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ABSTRACT. Let f(z) :=
∑n

ν=0 aνzν be a polynomial of degreen having no zeros in the open
unit disc, and suppose thatmax|z|=1 |f(z)| = 1. How small canmax|z|=ρ |f(z)| be for any
ρ ∈ [0 , 1)? This problem was considered and solved by Rivlin [4]. There are reasons to
consider the same problem under the additional assumption thatf ′(0) = 0. This was initiated
by Govil [2] and followed up by the present author [3]. The exact answer is known when the
degreen is even. Here, we make some observations about the case wheren is odd.
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1. I NTRODUCTION

For any entire functionf let

M(f ; ρ) := max
|z|=ρ

|f(z)| (0 ≤ ρ <∞) ,

and denote byPn the class of all polynomials of degree at mostn. If f ∈ Pn, then, applying
the maximum modulus principle to the polynomial

f∼(z) := znf(1/z) ,

we see that

(1.1) M(f ; r) = rnM(f∼; r−1) ≥ rnM(f∼; 1) = rnM(f ; 1) (0 ≤ r < 1) ,

where equality holds if and only iff(z) := czn, c ∈ C, c 6= 0. For the same reason

(1.2) M(f ;R) = RnM(f∼;R−1) ≤ RnM(f∼; 1) = RnM(f ; 1) (R ≥ 1) .

Rivlin [6] proved that iff ∈ Pn andf(z) 6= 0 for |z| < 1, then

(1.3) M(f ; r) ≥M(f ; 1)

(
1 + r

2

)n

(0 ≤ r < 1),
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where equality holds if and only iff(z) :=
∑n

ν=0 cνz
ν has a zero of multiplicityn on the unit

circle, that is, if and only ifc0 6= 0 and|c1| = |p′(0)| = n|c0|.
The preceding inequality was generalized by Govil [2] as follows.

Theorem A. Let f ∈ Pn. Furthermore letf(z) 6= 0 for |z| < 1. Then,

(1.4) M(f ; r1) ≥M(f ; r2)

(
1 + r1
1 + r2

)n

(0 ≤ r1 < r2 ≤ 1) .

Here again equality holds for polynomials of the formf(z) := c (1 + eiγz)n, wherec ∈ C, c 6=
0, γ ∈ R.

The next result which is also due to Govil [2] gives a refinement of(1.4) under the additional
assumption thatf ′(0) = 0.

Theorem B. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = f ′(0) = 0. Then for

0 ≤ r1 < r2 ≤ 1, we have

(1.5) M(f ; r1) ≥M(f ; r2)

(
1 + r1
1 + r2

)n
{
1− (1−r2)(r2−r1)n

4

(
1+r1
1+r2

)n−1
}−1

.

Improving upon Theorem B, we proved (see [3] or [5, Theorem 12.4.10]) the following result.

Theorem C. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letλ := c1/(nc0). Then

(1.6) M(f ; r1) ≥M(f ; r2)

(
1 + 2|λ|r1 + r2

1

1 + 2|λ|r2 + r2
2

)n
2

(0 ≤ r1 < r2 ≤ 1) .

Note. It may be noted that0 ≤ |λ| ≤ 1.

If n is even, then for anyr2 ∈ (0 , 1], and anyr1 ∈ [0 , r2), equality holds in(1.6) for

f(z) := c(1 + 2|λ|eiγz + e2iγz2)n/2, c ∈ C, c 6= 0, |λ| ≤ 1, γ ∈ R.
By an argument different from the one used to prove Theorem C, we obtained in [4] the

following refinement of(1.6).

Theorem D. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and letλ := c1/(nc0). Then, for any

γ ∈ R, we have

(1.7) |f(r1 eiγ)| ≥ |f(r2 eiγ)|
(

1 + 2|λ|r1 + r2
1

1 + 2|λ|r2 + r2
2

)n
2

(0 ≤ r1 < r2 ≤ 1) .

Again, (1.7) is not sharp for oddn. The proof of(1.7) is based on the observation that for
0 ≤ r < 1, we have

r<f
′(r)

f(r)
= n−< n

1− r ϕ(r)
≤ n− n

1 + r |ϕ(r)|
,

where

ϕ(z) :=
f ′(z)

zf ′(z)− nf(z)

is analytic in the closed unit disc, andmax|z|=1 |ϕ(z)| ≤ 1. Sinceϕ(0) = −λ, a familiar
generalization of Schwarz’s lemma [7, p. 212] implies that|ϕ(r)| ≤ (r + λ)/(λr + 1) for
0 ≤ r < 1, and so if0 ≤ r1 < r2 ≤ 1, then

|f(r2)| = |f(r1)| exp

(∫ r2

r1

<f
′(r)

f(r)
dr

)
≤ |f(r1)|

(
1 + 2|λ|r2 + r2

2

1 + 2|λ|r1 + r2
1

)n
2

,
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which readily leads us to(1.7).
It is intriguing that this reasoning works fine for any evenn, and so does the one that was

used to prove Theorem C, but somehow both lack the sophistication needed to settle the case
wheren is odd. We know that whenn is even, the polynomials which minimize|f(r1)|/|f(r2)|
have two zeros of multiplicityn/2 each. However,n/2 6∈ N whenn is odd, and so the form of
the extremals must be different in the case wheren is even.

Q.I. Rahman, who co-authored [4], had communicated with James Clunie about Theorem D
years earlier, and had asked him for his thoughts about possible extremals whenn is odd andc1
is 0. In other words, what kind of a polynomialf of odd degreenwould minimize|f(r)|/|f(1)|
if

f(z) :=
n∏

ν=1

(1 + ζν z)

(
|ζ1| ≤ 1, . . . , |ζn| ≤ 1 ;

n∑
ν=1

ζν = 0

)
?

Generally, one uses a variational argument in such a situation. In a written note, Clunie re-
marked that, in the case of odd degree polynomials, the condition

∑n
ν=1 ζν = 0 is much more

difficult to work with than it is in the case of even degree polynomials, and proposed to check
if

(1.8)
|f(r)|
|f(1)|

≥ 1 + r3

2
for 0 ≤ r ≤ 1 if n = 3 and f ′(0) = 0

and
|f(r)|
|f(1)|

≥ 1 + r3

2

1 + r2

2
for 0 ≤ r ≤ 1 if n = 5 and f ′(0) = 0 .

He added thatif above held, it would seem reasonable to conjecture that ifn = 2m+1, m ∈ N,
andf ′(0) = 0, then

(1.9)
|f(r)|
|f(1)|

≥ 1 + r3

2

(
1 + r2

2

)m−1

for 0 ≤ r ≤ 1 .

We shall see that(1.8) does not hold at least forr = 0. The same can be said about(1.9).

2. STATEMENT OF RESULTS

Let λ ∈ C, |λ| ≤ 1. We shall denote byPn,λ the class of all polynomials of the form
f(z) :=

∑n
ν=0 cν z

ν , not vanishing in the open unit disc, such thatc1/(nc0) = λ. Thus, if f
belongs toPn,λ, then

f(z) := c0

n∏
ν=1

(1 + ζν z)

(
|ζ1| ≤ 1, . . . , |ζn| ≤ 1 ;

n∑
ν=1

ζν = nλ

)
.

Let us take any two numbersr1 andr2 in [0, 1] such thatr1 < r2. Then by(1.7), for any realγ,
we have

|f(r2 eiγ)|
|f(r1 eiγ)|

≤
(

1 + 2|λ|r2 + r2
2

1 + 2|λ|r1 + r2
1

)n
2

(0 ≤ r1 < r2 ≤ 1) .

In addition, we know that the upper bound for|f(r2 eiγ)|/|f(r1 eiγ)| given by the preceding
inequality is attained if the degreen is even, and that it is attained for a polynomial which has
exactly two distinct zeros,each of multiplicityn/2 and of modulus1. When it comes to the
case wheren is odd, this bound is not sharp. What then is the best possible upper bound for
|f(r2 eiγ)/|f(r1 eiγ)| whenn is odd; is the bound attained? If the bound is attained, can we say
something about the extremals? We shall first show that

(2.1) Ωr1,r2,γ := sup

{
|f(r2 eiγ)|
|f(r1 eiγ)|

: f ∈ Pn,λ

}
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is attained. For this it is enough to prove that for anyc 6= 0 the polynomials{
f ∈ Pn,λ : f(r1 eiγ) = c

}
form a normal family of functions, sayFc (for the definition of a normal family see [1, pp.
210–211]). In order to prove thatFc is normal, letf(z) := a0

∏n
ν=1(1 + ζνz), where|ζ1| ≤

1, . . . , |ζn| ≤ 1. Then|f(z)| ≤ |a0| 2n for |z| = 1 whereas|c| = |f(r1 eiγ)| ≥ |a0| (1 − r1)
n.

Hence

max
|z|=1

|f(z)| ≤ 2n

(1− r1)n
|c| ,

and so, by(1.2), we have

(2.2) max
|z|=R>1

|f(z)| ≤ 2n

(1− r1)n
|c|Rn (f ∈ Fc) .

Since any compact subset ofC is contained in|z| < R for some large enoughR, inequality
(2.2) implies that the polynomials inFc are uniformly bounded on every compact set. By a
well-known result, for which we refer the reader to [1, p. 216], the familyFc is normal. Hence
Ωr1,r2,γ, defined in(2.1), is attained. This implies that

(2.3) ωr1,r2,γ := inf

{
|f(r1 eiγ)|
|f(r2 eiγ)|

: f ∈ Pn,λ

}
is also attained.

Given r1 < r2 in [0 , 1] and a real numberγ, let E = E(n; r1, r2; γ) denote the set of
all polynomialsf ∈ Pn,λ for which the infimumωr1,r2,γ defined in(2.3) is attained. Does a
polynomialf ∈ Pn,λ necessarily have all its zeros on the unit circle? We already know that the
answer to this question is “yes" for evenn, we have yet to find out if the same holds whenn is
odd. The following result contains the answer.

Theorem 2.1. For λ ∈ C, |λ| ≤ 1 let Pn,λ denote the class of all polynomials of the form
f(z) :=

∑n
ν=0 cν z

ν , not vanishing in the open unit disc, such thatc1/(nc0) = λ. Givenr1 < r2
in [0 , 1] and a real numberγ, letE = E(n; r1, r2; γ) denote the set of all polynomialsf ∈ Pn,λ

for which the infimumωr1,r2,γ defined in(2.3) is attained. Then, anyg ∈ E must have at least
n− 1 zeros on the unit circle.

The theoretical possibility that a polynomialg ∈ E may not have all itsn zeros on the unit
circle can indeed occur in the case wheren is odd. This is illustrated by our next result.

Theorem 2.2.Let f(z) :=
∑3

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = 0. Then, for any realγ, we

have

(2.4)
|f(0)|

|f (ρ eiγ)|
≥ 4

4 + 4ρ2 + ρ4
(0 < ρ ≤ 1) .

For any givenρ ∈ (0 , 1] equality holds in(2.4) for constant multiples of the polynomial

fρ(z) :=

(
1− ρ+ i

√
4−ρ2

4
z e−iγ

)(
1− ρ− i

√
4−ρ2

4
z e−iγ

)(
1 +

ρ

2
z
)
.

Remark 2.3. Inequality(2.4) says in particular that(1.8) does not hold forr = 0. In (1.8) it
is presumed that the lower bound is attained by a polynomial that has all its zeros on the unit
circle. Surprisingly, it turns out to be false.

The following result is a consequence of Theorem 2.2. It is obtained by choosingγ such that∣∣f (ρ eiγ
)∣∣ = max|z|=ρ |f(z)|.
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Corollary 2.4. Let f(z) :=
∑3

ν=0 cνz
ν 6= 0 for |z| < 1, and letc1 = 0. Then

(2.5) |f(0)| ≥ 4

4 + 4ρ2 + ρ4
max
|z|=ρ

|f(z)| (0 < ρ ≤ 1) .

The estimate is sharp for eachρ ∈ (0 , 1].

3. AN AUXILIARY RESULT

Lemma 3.1. For any givena ∈ [0 , 1/2], b :=
√

1− a2 andβ ∈ R, let

fa,β(z) :=
(
1 + (a+ ib)zeiβ

) (
1 + (a− ib)zeiβ

) (
1− 2azeiβ

)
.

Then, for anyρ ∈ [0 , 1] and any realθ, we have∣∣fa,β

(
ρeiθ

)∣∣ ≤ ∣∣fa,β

(
−ρe−iβ

)∣∣ = 1 + (1− 4a2)ρ2 + 2aρ3 .

Proof. It is enough to prove the result forβ = 0. The casea = 1/2 being trivial, leta ∈ (0, 1/2).
We have∣∣fa,0

(
ρeiθ
)∣∣2 =

∣∣∣(1 + aρeiθ
)2

+ b2ρ2e2iθ
∣∣∣2 (1− 4aρ cos θ + 4a2ρ2

)
=
∣∣1 + 2aρeiθ + ρ2e2iθ

∣∣2 (1− 4aρ cos θ + 4a2ρ2
)

=
∣∣e−iθ + 2aρ+ ρ2eiθ

∣∣2 (1− 4aρ cos θ + 4a2ρ2
)

=
∣∣(1 + ρ2

)
cos θ + 2aρ+ i

(
−1 + ρ2

)
sin θ

∣∣2
×
(
1− 4aρ cos θ + 4a2ρ2

)
=
{
1− 2ρ2 + 4a2ρ2 + ρ4 +

(
4aρ+ 4aρ3

)
cos θ + 4ρ2 cos2 θ

}
×
(
1− 4aρ cos θ + 4a2ρ2

)
=
{
1−

(
1− 4a2

)
ρ2
}2

+ 4a2ρ6 + 4aρ3
(
3− ρ2 + 4a2ρ2

)
cos θ

+ 4
(
1− 4a2

)
ρ2 cos2 θ − 16aρ3 cos3 θ.

So,
∣∣fa,0

(
ρeiθ
)∣∣ ≤ |fa,0(−ρ)| for all realθ if and only if

aρ(3− ρ2 + 4a2ρ2)(1+cos θ)−(1− 4a2)(1−cos2 θ)−4aρ(1+cos3 θ) ≤ 0 ,

that is, if and only if

aρ(3− ρ2 + 4a2ρ2)− (1− 4a2)(1− cos θ)− 4aρ(1− cos θ + cos2 θ) ≤ 0 .

To prove this latter inequality, we may replacecos θ by t, set

A(t) := aρ
(
3− ρ2 + 4a2ρ2

)
− 1 + 4a2 − 4aρ+

(
1− 4a2 + 4aρ

)
t− 4aρt2

and show thatA(t) ≤ 0 for −1 ≤ t ≤ 1. First we note that

A(−1) ≤ A(1) = {−1− (1− 4a2)ρ2} aρ < 0 ,

and so, we may restrict ourselves to the open interval(−1, 1).
Clearly,A′(t) vanishes if and only ift = (1 − 4a2 + 4aρ)/(8aρ) which is inadmissible for

ρ ≤ (1− 4a2)/(4a). So, if ρ ≤ (1− 4a2)/(4a), thenA′(t) is positive for allt ∈ (−1, 1) since
A′(0) is; andA(t) ≤ A(1) ≤ 0.
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Now, let ρ > (1 − 4a2)/(4a). SinceA′′(t) = −8aρ < 0, the functionA must have a local
maximum att = (1− 4a2 + 4aρ)/(8aρ). However,

A

(
1− 4a2 + 4aρ

8aρ

)
= aρ(3− ρ2 + 4a2ρ2)− 1 + 4a2 − 4aρ

+
(1− 4a2 + 4aρ)2

8aρ
− (1− 4a2 + 4aρ)2

16aρ

= −{aρ+ (1 + aρ3)(1− 4a2)}

+
(1− 4a2)2 + 16a2ρ2 + 8aρ(1− 4a2)

16aρ

= −(1 + aρ3)(1− 4a2) +
(1− 4a2)2

16aρ
+

1

2
(1− 4a2)

=

{
−
(

1

2
+ aρ3

)
+

1− 4a2

16aρ

}
(1− 4a2)

< −
(

1

4
+ aρ3

)
(1− 4a2) since ρ >

1− 4a2

4a

< 0 .

�

4. PROOFS OF THEOREMS 2.1 AND 2.2

Proof of Theorem 2.1.Let g(z) := c0
∏n

ν=1(1 + ζνz). Suppose, if possible, that|ζj| < 1 and
|ζk| < 1, where1 ≤ j < k ≤ n. Now, consider the function

ψ(w) :=
{1 + (ζj − w)r1 eiγ}{1 + (ζk + w)r1 eiγ}
{1 + (ζj − w)r2 eiγ}{1 + (ζk + w)r2 eiγ}

,

which is analytic and different from zero in the disc|w| < 2δ for all small δ > 0. Hence, its
minimum modulus in|w| < δ cannot be attained atw = 0. This means that ifgw is obtained
from g by changingζj to ζj − w andζk to ζk + w, then, for all smallδ > 0, we can findw of
modulusδ such that ∣∣∣∣∣gw

(
r1 eiγ

)
gw (r2 eiγ)

∣∣∣∣∣ <
∣∣∣∣∣g
(
r1 eiγ

)
g (r2 eiγ)

∣∣∣∣∣ .
This is a contradiction sincegw ∈ Pn,λ for |w| < min{1− |ζj| , 1− |ζk|}. �

Proof of Theorem 2.2.We wish to minimize the quantity|f(0)|/|f(ρeiγ)| over the classP3,0 of
all polynomials of the form

f(z) := c0

3∏
ν=1

(1 + ζνz)

(
|ζ1| ≤ 1, |ζ2| ≤ 1, |ζ3| ≤ 1,

3∑
ν=1

ζν = 0

)
.

Givenρ ∈ (0 , 1] andγ ∈ R, let

mρ,γ := inf

{
|f(0)|
|f(ρeiγ)|

: f ∈ P3,0

}
.

As we have already explained,mρ,γ is attained, i.e., there exists a cubicf ∗ ∈ P3,0 such that

|f ∗(0)|
|f ∗(ρeiγ)|

= mρ,γ .
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In fact, there is at least one such cubicf ∗ with f ∗(0) = 1. By Theorem 2.1, the cubicf ∗ must
haveat leasttwo zeros on the unit circle. In other words, iff ∗(z) :=

∏3
ν=1(1 + ζν z), then at

most one of the numbersζ1, ζ2, andζ3 can lie in the open unit disc. Thus, only two possibilities
need to be considered, namely (i)|ζ1| = |ζ2| = |ζ3| = 1, and (ii) |ζ1| = |ζ2| = 1, 0 < |ζ3| < 1.

Case(i). Sinceζ1 + ζ2 + ζ3 = 0, the extremalf ∗ could only be of the formf ∗(z) := 1 +
z3e3iβ, β ∈ [0, 2π/3], and then we would clearly have

(4.1)
|f ∗(0)|
|f ∗(ρeiγ)|

≥ 1

1 + ρ3
(0 < ρ ≤ 1, γ ∈ R) .

Case(ii). This time, because of the conditionζ1 + ζ2 + ζ3 = 0, the extremalf ∗ could only be

of the form

f ∗(z) :=
{
1 + (a+ ib)zeiβ

}{
1 + (a− ib)zeiβ

}
(1− 2azeiβ) ,

where0 < a < 1/2, b =
√

1− a2 andβ ∈ R. Then, for any realγ and anyρ ∈ (0 , 1], we
would, by Lemma 3.1, have

(4.2)
|f ∗(0)|
|f ∗(ρeiγ)|

≥ min
0<a<1/2

1

1 + (1− 4a2)ρ2 + 2aρ3
=

4

4 + 4ρ2 + ρ4
.

Comparing(4.1) and(4.2), we see that iff ∈ P3,0, then

|f(0)|
|f(ρeiγ)|

≥ 4

4 + 4ρ2 + ρ4
(0 < ρ ≤ 1, γ ∈ R) ,

which proves(2.4). �
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