Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 2, Article 51, 2005

GENERALIZED INTEGRAL OPERATOR AND MULTIVALENT FUNCTIONS

KHALIDA INAYAT NOOR
Mathematics Department
COMSATS Institute of Information Technology
Islamabad, Pakistan.
khalidanoor@hotmail.com

Received 20 February, 2005; accepted 02 March, 2005
Communicated by Th.M. Rassias

Abstract

Let $\mathcal{A}(p)$ be the class of functions $f: f(z)=z^{p}+\sum_{j=1}^{\infty} a_{j} z^{p+j}$ analytic in the open unit disc E. Let, for any integer $n>-p, \quad f_{n+p-1}(z)=\frac{z^{p}}{(1-z)^{n+p}}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution \star as $f_{n+p-1}(z) \star f_{n+p-1}^{(-1)}(z)=\frac{z^{P}}{(1-z)^{n+p}}$. A function p, analytic in E with $p(0)=1$, is in the class $P_{k}(\rho)$ if $\int_{0}^{2 \pi}\left|\frac{\operatorname{Rep}(z)-\rho}{p-\rho}\right| d \theta \leq k \pi$, where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \rho<p$. We use the class $P_{k}(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $\quad I_{n+p-1}(f)=f_{n+p-1}^{(-1)} \star f(z) \quad$ for $f(z)$ belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

> Key words and phrases: Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex functions.

2000 Mathematics Subject Classification. Primary 30C45, 30C50.

1. Introduction

Let $\mathcal{A}(p)$ denote the class of functions f given by

$$
f(z)=z^{p}+\sum_{j=1}^{\infty} a_{j} z^{p+j}, \quad p \in N=\{1,2, \ldots\}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$. The Hadamard product or convolution ($f \star g$) of two functions with

$$
f(z)=z^{p}+\sum_{j=1}^{\infty} a_{j, 1} z^{p+j} \quad \text { and } \quad g(z)=z^{p}+\sum_{j=1}^{\infty} z^{p+j}
$$

[^0]is given by
$$
(f \star g)(z)=z^{p}+\sum_{j=1}^{\infty} a_{j, 1} a_{j, 2} z^{p+j} .
$$

The integral operator $I_{n+p-1}: \mathcal{A}(p) \longrightarrow \mathcal{A}(p)$ is defined as follows, see [2].
For any integer n greater than $-p$, let $f_{n+p-1}(z)=\frac{z^{p}}{(1-z)^{n+p}}$ and let $f_{n+p-1}^{(-1)}(z)$ be defined such that

$$
\begin{equation*}
f_{n+p-1}(z) \star f_{n+p-1}^{(-1)}(z)=\frac{z^{p}}{(1-z)^{p+1}} . \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{n+p-1} f(z)=f_{n+p-1}^{(-1)}(z) \star f(z)=\left[\frac{z^{p}}{(1-z)^{n+p}}\right]^{(-1)} \star f(z) \tag{1.2}
\end{equation*}
$$

From (1.1) and (1.2) and a well known identity for the Ruscheweyh derivative [1, 8], it follows that

$$
\begin{equation*}
z\left(I_{n+p} f(z)\right)^{\prime}=(n+p) I_{n+p-1} f(z)-n I_{n+p} f(z) \tag{1.3}
\end{equation*}
$$

For $p=1$, the identity (1.3) is given by Noor and Noor [3].
Let $P_{k}(\rho)$ be the class of functions $p(z)$ analytic in E satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\rho}{p-\rho}\right| d \theta \leq k \pi \tag{1.4}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \rho<p$. For $p=1$, this class was introduced in [5] and for $\rho=0$, see [6]. For $\rho=0, \quad k=2$, we have the well known class P of functions with positive real part and the class $k=2$ gives us the class $P(\rho)$ of functions with positive real part greater than ρ. Also from (1.4), we note that $p \in P_{k}(\rho)$ if and only if there exist $p_{1}, p_{2} \in P_{k}(\rho)$ such that

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) . \tag{1.5}
\end{equation*}
$$

It is known [4] that the class $P_{k}(\rho)$ is a convex set.
Definition 1.1. Let $f \in \mathcal{A}(p)$. Then $f \in T_{k}(\alpha, p, n, \rho)$ if and only if

$$
\left[(1-\alpha) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha \frac{I_{n+p} f(z)}{z^{p}}\right] \in P_{k}(\rho)
$$

for $\alpha \geq 0, n>-p, 0 \leq \rho<p, k \geq 2$ and $z \in E$.

2. Preliminary Results

Lemma 2.1. Let $p(z)=1+b_{1} z+b_{2} z^{2}+\cdots \in P(\rho)$. Then

$$
\operatorname{Re} p(z) \geq 2 \rho-1+\frac{2(1-\rho)}{1+|z|}
$$

This result is well known.
Lemma 2.2 ([7]). If $p(z)$ is analytic in E with $p(0)=1$ and if λ_{1} is a complex number satisfying $\operatorname{Re} \lambda_{1} \geq 0, \quad\left(\lambda_{1} \neq 0\right)$, then $\operatorname{Re}\left\{p(z)+\lambda_{1} z p^{\prime}(z)\right\}>\beta \quad(0 \leq \beta<p)$ implies

$$
\operatorname{Re} p(z)>\beta+(1-\beta)\left(2 \gamma_{1}-1\right)
$$

where γ_{1} is given by

$$
\gamma_{1}=\int_{0}^{1}\left(1+t^{\operatorname{Re} \lambda_{1}}\right)^{-1} d t
$$

Lemma 2.3 ([9]). If $p(z)$ is analytic in $E, \quad p(0)=1$ and $\operatorname{Re} p(z)>\frac{1}{2}, \quad z \in E$, then for any function F analytic in E, the function $p \star F$ takes values in the convex hull of the image E under F.

3. Main Results

Theorem 3.1. Let $f \in T_{k}\left(\alpha, p, n, \rho_{1}\right)$ and $g \in T_{k}\left(\alpha, p, n, \rho_{2}\right)$, and let $F=f \star g$. Then $F \in$ $T_{k}\left(\alpha, p, n, \rho_{3}\right)$ where

$$
\begin{equation*}
\rho_{3}=1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left[1-\frac{n+p}{1-\alpha} \int_{0}^{1} \frac{u^{\left(\frac{n+p}{1-\alpha}\right)-1}}{1+u} d u\right] . \tag{3.1}
\end{equation*}
$$

This results is sharp.
Proof. Since $f \in T_{k}\left(\alpha, p, n, \rho_{1}\right)$, it follows that

$$
H(z)=\left[(1-\alpha) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha \frac{I_{n+p} f(z)}{z^{p}}\right] \in P_{k}\left(\rho_{1}\right)
$$

and so using (1.3), we have

$$
\begin{equation*}
I_{n+p} f(z)=\frac{n+p}{1-\alpha} z^{-\left(\frac{n+p}{1-\alpha}\right)} \int_{0}^{z} t^{\frac{n+p}{1-\alpha}-1} H(t) d t \tag{3.2}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
I_{n+p} g(z)=\frac{n+p}{1-\alpha} z^{-\left(\frac{n+p}{1-\alpha}\right)} \int_{0}^{z} t^{\frac{n+p}{1-\alpha-1}} H^{\star}(t) d t \tag{3.3}
\end{equation*}
$$

where $H^{\star} \in P_{k}\left(\rho_{2}\right)$.
Using (3.1) and (3.2), we have

$$
\begin{equation*}
I_{n+p} F(z)=\frac{n+p}{1-\alpha} z^{-\left(\frac{n+p}{1-\alpha}\right)} \int_{0}^{z} t^{\frac{n+p}{1-\alpha}-1} Q(t) d t \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
Q(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) q_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) q_{2}(z) \\
& =\frac{n+p}{1-\alpha} z^{-\left(\frac{n+p}{1-\alpha}\right)} \int_{0}^{z} t^{\frac{n+p}{1-\alpha}-1}\left(H \star H^{\star}\right)(t) d t \tag{3.5}
\end{align*}
$$

Now

$$
\begin{align*}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \\
H(z)^{\star} & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}^{\star}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}^{\star}(z) \tag{3.6}
\end{align*}
$$

where $h_{i} \in P\left(\rho_{1}\right)$ and $h_{i}^{\star} \in P_{k}\left(\rho_{2}\right), \quad i=1,2$.
Since

$$
p_{i}^{\star}(z)=\frac{h_{i}^{\star}(z)-\rho_{2}}{2\left(1-\rho_{2}\right)}+\frac{1}{2} \in P\left(\frac{1}{2}\right), \quad i=1,2
$$

we obtain that $\left(h_{i} \star p_{i}^{\star}\right)(z) \in P\left(\rho_{1}\right)$, by using the Herglotz formula.
Thus

$$
\left(h_{i} \star h_{i}^{\star}\right)(z) \in P\left(\rho_{3}\right)
$$

with
(3.7)

$$
\rho_{3}=1-2\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)
$$

Using (3.4), (3.5), (3.6), (3.7) and Lemma 2.1, we have

$$
\begin{aligned}
\operatorname{Re} q_{i}(z) & =\frac{n+p}{1-\alpha} \int_{0}^{1} u^{\frac{n+p}{1-\alpha}-1} \operatorname{Re}\left\{\left(h_{i} \star h_{i}^{\star}\right)(u z)\right\} d u \\
& \geq \frac{n+p}{1-\alpha} \int_{0}^{1} u^{\frac{n+p}{1-\alpha}-1}\left(2 \rho_{3}-1+\frac{2\left(1-\rho_{3}\right)}{1+u|z|}\right) d u \\
& >\frac{n+p}{1-\alpha} \int_{0}^{1} u^{\frac{n+p}{1-\alpha}-1}\left(2 \rho_{3}-1+\frac{2\left(1-\rho_{3}\right)}{1+u}\right) d u \\
& =1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left[1-\frac{n+p}{1-\alpha} \int_{0}^{1} \frac{u^{\frac{n+p}{1-\alpha}-1}}{1+u} d u\right]
\end{aligned}
$$

From this we conclude that $F \in T_{k}\left(\alpha, p, n, \rho_{3}\right)$, where ρ_{3} is given by (3.1).
We discuss the sharpness as follows:
We take

$$
\begin{aligned}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{1}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{1}\right) z}{1+z} \\
H^{\star}(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{2}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{2}\right) z}{1+z}
\end{aligned}
$$

Since

$$
\left(\frac{1+\left(1-2 \rho_{1}\right) z}{1-z}\right) \star\left(\frac{1+\left(1-2 \rho_{2}\right) z}{1-z}\right)=1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)+\frac{4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}{1-z},
$$

it follows from (3.5) that

$$
\begin{aligned}
q_{i}(z) & =\frac{n+p}{1-\alpha} \int_{0}^{1} u^{\frac{n+p}{1-\alpha}-1}\left\{1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)+\frac{4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}{1-u z}\right\} d u \\
& \longrightarrow 1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left\{1-\frac{n+p}{1-\alpha} \int_{0}^{1} \frac{u^{\frac{n+p}{1-\alpha-1}}}{1+u} d u\right\} \text { as } z \longrightarrow 1
\end{aligned}
$$

This completes the proof.
We define $J_{c}: \mathcal{A}(p) \longrightarrow \mathcal{A}(p)$ as follows:

$$
\begin{equation*}
J_{c}(f)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.8}
\end{equation*}
$$

where c is real and $c>-p$.
Theorem 3.2. Let $f \in T_{k}(\alpha, p, n, \rho)$ and $J_{c}(f)$ be given by (3.8). If

$$
\begin{equation*}
\left[(1-\alpha) \frac{I_{n+p} f(z)}{z^{p}}+\alpha \frac{I_{n+p} J_{c}(f)}{z^{p}}\right] \in P_{k}(\rho), \tag{3.9}
\end{equation*}
$$

then

$$
\left\{\frac{I_{n+p} J_{c}(f)}{z^{p}}\right\} \in P_{k}(\gamma), \quad z \in E
$$

and

$$
\begin{align*}
\gamma & =\rho(1-\rho)(2 \sigma-1) \\
\sigma & =\int_{0}^{1}\left[1+t^{\mathrm{Re} \frac{1-\alpha}{\lambda+p}}\right]^{-1} d t \tag{3.10}
\end{align*}
$$

Proof. From (3.8), we have

$$
(c+p) I_{n+p} f(z)=c I_{n+p} J_{c}(f)+z\left(I_{n+p} J_{c}(f)\right)^{\prime}
$$

Let

$$
\begin{equation*}
H_{c}(z)=\left(\frac{k}{4}+\frac{1}{2}\right) s_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) s_{2}(z)=\frac{I_{n+p} J_{c}(f)}{z^{p}} \tag{3.11}
\end{equation*}
$$

From (3.9), (3.10) and (3.11), we have

$$
\left[(1-\alpha) \frac{I_{n+p} f(z)}{z^{p}}+\alpha \frac{I_{n+p} J_{c}(f)}{z^{p}}\right]=\left[H_{c}(z)+\frac{1-\alpha}{\lambda+p} z H_{c}^{\prime}(z)\right]
$$

and consequently

$$
\left[s_{i}(z)+\frac{1-\alpha}{\lambda+p} z s_{i}^{\prime}(z)\right] \in P(\rho), \quad i=1,2
$$

Using Lemma 2.2, we have $\operatorname{Re}\left\{s_{i}(z)\right\}>\gamma$ where γ is given by 3.10. Thus

$$
H_{c}(z)=\frac{I_{n+p} J_{c}(f)}{z^{p}} \in P_{k}(\gamma)
$$

and this completes the proof.
Let

$$
\begin{equation*}
J_{n}(f(z)):=J_{n}(f)=\frac{n+p}{z^{p}} \int_{0}^{z} t^{n-1} f(t) d t \tag{3.12}
\end{equation*}
$$

Then

$$
I_{n+p-1} J_{n}(f)=I_{n+p}(f)
$$

and we have the following.
Theorem 3.3. Let $f \in T_{k}(\alpha, p, n+1, \rho)$. Then $J_{n}(f) \in T_{k}(\alpha, p, n, \rho)$ for $z \in E$.
Theorem 3.4. Let $\phi \in C_{p}$, where C_{p} is the class of p-valent convex functions, and let $f \in$ $T_{k}(\alpha, p, n, \rho)$. Then $\phi \star f \in T_{k}(\alpha, p, n, \rho)$ for $z \in E$.
Proof. Let $G=\phi \star f$. Then

$$
\begin{aligned}
(1-\alpha) \frac{I_{n+p-1} G(z)}{z^{p}}+ & \alpha \frac{I_{n+p} G(z)}{z^{p}}=(1-\alpha) \frac{I_{n+p-1}(\phi \star f)(z)}{z^{p}}+\alpha \frac{I_{n+p}(\phi \star f)(z)}{z^{p}} \\
= & \frac{\phi(z)}{z^{p}} \star\left[(1-\alpha) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha \frac{I_{n+p} f(z)}{z^{p}}\right] \\
= & \frac{\phi(z)}{z^{p}} \star H(z), \quad H \in P_{k}(\rho) \\
= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\rho)\left(\frac{\phi(z)}{z^{p}} \star h_{1}(z)\right)+\rho\right\} \\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\rho)\left(\frac{\phi(z)}{z^{p}} \star h_{2}(z)\right)+\rho\right\}, \quad h_{1}, h_{2} \in P
\end{aligned}
$$

Since $\phi \in C_{p}, \quad \operatorname{Re}\left\{\frac{\phi(z)}{z^{P}}\right\}>\frac{1}{2}, z \in E$ and so using Lemma 2.3 . we conclude that $G \in$ $T_{k}(\alpha, p, n, \rho)$.

3.1. Applications.

(1) We can write $J_{c}(f)$ defined by 3.8 as

$$
J_{c}(f)=\phi_{c} \star f
$$

where ϕ_{c} is given by

$$
\phi_{c}(z)=\sum_{m=p}^{\infty} \frac{p+c}{m+c} z^{m}, \quad(c>-p)
$$

and $\phi_{c} \in C_{p}$. Therefore, from Theorem 3.4 it follows that $J_{c}(f) \in T_{k}(\alpha, p, n, \rho)$.
(2) Let $J_{n}(f)$, defined by (3.12), belong to $T_{k}(\alpha, p, n, \rho)$. Then $f \in T_{k}(\alpha, p, n, \rho)$ for $|z|<$ $r_{n}=\frac{(1+n)}{2+\sqrt{3+n^{2}}}$. In fact, $J_{n}(f)=\Psi_{n} \star f$, where

$$
\begin{aligned}
\Psi_{n}(z) & =z^{p}+\sum_{j=2}^{\infty} \frac{n+j-1}{n+1} z^{j+p-1} \\
& =\frac{n}{n+1} \cdot \frac{z^{p}}{1-z}+\frac{1}{n+1} \cdot \frac{z^{p}}{(1-z)^{2}}
\end{aligned}
$$

and $\Psi_{n} \in C_{p}$ for

$$
|z|<r_{n}=\frac{1+n}{2+\sqrt{3+n^{2}}} .
$$

Now $I_{n+p-1} J_{n}(f)=\Psi_{n} \star I_{n+p-1} f$, and using Theorem 3.4, we obtain the result.
Theorem 3.5. For $0 \leq \alpha_{2}<\alpha_{1}, \quad T_{k}\left(\alpha_{1}, p, n, \rho\right) \subset T_{k}\left(\alpha_{2}, p, n, \rho\right), \quad z \in E$.
Proof. For $\alpha_{2}=0$, the proof is immediate. Let $\alpha_{2}>0$ and let $f \in T_{k}\left(\alpha_{1}, p, n, \rho\right)$. Then

$$
\begin{aligned}
& \left(1-\alpha_{2}\right) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha_{2} \frac{I_{n+p} f(z)}{z^{p}} \\
& \quad+\frac{\alpha_{2}}{\alpha_{1}}\left[\left(\frac{\alpha_{1}}{\alpha_{2}}-1\right) \frac{I_{n+p-1} f(z)}{z^{p}}+\left(1-\alpha_{1}\right) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha_{1} \frac{I_{n+p-1} f(z)}{z^{p}}\right] \\
& \quad=\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{1}(z)+\frac{\alpha_{2}}{\alpha_{1}} H_{2}(z), \quad H_{1}, H_{2} \in P_{k}(\rho) .
\end{aligned}
$$

Since $P_{k}(\rho)$ is a convex set, we conclude that $f \in T_{k}\left(\alpha_{2}, p, n, \rho\right)$ for $z \in E$.
Theorem 3.6. Let $f \in T_{k}(0, p, n, \rho)$. Then $f \in T_{k}(\alpha, p, n, \rho)$ for

$$
|z|<r_{\alpha}=\frac{1}{2 \alpha+\sqrt{4 \alpha^{2}-2 \alpha+1}}, \quad \alpha \neq \frac{1}{2}, \quad 0<\alpha<1 .
$$

Proof. Let

$$
\begin{aligned}
\Psi_{\alpha}(z) & =(1-\alpha) \frac{z^{p}}{1-z}+\alpha \frac{z^{p}}{(1-z)^{2}} \\
& =z^{p}+\sum_{m=2}^{\infty}(1+(m-1) \alpha) z^{m+p-1} .
\end{aligned}
$$

$\Psi_{\alpha} \in C_{p}$ for

$$
|z|<r_{\alpha}=\frac{1}{2 \alpha+\sqrt{4 \alpha^{2}-2 \alpha+1}} \quad\left(\alpha \neq \frac{1}{2}, \quad 0<\alpha<1\right)
$$

We can write

$$
\left[(1-\alpha) \frac{I_{n+p-1} f(z)}{z^{p}}+\alpha \frac{I_{n+p} f(z)}{z^{p}}\right]=\frac{\Psi_{\alpha}(z)}{z^{p}} \star \frac{I_{n+p-1} f(z)}{z^{p}} .
$$

Applying Theorem 3.4, we see that $f \in T_{k}(\alpha, p, n, \rho)$ for $|z|<r_{\alpha}$.

References

[1] R.M. GOEL and N.S. SOHI, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
[2] J.L. LIU AND K. INAYAT NOOR, Some properties of Noor integral operator, J. Natural Geometry, 21 (2002), 81-90.
[3] K. INAYAT NOOR and M.A. NOOR, On integral operators, J. Math. Anal. Appl., 238 (1999), 341-352.
[4] K. INAYAT NOOR, On subclasses of close-to-convex functions of higher order, Internat. J. Math. Math. Sci., 15(1992), 279-290.
[5] K.S. PADMANABHAN and R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311-323.
[6] B. PINCHUK, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7-16.
[7] S. PONNUSAMY, Differential subordination and Bazilevic functions, Preprint.
[8] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109115.
[9] R. SINGH AND S. SINGH, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), 145-152.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 061-05

