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ABSTRACT. LetA(p) be the class of functionsf : f(z) = zp +
∑∞

j=1 ajz
p+j analytic in the

open unit discE. Let, for any integern > −p, fn+p−1(z) = zp

(1−z)n+p . We definef (−1)
n+p−1(z)

by using convolution? asfn+p−1(z) ? f
(−1)
n+p−1(z) = zP

(1−z)n+p . A function p, analytic inE

with p(0) = 1, is in the classPk(ρ) if
∫ 2π

0

∣∣∣Rep(z)−ρ
p−ρ

∣∣∣ dθ ≤ kπ, wherez = reiθ, k ≥ 2 and

0 ≤ ρ < p. We use the classPk(ρ) to introduce a new class of multivalent analytic functions and
define an integral operator In+p−1(f) = f

(−1)
n+p−1?f(z) for f(z) belonging to this class. We

derive some interesting properties of this generalized integral operator which include inclusion
results and radius problems.

Key words and phrases:Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex func-
tions.
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1. I NTRODUCTION

LetA(p) denote the class of functionsf given by

f(z) = zp +
∞∑

j=1

ajz
p+j, p ∈ N = {1, 2, . . .}

which are analytic in the unit diskE = {z : |z| < 1}. The Hadamard product or convolution
(f ? g) of two functions with

f(z) = zp +
∞∑

j=1

aj,1z
p+j and g(z) = zp +

∞∑
j=1

zp+j
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is given by

(f ? g)(z) = zp +
∞∑

j=1

aj,1aj,2z
p+j.

The integral operatorIn+p−1 : A(p) −→ A(p) is defined as follows, see [2].
For any integern greater than−p, let fn+p−1(z) = zp

(1−z)n+p and letf (−1)
n+p−1(z) be defined such

that

(1.1) fn+p−1(z) ? f
(−1)
n+p−1(z) =

zp

(1− z)p+1
.

Then

(1.2) In+p−1f(z) = f
(−1)
n+p−1(z) ? f(z) =

[
zp

(1− z)n+p

](−1)

? f(z).

From (1.1) and (1.2) and a well known identity for the Ruscheweyh derivative [1, 8], it follows
that

(1.3) z (In+pf(z))′ = (n + p)In+p−1f(z)− nIn+pf(z).

Forp = 1, the identity (1.3) is given by Noor and Noor [3].
Let Pk(ρ) be the class of functionsp(z) analytic inE satisfying the propertiesp(0) = 1 and

(1.4)
∫ 2π

0

∣∣∣∣Re p(z)− ρ

p− ρ

∣∣∣∣ dθ ≤ kπ,

wherez = reiθ, k ≥ 2 and0 ≤ ρ < p. Forp = 1, this class was introduced in [5] and forρ = 0,
see [6]. Forρ = 0, k = 2, we have the well known classP of functions with positive real
part and the classk = 2 gives us the classP (ρ) of functions with positive real part greater than
ρ. Also from (1.4), we note thatp ∈ Pk(ρ) if and only if there existp1, p2 ∈ Pk(ρ) such that

(1.5) p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

It is known [4] that the classPk(ρ) is a convex set.

Definition 1.1. Let f ∈ A(p). Thenf ∈ Tk(α, p, n, ρ) if and only if[
(1− α)

In+p−1f(z)

zp
+ α

In+pf(z)

zp

]
∈ Pk(ρ),

for α ≥ 0, n > −p, 0 ≤ ρ < p, k ≥ 2 andz ∈ E.

2. PRELIMINARY RESULTS

Lemma 2.1. Letp(z) = 1 + b1z + b2z
2 + · · · ∈ P (ρ). Then

Re p(z) ≥ 2ρ− 1 +
2(1− ρ)

1 + |z|
.

This result is well known.

Lemma 2.2([7]). If p(z) is analytic inE with p(0) = 1 and ifλ1 is a complex number satisfying
Re λ1 ≥ 0, (λ1 6= 0), thenRe{p(z) + λ1zp

′(z)} > β (0 ≤ β < p) implies

Re p(z) > β + (1− β)(2γ1 − 1),

whereγ1 is given by

γ1 =

∫ 1

0

(
1 + tRe λ1

)−1
dt.
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Lemma 2.3([9]). If p(z) is analytic inE, p(0) = 1 andRe p(z) > 1
2
, z ∈ E, then for any

functionF analytic inE, the functionp?F takes values in the convex hull of the imageE under
F.

3. M AIN RESULTS

Theorem 3.1. Let f ∈ Tk(α, p, n, ρ1) andg ∈ Tk(α, p, n, ρ2), and letF = f ? g. ThenF ∈
Tk(α, p, n, ρ3) where

(3.1) ρ3 = 1− 4(1− ρ1)(1− ρ2)

1− n + p

1− α

∫ 1

0

u
(

n+p
1−α )−1

1 + u
du

 .

This results is sharp.

Proof. Sincef ∈ Tk(α, p, n, ρ1), it follows that

H(z) =

[
(1− α)

In+p−1f(z)

zp
+ α

In+pf(z)

zp

]
∈ Pk(ρ1),

and so using (1.3), we have

(3.2) In+pf(z) =
n + p

1− α
z
−(n+p

1−α)
∫ z

0

t
n+p
1−α−1

H(t)dt.

Similarly

(3.3) In+pg(z) =
n + p

1− α
z
−(n+p

1−α)
∫ z

0

t
n+p
1−α−1

H?(t)dt,

whereH? ∈ Pk(ρ2).
Using (3.1) and (3.2), we have

(3.4) In+pF (z) =
n + p

1− α
z
−(n+p

1−α)
∫ z

0

t
n+p
1−α−1

Q(t)dt,

where

Q(z) =

(
k

4
+

1

2

)
q1(z)−

(
k

4
− 1

2

)
q2(z)

=
n + p

1− α
z
−(n+p

1−α)
∫ z

0

t
n+p
1−α−1

(H ? H?)(t)dt.(3.5)

Now

H(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z)

H(z)? =

(
k

4
+

1

2

)
h?

1(z)−
(

k

4
− 1

2

)
h?

2(z),(3.6)

wherehi ∈ P (ρ1) andh?
i ∈ Pk(ρ2), i = 1, 2.

Since

p?
i (z) =

h?
i (z)− ρ2

2(1− ρ2)
+

1

2
∈ P

(
1

2

)
, i = 1, 2,

we obtain that(hi ? p?
i )(z) ∈ P (ρ1), by using the Herglotz formula.

Thus
(hi ? h?

i )(z) ∈ P (ρ3)
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with

(3.7) ρ3 = 1− 2(1− ρ1)(1− ρ2).

Using (3.4), (3.5), (3.6), (3.7) and Lemma 2.1, we have

Re qi(z) =
n + p

1− α

∫ 1

0

u
n+p
1−α−1

Re{(hi ? h?
i )(uz)}du

≥ n + p

1− α

∫ 1

0

u
n+p
1−α−1

(
2ρ3 − 1 +

2(1− ρ3)

1 + u|z|

)
du

>
n + p

1− α

∫ 1

0

u
n+p
1−α−1

(
2ρ3 − 1 +

2(1− ρ3)

1 + u

)
du

= 1− 4(1− ρ1)(1− ρ2)

1− n + p

1− α

∫ 1

0

u
n+p
1−α−1

1 + u
du

 .

From this we conclude thatF ∈ Tk(α, p, n, ρ3), whereρ3 is given by (3.1).
We discuss the sharpness as follows:
We take

H(z) =

(
k

4
+

1

2

)
1 + (1− 2ρ1)z

1− z
−

(
k

4
− 1

2

)
1− (1− 2ρ1)z

1 + z
,

H?(z) =

(
k

4
+

1

2

)
1 + (1− 2ρ2)z

1− z
−

(
k

4
− 1

2

)
1− (1− 2ρ2)z

1 + z
.

Since(
1 + (1− 2ρ1)z

1− z

)
?

(
1 + (1− 2ρ2)z

1− z

)
= 1− 4(1− ρ1)(1− ρ2) +

4(1− ρ1)(1− ρ2)

1− z
,

it follows from (3.5) that

qi(z) =
n + p

1− α

∫ 1

0

u
n+p
1−α−1

{
1− 4(1− ρ1)(1− ρ2) +

4(1− ρ1)(1− ρ2)

1− uz

}
du

−→ 1− 4(1− ρ1)(1− ρ2)

1− n + p

1− α

∫ 1

0

u
n+p
1−α−1

1 + u
du

 as z −→ 1.

This completes the proof. �

We defineJc : A(p) −→ A(p) as follows:

(3.8) Jc(f) =
c + p

zc

∫ z

0

tc−1f(t)dt,

wherec is real andc > −p.

Theorem 3.2.Letf ∈ Tk(α, p, n, ρ) andJc(f) be given by (3.8). If

(3.9)

[
(1− α)

In+pf(z)

zp
+ α

In+pJc(f)

zp

]
∈ Pk(ρ),

then {
In+pJc(f)

zp

}
∈ Pk(γ), z ∈ E
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and

γ = ρ(1− ρ)(2σ − 1)

σ =

∫ 1

0

[
1 + t

Re 1−α
λ+p

]−1

dt.(3.10)

Proof. From (3.8), we have

(c + p)In+pf(z) = cIn+pJc(f) + z(In+pJc(f))′.

Let

(3.11) Hc(z) =

(
k

4
+

1

2

)
s1(z)−

(
k

4
− 1

2

)
s2(z) =

In+pJc(f)

zp
.

From (3.9), (3.10) and (3.11), we have[
(1− α)

In+pf(z)

zp
+ α

In+pJc(f)

zp

]
=

[
Hc(z) +

1− α

λ + p
zH ′

c(z)

]
and consequently [

si(z) +
1− α

λ + p
zs′i(z)

]
∈ P (ρ), i = 1, 2.

Using Lemma 2.2, we haveRe{si(z)} > γ whereγ is given by (3.10). Thus

Hc(z) =
In+pJc(f)

zp
∈ Pk(γ)

and this completes the proof. �

Let

(3.12) Jn(f(z)) := Jn(f) =
n + p

zp

∫ z

0

tn−1f(t)dt.

Then
In+p−1Jn(f) = In+p(f),

and we have the following.

Theorem 3.3.Letf ∈ Tk(α, p, n + 1, ρ). ThenJn(f) ∈ Tk(α, p, n, ρ) for z ∈ E.

Theorem 3.4. Let φ ∈ Cp, whereCp is the class ofp-valent convex functions, and letf ∈
Tk(α, p, n, ρ). Thenφ ? f ∈ Tk(α, p, n, ρ) for z ∈ E.

Proof. Let G = φ ? f. Then

(1− α)
In+p−1G(z)

zp
+ α

In+pG(z)

zp
= (1− α)

In+p−1(φ ? f)(z)

zp
+ α

In+p(φ ? f)(z)

zp

=
φ(z)

zp
?

[
(1− α)

In+p−1f(z)

zp
+ α

In+pf(z)

zp

]
=

φ(z)

zp
? H(z), H ∈ Pk(ρ)

=

(
k

4
+

1

2

) {
(p− ρ)

(
φ(z)

zp
? h1(z)

)
+ ρ

}
−

(
k

4
− 1

2

) {
(p− ρ)

(
φ(z)

zp
? h2(z)

)
+ ρ

}
, h1, h2 ∈ P.

Sinceφ ∈ Cp, Re
{

φ(z)
zP

}
> 1

2
, z ∈ E and so using Lemma 2.3, we conclude thatG ∈

Tk(α, p, n, ρ). �
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3.1. Applications.

(1) We can writeJc(f) defined by (3.8) as

Jc(f) = φc ? f,

whereφc is given by

φc(z) =
∞∑

m=p

p + c

m + c
zm, (c > −p)

andφc ∈ Cp. Therefore, from Theorem 3.4, it follows thatJc(f) ∈ Tk(α, p, n, ρ).
(2) Let Jn(f), defined by (3.12), belong toTk(α, p, n, ρ). Thenf ∈ Tk(α, p, n, ρ) for |z| <

rn = (1+n)

2+
√

3+n2 . In fact,Jn(f) = Ψn ? f, where

Ψn(z) = zp +
∞∑

j=2

n + j − 1

n + 1
zj+p−1

=
n

n + 1
· zp

1− z
+

1

n + 1
· zp

(1− z)2

andΨn ∈ Cp for

|z| < rn =
1 + n

2 +
√

3 + n2
.

Now In+p−1Jn(f) = Ψn ? In+p−1f, and using Theorem 3.4, we obtain the result.

Theorem 3.5.For 0 ≤ α2 < α1, Tk(α1, p, n, ρ) ⊂ Tk(α2, p, n, ρ), z ∈ E.

Proof. Forα2 = 0, the proof is immediate. Letα2 > 0 and letf ∈ Tk(α1, p, n, ρ). Then

(1−α2)
In+p−1f(z)

zp
+ α2

In+pf(z)

zp

+
α2

α1

[(
α1

α2

− 1

)
In+p−1f(z)

zp
+ (1− α1)

In+p−1f(z)

zp
+ α1

In+p−1f(z)

zp

]
=

(
1− α2

α1

)
H1(z) +

α2

α1

H2(z), H1, H2 ∈ Pk(ρ).

SincePk(ρ) is a convex set, we conclude thatf ∈ Tk(α2, p, n, ρ) for z ∈ E. �

Theorem 3.6.Letf ∈ Tk(0, p, n, ρ). Thenf ∈ Tk(α, p, n, ρ) for

|z| < rα =
1

2α +
√

4α2 − 2α + 1
, α 6= 1

2
, 0 < α < 1.

Proof. Let

Ψα(z) = (1− α)
zp

1− z
+ α

zp

(1− z)2

= zp +
∞∑

m=2

(1 + (m− 1)α)zm+p−1.

Ψα ∈ Cp for

|z| < rα =
1

2α +
√

4α2 − 2α + 1

(
α 6= 1

2
, 0 < α < 1

)
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We can write [
(1− α)

In+p−1f(z)

zp
+ α

In+pf(z)

zp

]
=

Ψα(z)

zp
?

In+p−1f(z)

zp
.

Applying Theorem 3.4, we see thatf ∈ Tk(α, p, n, ρ) for |z| < rα. �
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