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ABSTRACT. In this paper, we generalize the classical Bonferroni inequalities and their improve-
ments by Galambos to sums of type, -, (— 1)/ f(I) whereU is a finite setang : 2V — R.

The result is applied to the Tutte polynomial of a matroid and the chromatic polynomial of a
graph.
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1. INTRODUCTION

The classical inclusion-exclusion principle and its associated Bonferroni inequalities play an
important role in combinatorial mathematics, probability theory, reliability theory, and statistics
(seel[4] for a detailed survey ard [1] for some recent developments).

For any finite family of event§ £, }.cy in some probability spac&?, €, P) the inclusion-
exclusion principle[(1]1) expresses the probability that none of the e¥gnis< U, occurs as
an alternating sum dt'V! terms each involving intersections of up|té| many events, while
the classical Bonferroni inequalitigs (JL.2) provide bounds on this sum for each choice of
Ny = {0,1,27...}:

(1.1) P (ﬂ E) =Y (-nlip (ﬂ E) :

(12) (—1)'P (ﬂ E—) < (-1 Y (-piip (ﬂ E) |

[I]<r
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2 KLAUS DOHMEN AND PETER TITTMANN

The following bounds due to Galamb®s [3] improve the classical Bonferroni bounds by includ-
ing additional terms based on tfe+ 1)-subsets ot/:

e (NF) <o Tene(Ns) - X r(0s).
uelU |II|§§UT el \I\I:ggrl el

In view of (1.1), the preceding improvement ovier {1.2) can also be written as

13 (S < (—1r S (=) 7"“ S U

ICU ICU IcU
= [1<r [T|=r+1

where f(I) = P ((;,c; E;) foranyI C U. This raises the question which other functions
f 2V — RY, whereRt = {z € R|z > 0}, satisfy the preceding inequality (1.3) for any
possible choice of € N, or its weaker form

(1.4) (D)"Y (DA < ()7 (=0,

ICU ICU
- [|<r

Our main result provides a condition that ensufes (1.3) (and|[thys (1.4)) to hold foreahy,

and which is easy to check. After establishing our main result in Section 2 and proving it in
Section] B, we give another characterization of the class of relevant functions in $ection 4. In
Sectior] b our main result is used to obtain bounds on the Tutte polynomial of a matroid which,
as finally shown in Sectign 6, has applications to the chromatic polynomial of a graph.

2. MAIN RESULT

Our main result, which is proved in Section 3, is as follows.

Theorem 2.1. Let U be a finite non-empty set arfd: 2V — R be a function such that for any
disjoint subsetd, K C U,

(2.1) S (=DMFIUT) =" 0.
Then, for any- € Ny, i
@2 ()LD () S - S s

ICU ICU ICU
[I|<r [T|=r+1

Moreover, the theorem can be dualized by interchangtrend < at the starred *) places.

Remark 2.2. It is easy to see that for non-disjoint subsét” C U the left-hand side of (2]1)
equals zero. Thus, the disjointness/odnd K is not significant.

Remark 2.3. By putting K = () we find that any function satisfying the requirements of Theo-
rem[2.] is non-negative. Similarly, any function satisfying the requirements of the dual version
of Theoren] 2.1 is non-positive. Thus, from (2.2) we may deduce the weaker inequality (1.4),
respectively its dual.

Remark 2.4. By putting K = {u} for someu € U we observe that any function satisfying the
requirements of Theorem 2.1 is antitone. Likewise, any function satisfying the requirements of
the dual version is monotone.

In verifying the requirements of Theor¢gm 2.1 the following proposition is quite helpful. The
example following the proposition demonstrates this.
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Proposition 2.5. Let U be a finite non-empty set, and Igtg : 2V — R* be mappings such
that for any subsef C U,

F( =3 90).
JDI
Then,f satisfies the requirements of Theoienj 2.1.

Proof. For any disjoint setd, K’ C U we find that

Y DUy =Y (=) Y g(L)

ICK ICK LDIUJ

DD BC IS

LDJICKNL

=Y o) Y -

LDJ ICKNL
= > g(L)5(K N L,0) >0,
LDJ

whered(-, -) is the usual Kronecker delta. O

Example 2.1. For any non-empty and finite collection of eveits, } .y in some probability
space), &, P), let f,g: 2V — RT be defined by

f(I):=P <ﬂ E) . g():=P (ﬂF N ﬂE) .
icl i¢l i€l
Then, f andg satisfy the requirements of Proposition]2.5. For the present choi¢eanti g,
the inequalities in (2]2) agree with those of Galambos.
3. PROOF OF THE MAIN RESULT

For the proof of Theorerh 2.1 some preliminary notations and results are needed. For any
function f : 2V — R and anyu € U define

fu: 29N SR (D) = f(D),
o oUMul R, o) = fHu{u}).

Lemma 3.1. LetU be a finite set ang : 2V — R be a function. Then, for any € U and any
J7 K g U \ {U},

(3.1) DD auny = Y (MU,
ICK ICKU{u}
Proof. Evidently, the left-hand side df (3.1) is equal to
D DU ) = (=nMf U T U {u})

ICK ICK

= > (o + Yo (—)MfIU)

ICKU{u} ICKU{u}
ugl uel
which immediately gives the right hand side [of (3.1). O

Lemma 3.2.If f : 2V — R is a function satisfyind (21) for any disjoirt X' C U, then the
same applies tg,, f“, andf, — f* foranyu € U.
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4 KLAUS DOHMEN AND PETER TITTMANN

Proof. For f, and f“ the statement is immediately clear, while ffy — f* it is implied by
Lemma3.1. O

Although [1.4) is an immediate consequence of Thegrein 2.1, our forthcoming proof of The-
orem 2.1 requires (1.4) to be shown first.

Lemma 3.3. Under the requirements of Theorém|2[1,|1.4) holds foragyN.

Proof. The proof is by induction of/|. Evidently, the statement holds|if’| = 1. In what
follows, we may assume thél/| > 1 and that the statement holds for all proper non-empty
subsets of/. Letu € U be chosen arbitrarily. By applying Lemiha[3.1 with= U \ {u} and

J = () we obtain

(DY DR = (=00 Y GO+ (Y Y (D).

Icu ICU\{u} ICU\{u}

By Lemmd 3.2 botly, and f* satisfy the requirements of Theorém|2.1. Thus, by the induction
hypothesis, these two functions both sati§fy|(1.4) and hence,

(=17 Y VIR < (=107 Y0 (=DM,

ICU\{u} 1gﬁ\<{u}
D D VA R GV i W G VL )]
ICU\{u} ICU\{u}

[T]<r—1

where, of course, the conclusion ff requires that > 1. However, due to requiremetft (2.1)
(with f*in place of f, K = U \ {u}, J = 0) the preceding inequality fof* also holds for
r = 0, and so for allr € Ny we find that

U7 Y D) < (=0 Y DM Y Y (M)

1< s ot
= (=17 > )M+ =0 Y (=0,
ICU, u¢l ICU,uel
1l<r [<r
which immediately gives the right-hand side [of (1.4). O

We are now ready to prove Theorém|2.1.

Proof of Theorem 2]1Let v € U be chosen uniformly at random. By applying Lemmg 3.1
with K = U \ {u} and.J = () we obtain

(3.2) e e N O G Vi I G O P 00

Icu ICU\{u}

By Lemma[3.2f, — f“ satisfies the requirements of Theorgm|2.1. Hence, we may apply
Lemmd 3.8 tof,, — f*, which gives

33) U > L@ < 0T Y DI D)

Ic ICU\{u}
CU\{u} 7
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By combining [(3.2) and (3]3) we obtain
(0" Y (=M < (=17 > (=0 (= (1)

Icu reUM)

= (=17 > (=D)IRI) (-1 Z (—1)Mf (1)
ICU, ugl CU,u
[r]<r §+

L RUDICISIUESDY f
TS [

= (1) Z I F(n) Z f(D)1r(u
\II\CSUT \I\Ic'rl{s»l

wherel; denotes the indicator function éf We thus have

(3.4) (=" Y DM < (=07 Y (=0IAD = Y0 U

Icu ICU ICU
- [<r [I|=r+1

Now, (2.2) follows by taking the expectation on both sides| of|(3.4). The dual version of the
theorem is finally obtained by moving froffito — f. O

4, CHARACTERIZATION

The following theorem characterizes the class of functions satisfying the requirements of
Theoreni Z.11.

Theorem 4.1. The class of functions satisfying the requirements of Thelorgm 2.1 is the smallest
class of function§ such that
(1) all functionsf : 2V — R* where|U| = 1 belong toF,
(2) if f* € Fandf, — f* € F for some functionf : 2V — R*, whereU is finite and
non-empty, ana € U, thenf € .

Proof. Let D be the class of functions satisfying the requirements of Theprem 2.1. Then,
contains all functiong : 2 — R™ where|U| = 1 and as shown subsequently, it contains all
functionsf : 2V — R* whereU is finite and non-empty and botft and f, — f* are inD for
someu € U. Let f be such a function. SincB is closed under taking sums of functions on the
same domainf, = f*“+ (f, — f*) € D. Now, in order to show that € D, we show thaf (2]1)
holds for all disjoint/, K C U. We consider three cases:

Case 1If u ¢ K andu ¢ J, thenJ, K C U \ {u} and hence, sincg, € D,

S (=plprugy =Y () ug) =0

Case 2.If u ¢ K andu € J,thenK C U\ {u} andJ \ {u} C U \ {u} and hence, since
f* € D, we find that

Y Dfraugy = () Iu I\ {u}) 20

ICK ICK
Case 3If u € K andu ¢ J,thenJ C U\ {u} andK \ {u} C U\ {u}. Hence, by Lemma 3.1
and the assumption th#t — f* € D, we have

ooy = > (=)M(f - MU >o.

ICK ICK\{u}
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6 KLAUS DOHMEN AND PETER TITTMANN

In all three cases it turns out thate D. To establish the minimality db, we show thath C &
for any classF satisfying conditions 1 and 2 above. LBbe such a class. By induction ¢fi|
we show that any : 2V — R whichisinD mustbe ir. If |[U| = 1, thenf € F by condition
1. Let|U| > 1, andu € U. By Lemmd 3.2,f*, f, — f* € D. By the induction hypothesis,
f“ fu— f* € F and hence, by condition Z, € F. Hence,D C F. O

5. THE TUTTE POLYNOMIAL

In this section, our main result in Sectiph 2 is applied to the Tutte polynomial of a general
matroid. In the following, we briefly review the necessary concepts. For a detailed exposition,
the reader is referred to WelsH [5].

Definition 5.1. A matroid is a pairM = (U, o) consisting of a finite set/ and a function
o0 : 2V — Ny (rank functior) such that for anyX, Y C U,

(i) ofX) <|X],

(i) X CV = o(X) <o),

(i) o(XUY)+o(XNY) < o(X)+ oY)
TheTutte polynomiall'(M; z, y) of matroid M = (U, p) is defined by

T(M;z,y) = Z(x _ 1)9(U)*9(1)<y _ 1)|1\*@(I)7
ICU
wherez andy are independent variables, and thak polynomiaby
R(M;x,y) :=T(M;z+ 1,y +1).

Example 5.1.Let G = (V,U) be a finite undirected graph. For any subseff the edge-set
U of G let G[I] denote the edge-subgraph induced’bgnd letn(G[I]) andc(G|1]) denote its
number of vertices and connected components, respectively. 12t — N, be defined by

(5.1) o(l) = n(G]) = e(G[]).

Then, M (G) := (U, o) is a matroid, which is called theycle matroidof GG. Specializations of
the Tutte or rank polynomial associated with(G) count various objects associated with
e.g., subgraphs, spanning trees, acyclic orientations and pkegpmorings (see Sectidr 6). It
is also related to network reliability. For details and further applications, see Welsh [5].

Our main result in this section is simplified by the following definition.

Definition 5.2. For any matroidM = (U, o) and anyX C U the deletion of X from A is
defined byM \ X := (U \ X, o|2Y\¥). Thecontraction ofX from M is defined byM /X :=
(U \ X, ox) where the functiony : 2V\* — Ny is defined byoy (1) := o(X U I) — o(X) for
anyl C U \ X. Finally, therestriction of M to X is defined byM |X := M \ (U \ X). (Note
that M \ X, M/X andM|X are again matroids.)

As the rank polynomial gives rise to shorter expressions than the Tutte polynomial, the results
below are stated in terms of the rank polynomial.

Theorem 5.1.Let M = (U, o) be a matroid on some finite non-empty Eetand letz,y € R
such that for any disjoint subsefs K C U,

(5.2) (—1)V g2y MIme D R (M) )| K 2, y) 27 0.
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Then, for any- € Ny,

(5.3) (—=1)" R(M;z,y) <* (=1)" Z ge@—e(Dylll—e(D

ICU
[I|<r

T|+’1 $ geO)-eDylil-ed)
U

ICU
[ I|=r+1

Moreover, the theorem can be dualized by interchangirand < in the starred () places.

Proof. In order to apply Theoren 2.1 we write
R(M;a,y) = (=D f(D),
ICU
wheref : 2V — R is defined by
(5.4) () = (_1)\1\x9(U)79(1)y\1|79(1) (ICU).
For any disjoint subsetg K C U we find that
Z(—l)'”f(lu J) = Z(_1)\J\x@(U)—g(IuJ)y\IIHJ\—Q(IuJ)
ICK ICK
— (_1)|J|$@( )—e(J)—es(K) IJI o(J Z 227 (K)—es(I |1| os(I)
ICK
y DR (M) )| K 2,y) > 0,
where the last inequality comes from conditipn [5.2) above. Heficstisfies the require-

ments of Theorern 2.1, and th{is (5.3) follows frgm2.2). Similarly, the dual version follows by
applying the dual version of Theorém.1. O

Remark 5.2. By using [1.4) instead of (2.2) in the proof of Theorem 5.1 one would, under the
requirements of Theoren 5.1, obtain the weaker inequality

(5.5) (=1)"R(M;x,y) Z geU)—eD)yll=o(l),

ICU
[]<r

This weaker inequality is also a direct consequence of Theprem 5.1: $itigeas defined

in (5.4), satisfies the requirements of Theofen 2.1, it must be non-negative due to the second
remark following Theorerp 2|1 and hence,

1
(5.6) (_1)”";' S pe-eDylri-e) < g,

_ (—1)MIgel®)e(IUK)

ICU
| I|=r+1

Now, from (5.3) and[(5]6) the weaker inequalify (5.5) follows. Under the dual requirements
simply replace< by > in (6.5) and[(5.5). The latter inequalify ($.6) and its dual will be used in
deriving the subsequent corollary.

Definition 5.3. Let M = (U, p) be a matroid. A subsetC U is dependent inV/ if o(1) < |1].
Thegirth of M, g(M) for short, is the smallest size of a dependent s@étiif such a set exists;
otherwiseg(M) := +oo.

Corollary 5.3. Under the requirements of Theorém|5.1fox r < g(M),

r

(5.7) (—1)"R(M;z,y) < (-1)"> (’Z’)zmm—k n (_l)r(‘U’r_ 1) G —

k=0
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8 KLAUS DOHMEN AND PETER TITTMANN

The corollary can be dualized by interchangirgand < in (5.2) and [(5.7).

Proof. For anyl C U, o(I) = |I| if |I| < g(M), ando(I) < |I| if |I| > g(M). Thus, the
inequality follows from [(5.B) and (5,6), respectively their dual. O

Remark 5.4. Using (5.5) instead of (5/3) in the proof of the preceding corollary would, under
the requirements of Theorgm p.1, give the weaker inequality

Rt = (oY (e << g,

k=0
respectively its dual (under the dual requirements).

6. THE CHROMATIC POLYNOMIAL

Let G = (V,U) be a finite undirected graph, and [&f(G) denote its cycle matroid (see
Examplg5.1L). It is well-known (cf[[5]) that for any € N,

Po(N) i= (=D)2ONOT(M(G); 1 — A, 0) = (=1)2DINDR(M(G); =\, —1)

counts the number of propércolorings ofG, that is, the number of mappings: V —
{1,...,A} such thatf(v) # f(w) if v # w andv andw are adjacent iz. The polynomial
P¢()) is called thechromatic polynomiabf G.

Theorem 6.1.Let G = (V,U) be a finite undirected graph having at least one edge (that is,
U # (). Then, for any\ € N and anyr € N, we have

(6.1) (—1)"Pa(V) < (=1)7 3 (=M Ixevh - r+1 S e,

ICU ’ | ICU
[I|<r [T|=r+1

wherec(V, I') denotes the number of connected components of the graphhaving vertex-set
V and edge-sei.

Proof. Theorenj 6.l is deduced from Theorem 5.1 and its dual. For any disjoint subsets
U the left-hand side of (5]2) is equal to

(6.2) (—1)MI(=p) eI ()IEED R (M) )| =, —1>
= (-1 ) ) \e(U JUK))\C((G/J)[KDP(G/J)[M()\)’
whereyp is the rank function of the cycle matroid as define(w,] is the graph obtained
from G by contracting all edges id, and(G/J)[K] is the edge-subgraph induced By in
G/J. If o(U) is even, then the expression |n (6.2) is at least zero and hence, THeofem 5.1 can

be applied. On the other hand, dfU) is odd, then the expression in (6.2) is at most zero,
whence the dual version of Theorém|5.1 can be applied. In either case we obtain

(—1)7 3 (—1)pe)-ed) T|J(;|1 S e

ICU ICU
|[1|<r |T|=r+1

as an upper bound fgr-1)¢Y)(—1)" R(M; —\, —1). By this and the definition of the chromatic
polynomial,

(_DTPG()‘)S(_DTZ( 1)HIxeW)—ell)+e(@) _ r+i Z \e(@)—e(D)+e(G

ICU ’U| ICU
NES [I|=r+1

from which the result follows since(U) — o(I) + ¢(G) = ¢(V, I). O
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The following result appears inl[2]. Recall that thieth of G, ¢(G), is the length of a smallest
cycle inG if G is not cycle-free; otherwise,G) := +oo.

Corollary 6.2. Under the requirements of Theorém|6.1 fox » < ¢(G),
d Ul _ |U| -1 o
) _1\T < (—1)" _k| Vi-k |V|r1'
63 crra = o en (e (7))
Proof. Note that foranyl C U, ¢(V,I) = |V| — |I]if |I| < g(G) — 1, ande(V, 1) > |V| — |1
if |[I| > ¢g(G). Thus, for0 < r < ¢g(G), Theorenj 6.]1 gives

(—1)7 Po(N) < (—1)7 3 (= 1)HAM-i _r+l S AV

ICU | | ICU
[I]<r [T]=r+1

which simplifies to[(6.3). O
Remark 6.3. Corollary[6.2 can also be deduced from Corollary] 5.3 and its dual in the same
way as Theorern 6.1 is deduced from Theofem 5.1 and its dual.
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