may write

(23) Φ

(
x,

1

q

)
= P (x) + xq−1Fq(x).
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We may estimate the function in the right hand side of (23) by inequalities (20) and (13):

Φ

(
x,

1

q

)
≤ qe

1
q
xq

+ xq−1c1q
2e

1
q
xq

≤ (1 + c1)q
2xq−1e

1
q
xq

, x ≥ 1,

wherec1 ≤ 2, according to Lemma 6. �

We proved estimate (22) for integersq ≥ 1 only. Using this estimate we may prove it for an
arbitraryq ≥ 1 by complex interpolation. For this purpose we introduce the following function

(24) f(ζ) = f(ζ, b) = bζ−1e−bζ

∞∑
k=0

bkζ

(k!)ζ
,

whereζ = ξ + iη, ξ > 0,−∞ < η < ∞, b ≥ 1.

Lemma 9. Let0 < ξ ≤ 1. Then with some constantc0 ≤ 12 the inequality

(25) |f(ξ + iη)| ≤ c0

ξ2
, 0 < ξ ≤ 1, −∞ < η < ∞, b > 0,

is valid.

Proof. According to definition (24),

f(ξ + iη) = bξ+iη−1e−b(ξ+iη)

∞∑
k=0

bk(ξ+iη)

(k!)(ξ+iη)
,

and hence

|f(ξ + iη)| ≤ bξ−1e−bξ

∞∑
k=0

bkξ

(k!)ξ
= bξ−1e−bξΦ(bξ, ξ),

where the functionΦ is defined by equality (1).
Puttingξ = 1/q we get

(26)

∣∣∣∣f (
1

q
+ iη

)∣∣∣∣ ≤ b(1−q)/qe−b/qΦ

(
b1/q,

1

q

)
.

According to Lemma 8 for all integersq ≥ 1 the following inequality

(27) Φ

(
b1/q,

1

q

)
≤ c2q

2b(q−1)/qeb/q, b ≥ 1,

is fulfilled. Hence, ifq ∈ N then it follows from (26) and (27) that

(28)

∣∣∣∣f (
1

q
+ iη

)∣∣∣∣ ≤ c2q
2, −∞ < η < ∞,

wherec2 ≤ 3.
Let us suppose now that1/(q + 1) < ξ < 1/q. We may use the Phragmen-Lindelöf theorem

(see [3, XII.1.1]) and applying it to (28) we get for somet, 0 < t < 1, the following estimate

(29) |f(ξ + iη)| ≤ c2(1 + q)2(1−t)q2t, ξ =
1− t

q + 1
+

t

q
, −∞ < η < ∞.

In as much as1 + q ≤ 2q andq ≤ 1/ξ we have

(1 + q)2(1−t)q2t ≤ 22(1−t)q2 ≤ 4/ξ2.

In that case it follows from the inequality (29) that

|f(ξ + iη)| ≤ 4c2

ξ2
.

This inequality coincides with required inequality (25). �
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Proof of Theorem 3.Follows immediately from Lemma 9 and from definitions (1) and (24):

Φ(x, α) =
∞∑

k=0

xk

(k!)α
= x(1−α)/αeαx1/α

f(α, x1/α) ≤ 4c0α
−2x(1−α)/αeαx1/α

,

wherec0 < 3. Obviously, this inequality is equivalent to (5). �

In closing we prove the inequality (6) (see Remark 4).

Proposition 10. Let q ∈ N. Then

Φ

(
x,

1

q

)
≥ e

1
q
xq

, x ≥ 0.

Proof. Denote

g(x) = Φ

(
x,

1

q

)
.

Obviously,

g′(x) =
∞∑

k=1

k
xk−1

(k!)1/q
≥

∞∑
k=q

k
xk−1

(k!)1/q
≥

∞∑
k=q

xk−1

[(k − q)!]1/q

= xq−1

∞∑
k=0

xk

(k!)1/q
= xq−1g(x).

Hence,

(30) g′(x)− xq−1g(x) ≥ 0, x > 0.

In as much as
e

1
q
xq

[e−
1
q
xq

g(x)]′ = g′(x)− xq−1g(x),

we get from the inequality (30) that[
e−

1
q
xq

g(x)
]′
≥ 0, x > 0.

Then sinceg(0) = 1 we have
e−

1
q
xq

g(x) ≥ 1.

Hence,
g(x) ≥ e

1
q
xq

, x > 0.

�
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