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Abstract: Let f(z) :=
∑n

ν=0 aνzν be a polynomial of degreen having no zeros in
the open unit disc, and suppose thatmax|z|=1 |f(z)| = 1. How small can
max|z|=ρ |f(z)| be for anyρ ∈ [0 , 1)? This problem was considered and solved
by Rivlin [4]. There are reasons to consider the same problem under the addi-
tional assumption thatf ′(0) = 0. This was initiated by Govil [2] and followed
up by the present author [3]. The exact answer is known when the degreen is
even. Here, we make some observations about the case wheren is odd.
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1. Introduction

For any entire functionf let

M(f ; ρ) := max
|z|=ρ

|f(z)| (0 ≤ ρ <∞) ,

and denote byPn the class of all polynomials of degree at mostn. If f ∈ Pn, then,
applying the maximum modulus principle to the polynomial

f∼(z) := znf(1/z) ,

we see that

(1.1) M(f ; r) = rnM(f∼; r−1) ≥ rnM(f∼; 1) = rnM(f ; 1) (0 ≤ r < 1) ,

where equality holds if and only iff(z) := czn, c ∈ C, c 6= 0. For the same reason

(1.2) M(f ;R) = RnM(f∼;R−1) ≤ RnM(f∼; 1) = RnM(f ; 1) (R ≥ 1) .

Rivlin [6] proved that iff ∈ Pn andf(z) 6= 0 for |z| < 1, then

(1.3) M(f ; r) ≥M(f ; 1)

(
1 + r

2

)n

(0 ≤ r < 1),

where equality holds if and only iff(z) :=
∑n

ν=0 cνz
ν has a zero of multiplicityn

on the unit circle, that is, if and only ifc0 6= 0 and|c1| = |p′(0)| = n|c0|.
The preceding inequality was generalized by Govil [2] as follows.

Theorem A. Let f ∈ Pn. Furthermore letf(z) 6= 0 for |z| < 1. Then,

(1.4) M(f ; r1) ≥M(f ; r2)

(
1 + r1
1 + r2

)n

(0 ≤ r1 < r2 ≤ 1) .

Here again equality holds for polynomials of the formf(z) := c (1 + eiγz)n, where
c ∈ C, c 6= 0, γ ∈ R.
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The next result which is also due to Govil [2] gives a refinement of(1.4) under
the additional assumption thatf ′(0) = 0.

Theorem B. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = f ′(0) = 0. Then

for 0 ≤ r1 < r2 ≤ 1, we have

(1.5) M(f ; r1) ≥M(f ; r2)

(
1 + r1
1 + r2

)n
{
1− (1−r2)(r2−r1)n

4

(
1+r1
1+r2

)n−1
}−1

.

Improving upon TheoremB, we proved (see [3] or [5, Theorem 12.4.10]) the
following result.

Theorem C. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letλ := c1/(nc0). Then

(1.6) M(f ; r1) ≥M(f ; r2)

(
1 + 2|λ|r1 + r2

1

1 + 2|λ|r2 + r2
2

)n
2

(0 ≤ r1 < r2 ≤ 1) .

Note. It may be noted that0 ≤ |λ| ≤ 1.

If n is even, then for anyr2 ∈ (0 , 1], and anyr1 ∈ [0 , r2), equality holds in(1.6)
for

f(z) := c(1 + 2|λ|eiγz + e2iγz2)n/2, c ∈ C, c 6= 0, |λ| ≤ 1, γ ∈ R.

By an argument different from the one used to prove TheoremC, we obtained in
[4] the following refinement of(1.6).

Theorem D. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letλ := c1/(nc0). Then,

for anyγ ∈ R, we have

(1.7) |f(r1 eiγ)| ≥ |f(r2 eiγ)|
(

1 + 2|λ|r1 + r2
1

1 + 2|λ|r2 + r2
2

)n
2

(0 ≤ r1 < r2 ≤ 1) .
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Again,(1.7) is not sharp for oddn. The proof of(1.7) is based on the observation
that for0 ≤ r < 1, we have

r<f
′(r)

f(r)
= n−< n

1− r ϕ(r)
≤ n− n

1 + r |ϕ(r)|
,

where

ϕ(z) :=
f ′(z)

zf ′(z)− nf(z)

is analytic in the closed unit disc, andmax|z|=1 |ϕ(z)| ≤ 1. Sinceϕ(0) = −λ,
a familiar generalization of Schwarz’s lemma [7, p. 212] implies that|ϕ(r)| ≤
(r + λ)/(λr + 1) for 0 ≤ r < 1, and so if0 ≤ r1 < r2 ≤ 1, then

|f(r2)| = |f(r1)| exp

(∫ r2

r1

<f
′(r)

f(r)
dr

)
≤ |f(r1)|

(
1 + 2|λ|r2 + r2

2

1 + 2|λ|r1 + r2
1

)n
2

,

which readily leads us to(1.7).
It is intriguing that this reasoning works fine for any evenn, and so does the one

that was used to prove TheoremC, but somehow both lack the sophistication needed
to settle the case wheren is odd. We know that whenn is even, the polynomials
which minimize|f(r1)|/|f(r2)| have two zeros of multiplicityn/2 each. However,
n/2 6∈ N whenn is odd, and so the form of the extremals must be different in the
case wheren is even.

Q.I. Rahman, who co-authored [4], had communicated with James Clunie about
TheoremD years earlier, and had asked him for his thoughts about possible ex-
tremals whenn is odd andc1 is 0. In other words, what kind of a polynomialf of
odd degreen would minimize|f(r)|/|f(1)| if

f(z) :=
n∏

ν=1

(1 + ζν z)

(
|ζ1| ≤ 1, . . . , |ζn| ≤ 1 ;

n∑
ν=1

ζν = 0

)
?
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Generally, one uses a variational argument in such a situation. In a written note, Clu-
nie remarked that, in the case of odd degree polynomials, the condition

∑n
ν=1 ζν = 0

is much more difficult to work with than it is in the case of even degree polynomials,
and proposed to check if

(1.8)
|f(r)|
|f(1)|

≥ 1 + r3

2
for 0 ≤ r ≤ 1 if n = 3 and f ′(0) = 0

and

|f(r)|
|f(1)|

≥ 1 + r3

2

1 + r2

2
for 0 ≤ r ≤ 1 if n = 5 and f ′(0) = 0 .

He added thatif above held, it would seem reasonable to conjecture that ifn =
2m+ 1, m ∈ N, andf ′(0) = 0, then

(1.9)
|f(r)|
|f(1)|

≥ 1 + r3

2

(
1 + r2

2

)m−1

for 0 ≤ r ≤ 1 .

We shall see that(1.8) does not hold at least forr = 0. The same can be said
about(1.9).
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2. Statement of Results

Letλ ∈ C, |λ| ≤ 1. We shall denote byPn,λ the class of all polynomials of the form
f(z) :=

∑n
ν=0 cν z

ν , not vanishing in the open unit disc, such thatc1/(nc0) = λ.
Thus, iff belongs toPn,λ, then

f(z) := c0

n∏
ν=1

(1 + ζν z)

(
|ζ1| ≤ 1, . . . , |ζn| ≤ 1 ;

n∑
ν=1

ζν = nλ

)
.

Let us take any two numbersr1 andr2 in [0, 1] such thatr1 < r2. Then by(1.7), for
any realγ, we have

|f(r2 eiγ)|
|f(r1 eiγ)|

≤
(

1 + 2|λ|r2 + r2
2

1 + 2|λ|r1 + r2
1

)n
2

(0 ≤ r1 < r2 ≤ 1) .

In addition, we know that the upper bound for|f(r2 eiγ)|/|f(r1 eiγ)| given by the
preceding inequality is attained if the degreen is even, and that it is attained for
a polynomial which has exactly two distinct zeros,each of multiplicityn/2 and of
modulus1. When it comes to the case wheren is odd, this bound is not sharp. What
then is the best possible upper bound for|f(r2 eiγ)/|f(r1 eiγ)| whenn is odd; is the
bound attained? If the bound is attained, can we say something about the extremals?
We shall first show that

(2.1) Ωr1,r2,γ := sup

{
|f(r2 eiγ)|
|f(r1 eiγ)|

: f ∈ Pn,λ

}
is attained. For this it is enough to prove that for anyc 6= 0 the polynomials{

f ∈ Pn,λ : f(r1 eiγ) = c
}

form anormal family of functions, sayFc (for the definition of a normal family see
[1, pp. 210–211]). In order to prove thatFc is normal, letf(z) := a0

∏n
ν=1(1+ζνz),
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where|ζ1| ≤ 1, . . . , |ζn| ≤ 1. Then |f(z)| ≤ |a0| 2n for |z| = 1 whereas|c| =
|f(r1 eiγ)| ≥ |a0| (1− r1)

n. Hence

max
|z|=1

|f(z)| ≤ 2n

(1− r1)n
|c| ,

and so, by(1.2), we have

(2.2) max
|z|=R>1

|f(z)| ≤ 2n

(1− r1)n
|c|Rn (f ∈ Fc) .

Since any compact subset ofC is contained in|z| < R for some large enoughR,
inequality(2.2) implies that the polynomials inFc are uniformly bounded on every
compact set. By a well-known result, for which we refer the reader to [1, p. 216],
the familyFc is normal. HenceΩr1,r2,γ, defined in(2.1), is attained. This implies
that

(2.3) ωr1,r2,γ := inf

{
|f(r1 eiγ)|
|f(r2 eiγ)|

: f ∈ Pn,λ

}
is also attained.

Given r1 < r2 in [0 , 1] and a real numberγ, let E = E(n; r1, r2; γ) denote
the set of all polynomialsf ∈ Pn,λ for which the infimumωr1,r2,γ defined in(2.3)
is attained. Does a polynomialf ∈ Pn,λ necessarily have all its zeros on the unit
circle? We already know that the answer to this question is “yes" for evenn, we
have yet to find out if the same holds whenn is odd. The following result contains
the answer.

Theorem 2.1.For λ ∈ C, |λ| ≤ 1 letPn,λ denote the class of all polynomials of the
form f(z) :=

∑n
ν=0 cν z

ν , not vanishing in the open unit disc, such thatc1/(nc0) =
λ. Givenr1 < r2 in [0 , 1] and a real numberγ, let E = E(n; r1, r2; γ) denote
the set of all polynomialsf ∈ Pn,λ for which the infimumωr1,r2,γ defined in(2.3) is
attained. Then, anyg ∈ E must have at leastn− 1 zeros on the unit circle.
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The theoretical possibility that a polynomialg ∈ E may not have all itsn zeros
on the unit circle can indeed occur in the case wheren is odd. This is illustrated by
our next result.

Theorem 2.2. Let f(z) :=
∑3

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = 0. Then, for

any realγ, we have

(2.4)
|f(0)|

|f (ρ eiγ)|
≥ 4

4 + 4ρ2 + ρ4
(0 < ρ ≤ 1) .

For any givenρ ∈ (0 , 1] equality holds in(2.4) for constant multiples of the poly-
nomial

fρ(z) :=

(
1− ρ+ i

√
4−ρ2

4
z e−iγ

)(
1− ρ− i

√
4−ρ2

4
z e−iγ

)(
1 +

ρ

2
z
)
.

Remark1. Inequality(2.4) says in particular that(1.8) does not hold forr = 0. In
(1.8) it is presumed that the lower bound is attained by a polynomial that has all its
zeros on the unit circle. Surprisingly, it turns out to be false.

The following result is a consequence of Theorem2.2. It is obtained by choosing
γ such that

∣∣f (ρ eiγ
)∣∣ = max|z|=ρ |f(z)|.

Corollary 2.3. Let f(z) :=
∑3

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = 0. Then

(2.5) |f(0)| ≥ 4

4 + 4ρ2 + ρ4
max
|z|=ρ

|f(z)| (0 < ρ ≤ 1) .

The estimate is sharp for eachρ ∈ (0 , 1].
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3. An Auxiliary Result

Lemma 3.1. For any givena ∈ [0 , 1/2], b :=
√

1− a2 andβ ∈ R, let

fa,β(z) :=
(
1 + (a+ ib)zeiβ

) (
1 + (a− ib)zeiβ

) (
1− 2azeiβ

)
.

Then, for anyρ ∈ [0 , 1] and any realθ, we have∣∣fa,β

(
ρeiθ

)∣∣ ≤ ∣∣fa,β

(
−ρe−iβ

)∣∣ = 1 + (1− 4a2)ρ2 + 2aρ3 .

Proof. It is enough to prove the result forβ = 0. The casea = 1/2 being trivial, let
a ∈ (0, 1/2). We have∣∣fa,0

(
ρeiθ
)∣∣2 =

∣∣∣(1 + aρeiθ
)2

+ b2ρ2e2iθ
∣∣∣2 (1− 4aρ cos θ + 4a2ρ2

)
=
∣∣1 + 2aρeiθ + ρ2e2iθ

∣∣2 (1− 4aρ cos θ + 4a2ρ2
)

=
∣∣e−iθ + 2aρ+ ρ2eiθ

∣∣2 (1− 4aρ cos θ + 4a2ρ2
)

=
∣∣(1 + ρ2

)
cos θ + 2aρ+ i

(
−1 + ρ2

)
sin θ

∣∣2
×
(
1− 4aρ cos θ + 4a2ρ2

)
=
{
1− 2ρ2 + 4a2ρ2 + ρ4 +

(
4aρ+ 4aρ3

)
cos θ + 4ρ2 cos2 θ

}
×
(
1− 4aρ cos θ + 4a2ρ2

)
=
{
1−

(
1− 4a2

)
ρ2
}2

+ 4a2ρ6 + 4aρ3
(
3− ρ2 + 4a2ρ2

)
cos θ

+ 4
(
1− 4a2

)
ρ2 cos2 θ − 16aρ3 cos3 θ.

So,
∣∣fa,0

(
ρeiθ
)∣∣ ≤ |fa,0(−ρ)| for all realθ if and only if

aρ(3− ρ2 + 4a2ρ2)(1+cos θ)−(1− 4a2)(1−cos2 θ)−4aρ(1+cos3 θ) ≤ 0 ,
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that is, if and only if

aρ(3− ρ2 + 4a2ρ2)− (1− 4a2)(1− cos θ)− 4aρ(1− cos θ + cos2 θ) ≤ 0 .

To prove this latter inequality, we may replacecos θ by t, set

A(t) := aρ
(
3− ρ2 + 4a2ρ2

)
− 1 + 4a2 − 4aρ+

(
1− 4a2 + 4aρ

)
t− 4aρt2

and show thatA(t) ≤ 0 for −1 ≤ t ≤ 1. First we note that

A(−1) ≤ A(1) = {−1− (1− 4a2)ρ2} aρ < 0 ,

and so, we may restrict ourselves to the open interval(−1, 1).
Clearly,A′(t) vanishes if and only ift = (1 − 4a2 + 4aρ)/(8aρ) which is inad-

missible forρ ≤ (1 − 4a2)/(4a). So, if ρ ≤ (1 − 4a2)/(4a), thenA′(t) is positive
for all t ∈ (−1, 1) sinceA′(0) is; andA(t) ≤ A(1) ≤ 0.

Now, let ρ > (1 − 4a2)/(4a). SinceA′′(t) = −8aρ < 0, the functionA must
have a local maximum att = (1− 4a2 + 4aρ)/(8aρ). However,

A

(
1− 4a2 + 4aρ

8aρ

)
= aρ(3− ρ2 + 4a2ρ2)− 1 + 4a2 − 4aρ

+
(1− 4a2 + 4aρ)2

8aρ
− (1− 4a2 + 4aρ)2

16aρ

= −{aρ+ (1 + aρ3)(1− 4a2)}

+
(1− 4a2)2 + 16a2ρ2 + 8aρ(1− 4a2)

16aρ

= −(1 + aρ3)(1− 4a2) +
(1− 4a2)2

16aρ
+

1

2
(1− 4a2)
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=

{
−
(

1

2
+ aρ3

)
+

1− 4a2

16aρ

}
(1− 4a2)

< −
(

1

4
+ aρ3

)
(1− 4a2) since ρ >

1− 4a2

4a

< 0 .
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4. Proofs of Theorems2.1and 2.2

Proof of Theorem2.1. Let g(z) := c0
∏n

ν=1(1 + ζνz). Suppose, if possible, that
|ζj| < 1 and|ζk| < 1, where1 ≤ j < k ≤ n. Now, consider the function

ψ(w) :=
{1 + (ζj − w)r1 eiγ}{1 + (ζk + w)r1 eiγ}
{1 + (ζj − w)r2 eiγ}{1 + (ζk + w)r2 eiγ}

,

which is analytic and different from zero in the disc|w| < 2δ for all small δ > 0.
Hence, its minimum modulus in|w| < δ cannot be attained atw = 0. This means
that if gw is obtained fromg by changingζj to ζj − w andζk to ζk + w, then, for all
smallδ > 0, we can findw of modulusδ such that∣∣∣∣∣gw

(
r1 eiγ

)
gw (r2 eiγ)

∣∣∣∣∣ <
∣∣∣∣∣g
(
r1 eiγ

)
g (r2 eiγ)

∣∣∣∣∣ .
This is a contradiction sincegw ∈ Pn,λ for |w| < min{1− |ζj| , 1− |ζk|}.

Proof of Theorem2.2. We wish to minimize the quantity|f(0)|/|f(ρeiγ)| over the
classP3,0 of all polynomials of the form

f(z) := c0

3∏
ν=1

(1 + ζνz)

(
|ζ1| ≤ 1, |ζ2| ≤ 1, |ζ3| ≤ 1,

3∑
ν=1

ζν = 0

)
.

Givenρ ∈ (0 , 1] andγ ∈ R, let

mρ,γ := inf

{
|f(0)|
|f(ρeiγ)|

: f ∈ P3,0

}
.

As we have already explained,mρ,γ is attained, i.e., there exists a cubicf ∗ ∈ P3,0

such that
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|f ∗(0)|
|f ∗(ρeiγ)|

= mρ,γ .

In fact, there is at least one such cubicf ∗ with f ∗(0) = 1. By Theorem2.1, the
cubicf ∗ must haveat leasttwo zeros on the unit circle. In other words, iff ∗(z) :=∏3

ν=1(1+ζν z), then at most one of the numbersζ1, ζ2, andζ3 can lie in the open unit
disc. Thus, only two possibilities need to be considered, namely (i)|ζ1| = |ζ2| =
|ζ3| = 1, and (ii) |ζ1| = |ζ2| = 1, 0 < |ζ3| < 1.

Case(i). Since ζ1 + ζ2 + ζ3 = 0, the extremalf ∗ could only be of the form
f ∗(z) := 1 + z3e3iβ, β ∈ [0, 2π/3], and then we would clearly have

(4.1)
|f ∗(0)|
|f ∗(ρeiγ)|

≥ 1

1 + ρ3
(0 < ρ ≤ 1, γ ∈ R) .

Case(ii). This time, because of the conditionζ1 + ζ2 + ζ3 = 0, the extremalf ∗

could only be of the form

f ∗(z) :=
{
1 + (a+ ib)zeiβ

}{
1 + (a− ib)zeiβ

}
(1− 2azeiβ) ,

where0 < a < 1/2, b =
√

1− a2 andβ ∈ R. Then, for any realγ and any
ρ ∈ (0 , 1], we would, by Lemma3.1, have

(4.2)
|f ∗(0)|
|f ∗(ρeiγ)|

≥ min
0<a<1/2

1

1 + (1− 4a2)ρ2 + 2aρ3
=

4

4 + 4ρ2 + ρ4
.

Comparing(4.1) and(4.2), we see that iff ∈ P3,0, then

|f(0)|
|f(ρeiγ)|

≥ 4

4 + 4ρ2 + ρ4
(0 < ρ ≤ 1, γ ∈ R) ,

which proves(2.4).
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