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Abstract

We prove a Hölder inequality for the Lp-spaces of analytic functions with respect
to a complex Gaussian measure.
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1. Introduction
In this paper we will prove the following inequality: for any two entire analytic
functionsf , g : Cn → C and any positive numbersp, q, r, ands, such that
1
p

+ 1
q

= 1
r
, we have:

(1.1)
1

πn

∫
Cn

|f(
√
rz)g(

√
rz)|se−|z|2dz

≤
[

1

πn

∫
Cn

|f(
√
pz)|se−|z|2dz

] [
1

πn

∫
Cn

|g(√qz)|se−|z|2dz
]
,

provided that the integrals from the right side are both finite. This inequality is
motivated by the following facts from White Noise Analysis. TheS-transform
is known to be a unitary isomorphism from the space of square integrable func-
tions defined on a white noise space onto the spaceHL2(E), whereE is a sepa-
rable complex Hilbert space (see [4, p. 39] for the definition of theS-transform,
and page 337 for the stated isomorphism). The space of generalized functions
in White Noise Analysis is the union of an increasing family of weightedL2-
functions. TheS-transform maps such a weightedL2-space ontoΓ(A)HL2(E),
whereA is an operator onE, andΓ(A)ϕ(u) := ϕ(Au). In White Noise Analy-
sis there is a product between two generalized functions, called the Wick prod-
uct. It is defined in such a way that theS-transform of a Wick product of two
generalized functions is the product of theS-transforms of the two generalized
functions. A natural question is the following: knowing the smallest weighted
space in which a generalized functionϕ lives and the smallest weighted space in
which another generalized functionψ lives, what is the smallest weighted space
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in which the Wick product ofϕ andψ lives? Applying theS-transform isomor-
phism, the question is reduced to the following question: Iff ∈ Γ(A)HL2(Cn)
andg ∈ Γ(B)HL2(Cn), then what are the operatorsC having the minimal op-
eratorial norm such thatfg ∈ Γ(C)HL2(Cn)? This inequality, fors = 2 only,
was proven in [5] and called “a Young inequality for White Noise Analysis”.
Although the inequality (1.1), for the spaceHL2(Cn) only, gives a satisfactory
answer to this question, from a mathematical point of view it is important and
interesting to extend this sharp inequality to all the otherHLp(Cn) spaces. This
is the purpose of this short paper and we do not know what applications it may
have.
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2. A Complex Hölder Inequality
For anyp ≥ 1, letHLp(Cn, µ) denote the space of all holomorphic functions
f : Cn → C such that:

‖f‖p
p :=

∫
Cn

|f(z)|pdµ(z) <∞,

wheredµ(z) = (1/πn)e−|z|
2
dz. Here, if z = x + iy, thendz = dxdy is the

Lebesgue measure on the spaceCn identified withR2n.
For any functionf : Cn → C and complex numbera ∈ C, we define a new
functionΓ(a)f : Cn → C, byΓ(a)f(z) := f(az). Observe that iff is holomor-
phic, thenΓ(a)f is also holomorphic. The following hypercontractivity result
gives us a relation between the spacesHLp(Cn, µ), when1 ≤ p <∞.

Theorem 2.1. For any 1 ≤ p < q < ∞ and any holomorphic functionf :
Cn → C, the following inequality holds provided that the right hand side is
finite:

(2.1)

∥∥∥∥Γ

(
1
√
q

)
f

∥∥∥∥
q

≤
∥∥∥∥Γ

(
1
√
p

)
f

∥∥∥∥
p

.

This theorem was first proven by Janson in [2]. Later Carlen in [1] and Zhou
in [6] simultaneously proved the cases of equality. Using this theorem we will
prove the following:

Theorem 2.2.Letp, q, andr be strictly positive numbers (not necessarily larger
than or equal to 1) such that

1

p
+

1

q
=

1

r
.
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Let s ≥ 1. If f andg are holomorphic functions such thatΓ(
√
p)f ∈ HLs(Cn,

µ) andΓ(
√
q)g ∈ HLs(Cn, µ), thenΓ(

√
r)(fg) ∈ HLs(Cn, µ) and

(2.2)
∥∥Γ(

√
r)(fg)

∥∥
s
≤ ‖Γ(

√
p)f‖s · ‖Γ(

√
q)g‖s .

The equality holds if and only if one of the functionsf andg is identically equal
to zero, or

f(z) = c1e
1
p

∑n
j=1 ajzj

g(z) = c2e
1
q

∑n
j=1 ajzj ,

wherec1, c2, a1, a2, . . . , an are arbitrary complex numbers.

Proof. Using Hölder’s inequality
(

r
p

+ r
q

= 1
)

we obtain:∥∥Γ(
√
r)(fg)

∥∥
s

=

[∫
Cn

|f(
√
rz)|s|g(

√
rz)|sdµ(z)

] 1
s

≤

{[∫
Cn

|f(
√
rz)|s·

p
r dµ(z)

] r
p
[∫

Cn

|g(
√
rz)|s·

q
r dµ(z)

] r
q

} 1
s

=

[∫
Cn

∣∣∣∣f ( √
r

√
sp

(
√
spz)

)∣∣∣∣
sp
r

dµ(z)

] r
sp

[∫
Cn

∣∣∣∣g( √
r

√
sq

(
√
sqz)

)∣∣∣∣
sq
r

dµ(z)

] r
sq

.

Observe thatsp
r
> s ≥ 1 and sq

r
> s ≥ 1 and thus applying the “complex

hypercontractivity” inequality (2.1) (which says that for any holomorphic func-

tionsh and any1 ≤ u < v < ∞, we have
∥∥∥Γ

(
1√
v

)
f
∥∥∥

v
≤

∥∥∥Γ
(

1√
u

)
f
∥∥∥

u
) to
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the holomorphic functions:f(
√
spz) with u = s andv = sp

r
, andg(

√
sqz) with

u = s andv = sq
r

respectively, we obtain:∥∥Γ(
√
r)(fg)

∥∥
s

≤

[∫
Cn

∣∣∣∣f ( √
r

√
sp

(
√
spz)

)∣∣∣∣
sp
r

dµ(z)

] r
sp

[∫
Cn

∣∣∣∣g( √
r

√
sq

(
√
sqz)

)∣∣∣∣
sq
r

dµ(z)

] r
sq

≤
[∫

Cn

∣∣∣∣f (
1√
s
(
√
spz)

)∣∣∣∣s dµ(z)

] 1
s
[∫

Cn

∣∣∣∣g(
1√
s
(
√
sqz)

)∣∣∣∣s dµ(z)

] 1
s

=

[∫
Cn

|f(
√
pz)|sdµ(z)

] 1
s
[∫

Cn

|g(√qz)|sdµ(z)

] 1
s

= ‖Γ(
√
p)(f)‖s · ‖Γ(

√
q)(g)‖s .

It is clear that if one of the functionsf or g is identically equal to zero, then our
inequality becomes an equality. Let us assume that both functionsf andg are
different from the zero functions.
From [1] and [6], we know that, in order to have equality in the “complex hy-
percontractivity” inequality,f andg must be functions of the form:

f(z) = c1e
∑n

j=1 αjzj and g(z) = c2e
∑n

j=1 βjzj ,

wherec1, c2, α1, α2, . . . , αn, β1, β2, . . . , βn are arbitrary complex numbers. To
have equality in Hölder’s inequality, there must be a constantk such that, for all
z ∈ Cn, |f(z)|p/r = k|g(z)|q/r. Sincef andg are holomorphic we obtain the
condition that, for all1 ≤ j ≤ n, pαj

r
=

qβj

r
. Denoting byaj the common value
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of pαj andqβj, we obtain that the equality holds in our inequality only for a
pair of functions of the form:

f(z) = c1e
1
p

∑n
j=1 ajzj

g(z) = c2e
1
q

∑n
j=1 ajzj ,

wherec1, c2, a1, a2, · · · , an are arbitrary complex numbers.

We are thankful to Professor Svante Janson for adding the following:

Remark 2.1. The inequality (2.2) holds even for0 < s < 1.

This is true since in [2] the “complex hypercontractivity” inequality (2.1) is
proved not only for1 ≤ s <∞, but also for any0 < s < 1.
The equality, for the case0 < s < 1, holds only for functions of the same form
as above. This is true since the equality case in inequality (2.1) occurs only for
exponential functions, even in the case0 < s < 1. This was proven in [1].
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