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ABSTRACT. In [2] the second author proposed to find a description (or examples) of real-valued
n-variable functions satisfying the following two inequalities:

if xi ≤ yi, i = 1, . . . , n, thenF (x1, . . . , xn) ≤ F (y1, . . . , yn),

with strict inequality if there is an indexi such thatxi < yi; and for0 < x1 < x2 < · · · < xn,
then,

F (xx2
1 , xx3

2 , . . . , xx1
n ) ≤ F (xx1

1 , xx2
2 , · · · , xxn

n ).
In this short note we extend in a direction a result of [2] and we prove a theorem that provides
a large class of examples satisfying the two inequalities, withF replaced by any symmetric
polynomial with positive coefficients. Moreover, we find that the inequalities are not specific to
expressions of the formxy, rather they hold for any functiong(x, y) that satisfies some condi-
tions. A simple consequence of this result is a theorem of Hardy, Littlewood and Polya [1].
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1. I NTRODUCTION

In [2], the following problem was proposed:find examples of functionsF : Rn
+ → R with

the properties

if xi ≤ yi, i = 1, . . . , n, thenF (x1, . . . , xn) ≤ F (y1, . . . , yn),

with strict inequality if there is an indexi such thatxi < yi,
(1.1)

and

(1.2) for 0 < x1 < x2 < · · · < xn, then, F (xx2
1 , xx3

2 , . . . , xx1
n ) ≤ F (xx1

1 , xx2
2 , · · · , xxn

n ).

In [2], the following result was proved.

Theorem 1.1. Assume that the permutationσ can be written as a product of disjoint circular
cyclesC1 × C2 × · · · × Cr, where eachCi is a cyclic permutation, that isCi(j) = j + ti, for
some fixedti. For any increasing sequence0 < x1 < · · · < xn, we have

n∑
i=1

aix
xσ(i)

i ≤
n∑

i=1

aix
xi
i , and

n∏
i=1

aix
xσ(i)

i ≤
n∏

i=1

aix
xi
i ,

(1.3)

whereai ≥ 0 is increasing on the cyclesCi of σ.
(The condition onai was inadvertently omitted in the final version of [2].)

In this short note we extend in a direction the previous result of [2] to any permutation, not
only the permutations which are products of circular cycles, by proving (1.1) and (1.2) for
symmetric polynomials with positive coefficients. Finally, we prove that these inequalities are
not specific only to rearrangements of powers, that is, we find other classes of functions of 2-
variables with real values, sayg(x, y), such that, for anyσ ∈ Sn (the group of permutations),
we have

(1.4) F (g(x1, xσ(1)), . . . , g(xn, xσ(n))) ≤ F (g(x1, x1), . . . , g(xn, xn)),

whereF is any symmetric polynomial with positive coefficients.

2. THE RESULTS

Lemma 2.1. If f ∈ R[X1, X2] is a symmetric polynomial with positive coefficients and(x1, x2) ∈
R2

+ and (y1, y2) ∈ R2
+ are such thatx1x2 ≤ y1y2 and xn

1 + xn
2 ≤ yn

1 + yn
2 , ∀n ∈ N, then

f(x1, x2) ≤ f(y1, y2).

Proof. We have

f(X1, X2) =
∑

aijX
i
1X

j
2 =

∑
i<j

(
aijX

i
1X

j
2 + ajiX

j
1X

i
2

)
+
∑

aiiX
i
1X

i
2,

whereaij ∈ R+. Sincef is symmetricaij = aji, and therefore

f(X1, X2) =
∑
i<j

aij

(
X i

1X
j
2 + Xj

1X
i
2

)
+
∑

aiiX
i
1X

i
2

=
∑
i<j

aijX
i
1X

i
2

(
Xj−i

1 + Xj−i
2

)
+
∑

aiiX
i
1X

i
2.

It is clear now that the two conditions imposed on(x1, x2) and(y1, y2) imply thatf(x1, x2) ≤
f(y1, y2). �
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We will considerA ⊂ R and a functiong : A×A → [0,∞) with the following property: for
all x1, x2, y1, y2 ∈ R such thatx1 ≤ x2 andy1 ≤ y2 the following two inequalities are satisfied:

g(x1, y2)g(x2, y1) ≤ g(x1, y1)g(x2, y2)(2.1)

[g(x1, y2)]
n + [g(x2, y1)]

n ≤ [g(x1, y1)]
n + [g(x2, y2)]

n, ∀n ∈ N.(2.2)

Theorem 2.2.LetF (X1, X2, . . . , Xn) be a symmetric polynomial with positive coefficients and
g as above. Then for anyσ ∈ Sn and anyx1, x2, . . . , xn ∈ A we have:

F (g(x1, xσ(1)), g(x2, xσ(2)), . . . , g(xn, xσ(n))) ≤ F (g(x1, x1), g(x2, x2), . . . , g(xn, xn)).

Proof. Considerx1, x2, ..., xn ∈ A arbitrary and fixed. Without loss of generality we may
assume thatx1 ≤ x2 ≤ · · · ≤ xn. Let

m = max{F
(
g(x1, xσ(1)), . . . , g(xn, xσ(n))

)
|σ ∈ Sn}

and let
P = {σ ∈ Sn|F

(
g(x1, xσ(1)), . . . , g(xn, xσ(n))

)
= m}.

We would like to prove thate ∈ P wheree is the identity. Letτ ∈ P the permutation that has
the minimum number of inversions among all elements ofP and suppose thatτ 6= e. Sincee
is the only increasing permutation it follows that there existsi ∈ {1, 2, . . . , n − 1} such that
τ(i) > τ(i + 1). Without loss of generality we may assume thati = 1. Considerτ ′ ∈ Sn

defined as follows:τ ′(1) = τ(2), τ ′(2) = τ(1) andτ ′(j) = τ(j) if j ≥ 3. Thenτ ′ has fewer
inversions thanτ and thereforeτ ′ 6∈ P , which implies that:

(2.3) F
(
g(x1, xτ ′(1)), . . . , g(xn, xτ ′(n))

)
< F

(
g(x1, xτ(1)), . . . , g(xn, xτ(n))

)
.

Considerf(X1, X2) = F (X1, X2, g(x3, xτ(3)), . . . , g(xn, xτ(n))). It follows thatf is symmetric
and has positive coefficients. If we sety1 = xτ ′(1) = xτ(2) andy2 = xτ ′(2) = xτ(1) it follows that
y1 ≤ y2. Using the two properties ofg and Lemma 2.1 we deduce thatf(g(x1, y2), g(x2, y1)) ≤
f(g(x1, y1), g(x2, y2)) and therefore

F
(
g(x1, xτ(1)), . . . , g(xn, xτ(n))

)
≤ F

(
g(x1, xτ ′(1)), . . . , g(xn, xτ ′(n))

)
,

which contradicts (2.3). �

If g(x, y) = xy, then the conditions imposed ong are

xy2

1 xy1

2 ≤ xy1

1 xy2

2 ,

xny2

1 + xny1

2 ≤ xny1

1 + xny2

2 ,

which are equivalent to

xy2−y1

1 ≤ xy2−y1

2 ,

xny1

1 (x
n(y2−y1)
1 − 1) ≤ xny1

2 (x
n(y2−y1)
2 − 1).

The first inequality is certainly true asx1 ≤ x2 andy1 ≤ y2. The second inequality is true if
1 ≤ x1 ≤ x2 andy1 ≤ y2. Therefore

Corollary 2.3. The inequalities(1.1)and (1.2)are satisfied for alln-variable symmetric poly-
nomials with positive coefficients, defined on[1,∞)n.

If F (x1, . . . , xn) := x1 + · · · + xn, we can prove a result similar to the one of Theorem 2.2
even if we significantly weaken the assumption ong.

Theorem 2.4.LetA ⊂ R andg : A×A → R be a function such thatha,b(y) = g(a, y)−g(b, y)
(a > b) is increasing. Then for anyx1, x2, . . . , xn ∈ A and anyσ ∈ Sn we have:

F
(
g(x1, xσ(1)), g(x2, xσ(2)), . . . , g(xn, xσ(n))

)
≤ F (g(x1, x1), g(x2, x2), . . . , g(xn, xn)) .
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Proof. We follow the proof of Theorem 2.2 and the only thing we have to check is that

F
(
g(x1, xτ(1)), . . . , g(xn, xτ(n))

)
≤ F

(
g(x1, xτ ′(1)), . . . , g(xn, xτ ′(n))

)
.

But this inequality is equivalent to

g(x1, xτ(1)) + g(x2, xτ(2)) ≤ g(x1, xτ ′(1)) + g(x2, xτ ′(2)).

If we sety1 = xτ ′(1) = xτ(2) andy2 = xτ ′(2) = xτ(1), it follows thaty1 ≤ y2 and the previous
inequality can be written as

g(x1, y2) + g(x2, y1) ≤ g(x1, y1) + g(x2, y2),

which is equivalent to
hx2,x1(y1) ≤ hx2,x1(y2).

This inequality is satisfied becausey1 ≤ y2 andhx2,x1 is increasing. �

Corollary 2.5. Let u, v be increasing functions onR with values in[1,∞). The following
inequalities are true for allx1, x2, · · · , xn ∈ R

n∑
i=1

u(xi)v(xσ(i)) ≤
n∑

i=1

u(xi)v(xi),(2.4)

n∑
i=1

u(xi)
v(xσ(i)) ≤

n∑
i=1

u(xi)
v(xi),(2.5)

n∏
i=1

u(xi)
v(xσ(i)) ≤

n∏
i=1

u(xi)
v(xi).(2.6)

Proof. It suffices to prove that the following functionsg(x, y) = u(x)v(y), g(x, y) = u(x)v(y),
or g(x, y) = u(y)v(x) have the associatedh’s increasing.
Let g(x, y) = u(x)v(y). Thenh(y) = u(a)v(y) − u(b)v(y) = (u(a) − u(b))v(y) which is
increasing sinceu(a) ≥ u(b) andv(y) is increasing.
Let g(x, y) = u(x)v(y). Thenh(y) = u(a)v(y) − u(b)v(y). Sinceu(a) ≥ u(b) ≥ 1, andv(y) is
increasing, by writing

h(y) = u(b)v(y)

((
u(a)

u(b)

)v(y)

− 1

)
,

we see thath is increasing.
We remark that to prove (2.4) we only neededu, v to have positive values. Using the pre-

vious remark, to show the last inequality, apply (2.4) withw = log(u) andv (which are both
increasing). �

Corollary 2.6. If the functionh is decreasing onA, then all the inequalities are reversed.

Remark 2.7. We see that Theorem 368 of [1] follows from (2.4) and Corollary 2.6.
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