Journal of Inequalities in Pure and Applied Mathematics

A CHARACTERIZATION OF λ-CONVEX FUNCTIONS

MIROSŁAW ADAMEK

Department of Mathematics
University of Bielsko-Biała, ul. Willowa 2 43-309 Bielsko-Biała, Poland.
EMail: madamek@ath.bielsko.pl
volume 5 , issue 3 , article 71 , 2004.

Received 18 March, 2004; accepted 19 April, 2004.

Communicated by: K. Nikodem

Abstract
Contents
Gome Page
Go Back
Close

Abstract

The main result of this paper shows that λ-convex functions can be characterized in terms of a lower second-order generalized derivative.

2000 Mathematics Subject Classification: Primary 26A51, $39 B 62$.
Key words: λ-convexity, Generalized 2nd-order derivative.

Contents

1 Introduction . 3
2 Divided Differences and Convexity Triplets 4
3 Main Results ... 5
References

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents
Go Back
Close
Page 2 of 12

J. Ineq. Pure and Appl. Math. 5(3) Art. 71, 2004 http://jipam.vu.edu.au

1. Introduction

Let $I \subseteq \mathbb{R}$ be an open interval and $\lambda: I^{2} \rightarrow(0,1)$ be a fixed function. A real-valued function $f: I \rightarrow \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is called λ-convex if
(1.1) $f(\lambda(x, y) x+(1-\lambda(x, y)) y)$

$$
\leq \lambda(x, y) f(x)+(1-\lambda(x, y)) f(y) \quad \text { for } \quad x, y \in I
$$

Such functions were introduced and discussed by Zs. Páles in [6], who obtained a Bernstein-Doetch type theorem for them. A Sierpiński-type result, stating that measurable λ-convex functions are convex, can be found in [2]. Recently K. Nikodem and Zs. Páles [5] proved that functions satisfying (1.1) with a constant λ can be characterized by use of a second-order generalized derivative. The main results of this paper show that λ-convexity, for λ not necessarily constant, can also be characterized in terms of a properly chosen lower second-order generalized derivative.

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents

Go Back
Close
Quit
Page 3 of 12

2. Divided Differences and Convexity Triplets

If $f: I \rightarrow \mathbb{R}$ is an arbitrary function then define the second-order divided difference of f for three pairwise distinct points x, y, z of I by

$$
\begin{equation*}
f[x, y, z]:=\frac{f(x)}{(y-x)(z-x)}+\frac{f(y)}{(x-y)(z-y)}+\frac{f(z)}{(x-z)(y-z)} . \tag{2.1}
\end{equation*}
$$

It is known (cf. e.g.[4], [7]) and easy to check that a function $f: I \rightarrow \mathbb{R}$ is convex if and only if

$$
f[x, y, z] \geq 0
$$

for every pairwise distinct points x, y, z of I. Motivated by this characterization of convexity, a triplet (x, y, z) in I^{3} with pairwise distinct points x, y, z is called a convexity triplet for a function $f: I \rightarrow \mathbb{R}$ if $f[x, y, z] \geq 0$ and the set of all convexity triplets of f is denoted by $\mathcal{C}(f)$. Using this terminology, f is λ-convex if and only if
(2.2) $(x, \lambda(x, y) x+(1-\lambda(x, y)) y, y) \in \mathcal{C}(f) \quad$ for $\quad x, y \in I$ with $x \neq y$.

The following result obtained in [5] will be used in the proof of the main theorem.

Lemma 2.1. (Chain Inequality) Let $f: I \rightarrow \mathbb{R}$ and $x_{0}<x_{1}<\cdots<x_{n}$ $(n \geq 2)$ be arbitrary points in I. Then, for all fixed $0<j<n$,

$$
\begin{equation*}
\min _{1 \leq i \leq n-1} f\left[x_{i-1}, x_{i}, x_{i+1}\right] \leq f\left[x_{0}, x_{j}, x_{n}\right] \leq \max _{1 \leq i \leq n-1} f\left[x_{i-1}, x_{i}, x_{i+1}\right] \tag{2.3}
\end{equation*}
$$

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents

$\mathbf{~ G ~}$	
Go Back	
Close	
Quit	
Page 4 of 12	

3. Main Results

Assume that $\lambda: I \rightarrow(0,1)$ is a fixed function and consider the lower 2 nd-order generalized λ-derivative of a function $f: I \rightarrow \mathbb{R}$ at a point $\xi \in I$ defined by

$$
\begin{equation*}
\underline{\delta}_{\lambda}^{2} f(\xi):=\liminf _{\substack{(x, y) \rightarrow(\xi, \xi) \\ \xi \in \operatorname{co}\{x, y\}}} 2 f[x, \lambda(x, y) x+(1-\lambda(x, y)) y, y] . \tag{3.1}
\end{equation*}
$$

One can easily show that if f is twice continuously differentiable at ξ then

$$
\underline{\delta}_{\lambda}^{2} f(\xi)=f^{\prime \prime}(\xi)
$$

Moreover, from (2.2) and (3.1), if a function $f: I \rightarrow \mathbb{R}$ is λ-convex, then $\underline{\delta}_{\lambda}^{2} f(\xi) \geq 0$ for every $\xi \in I$. The following example shows that the reverse implication is not true in general.

Example 3.1. Define $\lambda: \mathbb{R}^{2} \rightarrow(0,1)$ by the formula

$$
\lambda(x, y)= \begin{cases}\frac{1}{3} & \text { if } x=y \\ \frac{1}{2} & \text { if } x \neq y\end{cases}
$$

and take the function $f: \mathbb{R} \rightarrow \mathbb{R}$;

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x \neq 0\end{cases}
$$

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents
Go Back
Close
Quit
Page 5 of 12

It is easy to check that this function is not λ-convex, but $\underline{\delta}_{\lambda}^{2} f(\xi) \geq 0$ for every $\xi \in \mathbb{R}$.

Now, let $\lambda: I^{2} \rightarrow(0,1)$ be a fixed function. Define

$$
M(x, y):=\lambda(x, y) x+(1-\lambda(x, y)) y
$$

and write conditions

$$
\begin{align*}
& \inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)>0 \quad \text { and } \quad \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)<1 \tag{3.2}\\
& \text { for all } x_{0}, y_{0} \in I \text { with } x_{0} \leq y_{0}
\end{align*}
$$

$$
\begin{equation*}
M(M(x, M(x, y)), M(y, M(x, y)))=M(x, y), \text { for all } x, y \in I \tag{3.3}
\end{equation*}
$$

Of course, the above assumptions are satisfied for arbitrary constant λ. Moreover, observe that if M fulfils the bisymmetry equation (cf. [1], [3]) then it fulfils equation (3.3), too. Thus for each quasi-arithmetic mean M these conditions are also fulfilled.

Using a similar method as in [5] we can prove the following result.
Theorem 3.1. (Mean Value Inequality for λ-convexity) Let $I \subseteq \mathbb{R}$ be an interval, $\lambda: I^{2} \rightarrow(0,1)$ satisfies assumptions (3.2) - (3.3), $f: I \rightarrow \mathbb{R}$ and $x, y \in I$ with $x \neq y$. Then there exists a point $\xi \in \operatorname{co}\{x, y\}$ such that

$$
\begin{equation*}
2 f[x, \lambda(x, y) x+(1-\lambda(x, y)) y, y] \geq \underline{\delta}_{\lambda}^{2} f(\xi) \tag{3.4}
\end{equation*}
$$

Proof. In the sequel, a triplet $(x, u, y) \in I^{3}$ will be called a λ-triplet if

$$
u=\lambda(x, y) x+(1-\lambda(x, y)) y
$$

or

$$
u=\lambda(y, x) y+(1-\lambda(y, x)) x .
$$

Let x and y be distinct elements of I. Assume that $x<y$ (the proof in the case $x>y$ is similar). In what follows, we intend to construct a sequence of
λ-triplets $\left(x_{n}, u_{n}, y_{n}\right)$ such that
(3.5) $x_{0} \leq x_{1} \leq x_{2} \leq \ldots, y_{0} \geq y_{1} \geq y_{2} \geq \ldots, x_{n}<u_{n}<y_{n}(n \in \mathbb{N})$,
(3.6) $y_{n}-x_{n}$

$$
\leq\left(\max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\right)^{n}\left(y_{0}-x_{0}\right) \quad(n \in \mathbb{N}),
$$

and

$$
\begin{equation*}
f\left[x_{0}, u_{0}, y_{0}\right] \geq f\left[x_{1}, u_{1}, y_{1}\right] \geq f\left[x_{2}, u_{2}, y_{2}\right] \geq \cdots . \tag{3.7}
\end{equation*}
$$

Define

$$
\left(x_{0}, u_{0}, y_{0}\right):=(x, \lambda(x, y) x+(1-\lambda(x, y)) y, y)
$$

and assume that we have constructed $\left(x_{n}, u_{n}, y_{n}\right)$. Now set

$$
\begin{aligned}
z_{n, 0}:= & x_{n}, \quad z_{n, 1}:=\lambda\left(x_{n}, u_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, u_{n}\right)\right) u_{n}, \quad z_{n, 2}:=u_{n} \\
& z_{n, 3}:=\lambda\left(y_{n}, u_{n}\right) y_{n}+\left(1-\lambda\left(y_{n}, u_{n}\right)\right) u_{n}, \quad z_{n, 4}:=y_{n} .
\end{aligned}
$$

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents

Go Back
Close
Quit
Page 7 of 12
J. Ineq. Pure and Appl. Math. 5(3) Art. 71, 2004 http://jipam.vu.edu.au

Then $\left(z_{n, i-1}, z_{n, i}, z_{n, i+1}\right)$ are λ-triplets for $i \in\{1,2,3\}$ (for $i \in\{1,3\}$ immediately from the definition of λ-triplets and for $i=2$ from condition (3.3)).

Using the Chain Inequality, we find that there exists an index $i \in\{1,2,3\}$ such that

$$
f\left[x_{n}, u_{n}, y_{n}\right] \geq f\left[z_{n, i-1}, z_{n, i}, z_{n, i+1}\right] .
$$

Finally, define

$$
\left(x_{n+1}, u_{n+1}, y_{n+1}\right):=\left(z_{n, i-1}, z_{n, i}, z_{n, i+1}\right) .
$$

The sequence so constructed clearly satisfies (3.5) and (3.7). We prove (3.6) by induction. It is obvious for $n=0$. Assume that it holds for n and $u_{n}=$ $\lambda\left(x_{n}, y_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, y_{n}\right)\right) y_{n}\left(\right.$ if $u_{n}=\lambda\left(y_{n}, x_{n}\right) y_{n}+\left(1-\lambda\left(y_{n}, x_{n}\right)\right) x_{n}$ then the motivation is the same). Consider three cases.
(i)

$$
\left(x_{n+1}, u_{n+1}, y_{n+1}\right)=\left(x_{n}, \lambda\left(x_{n}, u_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, u_{n}\right)\right) u_{n}, u_{n}\right)
$$

then

$$
\begin{aligned}
& y_{n+1}-x_{n+1} \\
& =u_{n}-x_{n} \\
& =\lambda\left(x_{n}, y_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, y_{n}\right)\right) y_{n}-x_{n} \\
& =\left(1-\lambda\left(x_{n}, y_{n}\right)\right)\left(y_{n}-x_{n}\right) \\
& \leq \max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\left(y_{n}-x_{n}\right)
\end{aligned}
$$

$$
\leq\left(\max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\right)^{n+1}\left(y_{0}-x_{0}\right) .
$$

(ii)

$$
\begin{aligned}
& \left(x_{n+1}, u_{n+1}, y_{n+1}\right) \\
= & \left(\lambda\left(x_{n}, u_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, u_{n}\right)\right) u_{n}, u_{n}, \lambda\left(y_{n}, u_{n}\right) y_{n}+\left(1-\lambda\left(y_{n}, u_{n}\right)\right) u_{n}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
& y_{n+1}-x_{n+1} \\
&= \lambda\left(x_{n}, u_{n}\right)\left(u_{n}-x_{n}\right)+\lambda\left(y_{n}, u_{n}\right)\left(y_{n}-u_{n}\right) \\
&= \lambda\left(x_{n}, u_{n}\right)\left(1-\lambda\left(x_{n}, y_{n}\right)\right)\left(y_{n}-x_{n}\right)+\lambda\left(y_{n}, u_{n}\right) \lambda\left(x_{n}, y_{n}\right)\left(y_{n}-x_{n}\right) \\
& \leq \max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\left(1-\lambda\left(x_{n}, y_{n}\right)\right)\left(y_{n}-x_{n}\right) \\
&+\max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\} \lambda\left(x_{n}, y_{n}\right)\left(y_{n}-x_{n}\right) \\
&= \max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\left(y_{n}-x_{n}\right) \\
& \leq\left(\max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\right)^{n+1}\left(y_{0}-x_{0}\right) .
\end{aligned}
$$

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page

Contents

\square
Go Back
Close
Quit
Page 9 of 12
J. Ineq. Pure and Appl. Math. 5(3) Art. 71, 2004 http://jipam.vu.edu.au
(iii)

$$
\left(x_{n+1}, u_{n+1}, y_{n+1}\right)=\left(u_{n}, \lambda\left(y_{n}, u_{n}\right) y_{n}+\left(1-\lambda\left(y_{n}, u_{n}\right)\right) u_{n}, y_{n}\right)
$$

then

$$
\begin{aligned}
& y_{n+1}-x_{n+1} \\
& =y_{n}-u_{n} \\
& =y_{n}-\left(\lambda\left(x_{n}, y_{n}\right) x_{n}+\left(1-\lambda\left(x_{n}, y_{n}\right)\right) y_{n}\right) \\
& =\lambda\left(x_{n}, y_{n}\right)\left(y_{n}-x_{n}\right) \\
& \leq \max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\left(y_{n}-x_{n}\right) \\
& \leq\left(\max \left\{1-\inf _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y), \sup _{x, y \in\left[x_{0}, y_{0}\right]} \lambda(x, y)\right\}\right)^{n+1}\left(y_{0}-x_{0}\right) .
\end{aligned}
$$

Thus (3.6) is also verified.
Due to the monotonicity properties of the sequences $\left(x_{n}\right),\left(y_{n}\right)$ and also (3.2), (3.6), there exists a unique element $\xi \in[x, y]$ such that

$$
\bigcap_{i=0}^{\infty}\left[x_{n}, y_{n}\right]=\{\xi\}
$$

Then, by (3.7) and symmetry of the second-order divided difference, we get that

$$
\begin{aligned}
f[x, \lambda(x, y) x+(1-\lambda(x, y)) y, y] & =f\left[x_{0}, u_{0}, y_{0}\right] \\
& \geq \liminf _{n \rightarrow \infty} f\left[x_{n}, u_{n}, y_{n}\right]
\end{aligned}
$$

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents

Go Back
Close
Quit
Page 10 of 12

Title Page
Contents
Go Back
Close
Quit
Page 10 of 12

$$
\begin{aligned}
& \geq \liminf _{\substack{(v, w) \rightarrow(\xi, \xi) \\
\xi \in \cos \{v, w\}}} f[v, \lambda(v, w) v+(1-\lambda(v, w)) w, w] \\
& =\frac{1}{2} \underline{\delta}_{\lambda}^{2} f(\xi)
\end{aligned}
$$

which completes the proof.
As an immediate consequence of the above theorem, we get the following characterization of λ-convexity.

Theorem 3.2. Let $\lambda: I^{2} \rightarrow(0,1)$ be a fixed function satisfying assumptions (3.2) - (3.3). A function $f: I \rightarrow \mathbb{R}$ is λ-convex on I if and only if

$$
\begin{equation*}
\underline{\delta}_{\lambda}^{2} f(\xi) \geq 0, \text { for all } \xi \in I \tag{3.8}
\end{equation*}
$$

Proof. If f is λ-convex, then, clearly $\underline{\delta}_{\lambda}^{2} f \geq 0$. Conversely, if $\underline{\delta}_{\lambda}^{2} f$ is nonnegative on I, then, by the previous theorem

$$
f[x, \lambda(x, y) x+(1-\lambda(x, y)) y, y] \geq 0
$$

for all $x, y \in I$, i.e., f is λ-convex.
An obvious but interesting consequence of Theorem 3.2 is that the λ-convexity property is localizable in the following sense:

Corollary 3.3. Let $\lambda: I^{2} \rightarrow(0,1)$ be a fixed function satisfying assumptions (3.2) - (3.3). A function $f: I \rightarrow \mathbb{R}$ is λ-convex on I if and only if, for each point $\xi \in I$, there exists a neighborhood U of ξ such that f is λ-convex on $I \cap U$.

A Characterization of λ-convex Functions

Mirosław Adamek

Title Page
Contents

Go Back
Close
Quit
Page 11 of 12

References

[1] J. ACZÉL, Lectures on functional equations and their applications, Mathematics in Science and Engineering, vol. 19, Academic Press, New York London, 1966.
[2] M. ADAMEK, On λ-quasiconvex and λ-convex functions, Radovi Mat., 11 (2003), 1-11.
[3] Z. DARÓCZY and Zs. PÁLES, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen, 61(1-2) (2002), 157-218.
[4] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Śląki, Warszawa-Kraków-Katowice, 1985.
[5] K. NIKODEM and ZS. PÁLES, On t-convex functions, Real Anal. Exchange, accepted for publication.
[6] Zs. PÁLES, Bernstein-Doetsch type results for general functional inequalities, Rocznik Nauk.-Dydakt. Akad. Pedagog. w Krakowie 204 Prace Mat., 17 (2000), 197-206.
[7] A.W. ROBERTS and D.E. VARBERG, Convex Functions, Academic Press, New York-London, 1973.

